aboutsummaryrefslogtreecommitdiffhomepage
path: root/experimental/Intersection/Simplify.cpp
blob: f07f8370e07c0cf7e5e63ff699efc0e4aad4f565 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "Simplify.h"

#undef SkASSERT
#define SkASSERT(cond) while (!(cond)) { sk_throw(); }

// Terminology:
// A Path contains one of more Contours
// A Contour is made up of Segment array
// A Segment is described by a Verb and a Point array with 2, 3, or 4 points
// A Verb is one of Line, Quad(ratic), or Cubic
// A Segment contains a Span array
// A Span is describes a portion of a Segment using starting and ending T
// T values range from 0 to 1, where 0 is the first Point in the Segment

// FIXME: remove once debugging is complete
#if 0 // set to 1 for no debugging whatsoever

//const bool gxRunTestsInOneThread = false;

#define DEBUG_ADD_INTERSECTING_TS 0
#define DEBUG_BRIDGE 0
#define DEBUG_DUMP 0
#define DEBUG_PATH_CONSTRUCTION 0
#define DEBUG_UNUSED 0 // set to expose unused functions

#else

//const bool gRunTestsInOneThread = true;

#define DEBUG_ADD_INTERSECTING_TS 0
#define DEBUG_BRIDGE 1
#define DEBUG_DUMP 1
#define DEBUG_PATH_CONSTRUCTION 1
#define DEBUG_UNUSED 0 // set to expose unused functions

#endif

#if DEBUG_DUMP
static const char* kLVerbStr[] = {"", "line", "quad", "cubic"};
// static const char* kUVerbStr[] = {"", "Line", "Quad", "Cubic"};
static int gContourID;
static int gSegmentID;
#endif

static int LineIntersect(const SkPoint a[2], const SkPoint b[2],
        Intersections& intersections) {
    const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
    const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
    return intersect(aLine, bLine, intersections.fT[0], intersections.fT[1]);
}

static int QuadLineIntersect(const SkPoint a[3], const SkPoint b[2],
        Intersections& intersections) {
    const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
    const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
    intersect(aQuad, bLine, intersections);
    return intersections.fUsed;
}

static int CubicLineIntersect(const SkPoint a[2], const SkPoint b[3],
        Intersections& intersections) {
    const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
            {a[3].fX, a[3].fY}};
    const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
    return intersect(aCubic, bLine, intersections.fT[0], intersections.fT[1]);
}

static int QuadIntersect(const SkPoint a[3], const SkPoint b[3],
        Intersections& intersections) {
    const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
    const Quadratic bQuad = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}, {b[2].fX, b[2].fY}};
    intersect(aQuad, bQuad, intersections);
    return intersections.fUsed;
}

static int CubicIntersect(const SkPoint a[4], const SkPoint b[4],
        Intersections& intersections) {
    const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
            {a[3].fX, a[3].fY}};
    const Cubic bCubic = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}, {b[2].fX, b[2].fY},
            {b[3].fX, b[3].fY}};
    intersect(aCubic, bCubic, intersections);
    return intersections.fUsed;
}

static int HLineIntersect(const SkPoint a[2], SkScalar left, SkScalar right,
        SkScalar y, bool flipped, Intersections& intersections) {
    const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
    return horizontalIntersect(aLine, left, right, y, flipped, intersections);
}

static int VLineIntersect(const SkPoint a[2], SkScalar left, SkScalar right,
        SkScalar y, bool flipped, Intersections& intersections) {
    const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
    return verticalIntersect(aLine, left, right, y, flipped, intersections);
}

static int HQuadIntersect(const SkPoint a[3], SkScalar left, SkScalar right,
        SkScalar y, bool flipped, Intersections& intersections) {
    const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
    return horizontalIntersect(aQuad, left, right, y, flipped, intersections);
}

static int VQuadIntersect(const SkPoint a[3], SkScalar left, SkScalar right,
        SkScalar y, bool flipped, Intersections& intersections) {
    const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
    return verticalIntersect(aQuad, left, right, y, flipped, intersections);
}

static int HCubicIntersect(const SkPoint a[4], SkScalar left, SkScalar right,
        SkScalar y, bool flipped, Intersections& intersections) {
    const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
            {a[3].fX, a[3].fY}};
    return horizontalIntersect(aCubic, left, right, y, flipped, intersections);
}

static int VCubicIntersect(const SkPoint a[4], SkScalar left, SkScalar right,
        SkScalar y, bool flipped, Intersections& intersections) {
    const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
            {a[3].fX, a[3].fY}};
    return verticalIntersect(aCubic, left, right, y, flipped, intersections);
}

static void LineXYAtT(const SkPoint a[2], double t, SkPoint* out) {
    const _Line line = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
    double x, y;
    xy_at_t(line, t, x, y);
    out->fX = SkDoubleToScalar(x);
    out->fY = SkDoubleToScalar(y);
}

static void QuadXYAtT(const SkPoint a[3], double t, SkPoint* out) {
    const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
    double x, y;
    xy_at_t(quad, t, x, y);
    out->fX = SkDoubleToScalar(x);
    out->fY = SkDoubleToScalar(y);
}

static void CubicXYAtT(const SkPoint a[4], double t, SkPoint* out) {
    const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
            {a[3].fX, a[3].fY}};
    double x, y;
    xy_at_t(cubic, t, x, y);
    out->fX = SkDoubleToScalar(x);
    out->fY = SkDoubleToScalar(y);
}

static void (* const SegmentXYAtT[])(const SkPoint [], double , SkPoint* ) = {
    NULL,
    LineXYAtT,
    QuadXYAtT,
    CubicXYAtT
};

static SkScalar LineXAtT(const SkPoint a[2], double t) {
    const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
    double x;
    xy_at_t(aLine, t, x, *(double*) 0);
    return SkDoubleToScalar(x);
}

static SkScalar QuadXAtT(const SkPoint a[3], double t) {
    const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
    double x;
    xy_at_t(quad, t, x, *(double*) 0);
    return SkDoubleToScalar(x);
}

static SkScalar CubicXAtT(const SkPoint a[4], double t) {
    const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
            {a[3].fX, a[3].fY}};
    double x;
    xy_at_t(cubic, t, x, *(double*) 0);
    return SkDoubleToScalar(x);
}

static SkScalar (* const SegmentXAtT[])(const SkPoint [], double ) = {
    NULL,
    LineXAtT,
    QuadXAtT,
    CubicXAtT
};

static SkScalar LineYAtT(const SkPoint a[2], double t) {
    const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
    double y;
    xy_at_t(aLine, t, *(double*) 0, y);
    return SkDoubleToScalar(y);
}

static SkScalar QuadYAtT(const SkPoint a[3], double t) {
    const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
    double y;
    xy_at_t(quad, t, *(double*) 0, y);
    return SkDoubleToScalar(y);
}

static SkScalar CubicYAtT(const SkPoint a[4], double t) {
    const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
            {a[3].fX, a[3].fY}};
    double y;
    xy_at_t(cubic, t, *(double*) 0, y);
    return SkDoubleToScalar(y);
}

static SkScalar (* const SegmentYAtT[])(const SkPoint [], double ) = {
    NULL,
    LineYAtT,
    QuadYAtT,
    CubicYAtT
};

static void LineSubDivide(const SkPoint a[2], double startT, double endT,
        SkPoint sub[2]) {
    const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
    _Line dst;
    sub_divide(aLine, startT, endT, dst);
    sub[0].fX = SkDoubleToScalar(dst[0].x);
    sub[0].fY = SkDoubleToScalar(dst[0].y);
    sub[1].fX = SkDoubleToScalar(dst[1].x);
    sub[1].fY = SkDoubleToScalar(dst[1].y);
}

static void QuadSubDivide(const SkPoint a[3], double startT, double endT,
        SkPoint sub[3]) {
    const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
            {a[2].fX, a[2].fY}};
    Quadratic dst;
    sub_divide(aQuad, startT, endT, dst);
    sub[0].fX = SkDoubleToScalar(dst[0].x);
    sub[0].fY = SkDoubleToScalar(dst[0].y);
    sub[1].fX = SkDoubleToScalar(dst[1].x);
    sub[1].fY = SkDoubleToScalar(dst[1].y);
    sub[2].fX = SkDoubleToScalar(dst[2].x);
    sub[2].fY = SkDoubleToScalar(dst[2].y);
}

static void CubicSubDivide(const SkPoint a[4], double startT, double endT,
        SkPoint sub[4]) {
    const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
            {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
    Cubic dst;
    sub_divide(aCubic, startT, endT, dst);
    sub[0].fX = SkDoubleToScalar(dst[0].x);
    sub[0].fY = SkDoubleToScalar(dst[0].y);
    sub[1].fX = SkDoubleToScalar(dst[1].x);
    sub[1].fY = SkDoubleToScalar(dst[1].y);
    sub[2].fX = SkDoubleToScalar(dst[2].x);
    sub[2].fY = SkDoubleToScalar(dst[2].y);
    sub[3].fX = SkDoubleToScalar(dst[3].x);
    sub[3].fY = SkDoubleToScalar(dst[3].y);
}

static void (* const SegmentSubDivide[])(const SkPoint [], double , double ,
        SkPoint []) = {
    NULL,
    LineSubDivide,
    QuadSubDivide,
    CubicSubDivide
};

#if DEBUG_UNUSED
static void QuadSubBounds(const SkPoint a[3], double startT, double endT,
        SkRect& bounds) {
    SkPoint dst[3];
    QuadSubDivide(a, startT, endT, dst);
    bounds.fLeft = bounds.fRight = dst[0].fX;
    bounds.fTop = bounds.fBottom = dst[0].fY;
    for (int index = 1; index < 3; ++index) {
        bounds.growToInclude(dst[index].fX, dst[index].fY);
    }
}

static void CubicSubBounds(const SkPoint a[4], double startT, double endT,
        SkRect& bounds) {
    SkPoint dst[4];
    CubicSubDivide(a, startT, endT, dst);
    bounds.fLeft = bounds.fRight = dst[0].fX;
    bounds.fTop = bounds.fBottom = dst[0].fY;
    for (int index = 1; index < 4; ++index) {
        bounds.growToInclude(dst[index].fX, dst[index].fY);
    }
}
#endif

static SkPath::Verb QuadReduceOrder(const SkPoint a[3],
        SkTDArray<SkPoint>& reducePts) {
    const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
            {a[2].fX, a[2].fY}};
    Quadratic dst;
    int order = reduceOrder(aQuad, dst);
    if (order == 3) {
        return SkPath::kQuad_Verb;
    }
    for (int index = 0; index < order; ++index) {
        SkPoint* pt = reducePts.append();
        pt->fX = SkDoubleToScalar(dst[index].x);
        pt->fY = SkDoubleToScalar(dst[index].y);
    }
    return (SkPath::Verb) (order - 1);
}

static SkPath::Verb CubicReduceOrder(const SkPoint a[4],
        SkTDArray<SkPoint>& reducePts) {
    const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
            {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
    Cubic dst;
    int order = reduceOrder(aCubic, dst, kReduceOrder_QuadraticsAllowed);
    if (order == 4) {
        return SkPath::kCubic_Verb;
    }
    for (int index = 0; index < order; ++index) {
        SkPoint* pt = reducePts.append();
        pt->fX = SkDoubleToScalar(dst[index].x);
        pt->fY = SkDoubleToScalar(dst[index].y);
    }
    return (SkPath::Verb) (order - 1);
}

static bool QuadIsLinear(const SkPoint a[3]) {
    const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
            {a[2].fX, a[2].fY}};
    return isLinear(aQuad, 0, 2);
}

static bool CubicIsLinear(const SkPoint a[4]) {
    const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
            {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
    return isLinear(aCubic, 0, 3);
}

static SkScalar LineLeftMost(const SkPoint a[2], double startT, double endT) {
    const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
    double x[2];
    xy_at_t(aLine, startT, x[0], *(double*) 0);
    xy_at_t(aLine, endT, x[0], *(double*) 0);
    return startT < endT ? (float) startT : (float) endT;
}

static SkScalar QuadLeftMost(const SkPoint a[3], double startT, double endT) {
    const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
            {a[2].fX, a[2].fY}};
    return (float) leftMostT(aQuad, startT, endT);
}

static SkScalar CubicLeftMost(const SkPoint a[4], double startT, double endT) {
    const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
            {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
    return (float) leftMostT(aCubic, startT, endT);
}

static SkScalar (* const SegmentLeftMost[])(const SkPoint [], double , double) = {
    NULL,
    LineLeftMost,
    QuadLeftMost,
    CubicLeftMost
};

#if DEBUG_UNUSED
static bool IsCoincident(const SkPoint a[2], const SkPoint& above,
        const SkPoint& below) {
    const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
    const _Line bLine = {{above.fX, above.fY}, {below.fX, below.fY}};
    return implicit_matches_ulps(aLine, bLine, 32);
}
#endif

class Segment;

// sorting angles
// given angles of {dx dy ddx ddy dddx dddy} sort them
class Angle {
public:
    // FIXME: this is bogus for quads and cubics
    // if the quads and cubics' line from end pt to ctrl pt are coincident,
    // there's no obvious way to determine the curve ordering from the
    // derivatives alone. In particular, if one quadratic's coincident tangent
    // is longer than the other curve, the final control point can place the
    // longer curve on either side of the shorter one.
    // Using Bezier curve focus http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf
    // may provide some help, but nothing has been figured out yet.
    bool operator<(const Angle& rh) const {
        if ((fDy < 0) ^ (rh.fDy < 0)) {
            return fDy < 0;
        }
        if (fDy == 0 && rh.fDy == 0 && fDx != rh.fDx) {
            return fDx < rh.fDx;
        }
        SkScalar cmp = fDx * rh.fDy - rh.fDx * fDy;
        if (cmp) {
            return cmp < 0;
        }
        if ((fDDy < 0) ^ (rh.fDDy < 0)) {
            return fDDy < 0;
        }
        if (fDDy == 0 && rh.fDDy == 0 && fDDx != rh.fDDx) {
            return fDDx < rh.fDDx;
        }
        cmp = fDDx * rh.fDDy - rh.fDDx * fDDy;
        if (cmp) {
            return cmp < 0;
        }
        if ((fDDDy < 0) ^ (rh.fDDDy < 0)) {
            return fDDDy < 0;
        }
        if (fDDDy == 0 && rh.fDDDy == 0) {
            return fDDDx < rh.fDDDx;
        }
        return fDDDx * rh.fDDDy < rh.fDDDx * fDDDy;
    }

    int end() const {
        return fEnd;
    }

    // since all angles share a point, this needs to know which point
    // is the common origin, i.e., whether the center is at pts[0] or pts[verb]
    // practically, this should only be called by addAngle
    void set(const SkPoint* pts, SkPath::Verb verb, Segment* segment,
            int start, int end, bool coincident) {
        SkASSERT(start != end);
        fSegment = segment;
        fStart = start;
        fEnd = end;
        fCoincident = coincident;
        fDx = pts[1].fX - pts[0].fX; // b - a
        fDy = pts[1].fY - pts[0].fY;
        if (verb == SkPath::kLine_Verb) {
            fDDx = fDDy = fDDDx = fDDDy = 0;
            return;
        }
        fDDx = pts[2].fX - pts[1].fX - fDx; // a - 2b + c
        fDDy = pts[2].fY - pts[1].fY - fDy;
        if (verb == SkPath::kQuad_Verb) {
            fDDDx = fDDDy = 0;
            return;
        }
        fDDDx = pts[3].fX + 3 * (pts[1].fX - pts[2].fX) - pts[0].fX;
        fDDDy = pts[3].fY + 3 * (pts[1].fY - pts[2].fY) - pts[0].fY;
    }

    // noncoincident quads/cubics may have the same initial angle
    // as lines, so must sort by derivatives as well
    // if flatness turns out to be a reasonable way to sort, use the below:
    void setFlat(const SkPoint* pts, SkPath::Verb verb, Segment* segment,
            int start, int end, bool coincident) {
        fSegment = segment;
        fStart = start;
        fEnd = end;
        fCoincident = coincident;
        fDx = pts[1].fX - pts[0].fX; // b - a
        fDy = pts[1].fY - pts[0].fY;
        if (verb == SkPath::kLine_Verb) {
            fDDx = fDDy = fDDDx = fDDDy = 0;
            return;
        }
        if (verb == SkPath::kQuad_Verb) {
            int uplsX = FloatAsInt(pts[2].fX - pts[1].fY - fDx);
            int uplsY = FloatAsInt(pts[2].fY - pts[1].fY - fDy);
            int larger = std::max(abs(uplsX), abs(uplsY));
            int shift = 0;
            double flatT;
            SkPoint ddPt; // FIXME: get rid of copy (change fDD_ to point)
            LineParameters implicitLine;
            _Line tangent = {{pts[0].fX, pts[0].fY}, {pts[1].fX, pts[1].fY}};
            implicitLine.lineEndPoints(tangent);
            implicitLine.normalize();
            while (larger > UlpsEpsilon * 1024) {
                larger >>= 2;
                ++shift;
                flatT = 0.5 / (1 << shift);
                QuadXYAtT(pts, flatT, &ddPt);
                _Point _pt = {ddPt.fX, ddPt.fY};
                double distance = implicitLine.pointDistance(_pt);
                if (approximately_zero(distance)) {
                    SkDebugf("%s ulps too small %1.9g\n", __FUNCTION__, distance);
                    break;
                }
            }
            flatT = 0.5 / (1 << shift);
            QuadXYAtT(pts, flatT, &ddPt);
            fDDx = ddPt.fX - pts[0].fX;
            fDDy = ddPt.fY - pts[0].fY;
            SkASSERT(fDDx != 0 || fDDy != 0);
            fDDDx = fDDDy = 0;
            return;
        }
        SkASSERT(0); // FIXME: add cubic case
    }
    
    Segment* segment() const {
        return fSegment;
    }
    
    int sign() const {
        int result = fStart - fEnd >> 31 | 1;
        SkASSERT(result == fStart < fEnd ? -1 : 1);
        return result;
    }

    int start() const {
        return fStart;
    }

private:
    SkScalar fDx;
    SkScalar fDy;
    SkScalar fDDx;
    SkScalar fDDy;
    SkScalar fDDDx;
    SkScalar fDDDy;
    Segment* fSegment;
    int fStart;
    int fEnd;
    bool fCoincident;
};

static void sortAngles(SkTDArray<Angle>& angles, SkTDArray<Angle*>& angleList) {
    int angleCount = angles.count();
    int angleIndex;
    angleList.setReserve(angleCount);
    for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) {
        *angleList.append() = &angles[angleIndex];
    }
    QSort<Angle>(angleList.begin(), angleList.end() - 1);
}

// Bounds, unlike Rect, does not consider a vertical line to be empty.
struct Bounds : public SkRect {
    static bool Intersects(const Bounds& a, const Bounds& b) {
        return a.fLeft <= b.fRight && b.fLeft <= a.fRight &&
                a.fTop <= b.fBottom && b.fTop <= a.fBottom;
    }

    bool isEmpty() {
        return fLeft > fRight || fTop > fBottom
                || fLeft == fRight && fTop == fBottom
                || isnan(fLeft) || isnan(fRight)
                || isnan(fTop) || isnan(fBottom);
    }

    void setCubicBounds(const SkPoint a[4]) {
        _Rect dRect;
        Cubic cubic  = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
            {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
        dRect.setBounds(cubic);
        set((float) dRect.left, (float) dRect.top, (float) dRect.right,
                (float) dRect.bottom);
    }

    void setQuadBounds(const SkPoint a[3]) {
        const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
                {a[2].fX, a[2].fY}};
        _Rect dRect;
        dRect.setBounds(quad);
        set((float) dRect.left, (float) dRect.top, (float) dRect.right,
                (float) dRect.bottom);
    }
};

struct Span {
    double fT;
    Segment* fOther;
    double fOtherT; // value at fOther[fOtherIndex].fT
    int fOtherIndex;  // can't be used during intersection
    int fWinding; // accumulated from contours surrounding this one
    // OPTIMIZATION: coincident needs only 2 bits (values are -1, 0, 1)
    int fCoincident; // -1 start of coincidence, 0 no coincidence, 1 end
    bool fDone; // if set, this span to next higher T has been processed
};

class Segment {
public:
    Segment() {
#if DEBUG_DUMP
        fID = ++gSegmentID;
#endif
    }
    
    void addAngle(SkTDArray<Angle>& angles, int start, int end,
            bool coincident) {
        SkASSERT(start != end);
        int smaller = start < end ? start : end;
        if (fTs[smaller].fDone) {
            return;
        }
        SkPoint edge[4];
        (*SegmentSubDivide[fVerb])(fPts, fTs[start].fT, fTs[end].fT, edge);
        Angle* angle = angles.append();
        angle->set(edge, fVerb, this, start, end, coincident);
    }

    void addCubic(const SkPoint pts[4]) {
        init(pts, SkPath::kCubic_Verb);
        fBounds.setCubicBounds(pts);
    }

    void addCurveTo(int start, int end, SkPath& path) {
        SkPoint edge[4];
        (*SegmentSubDivide[fVerb])(fPts, fTs[start].fT, fTs[end].fT, edge);
    #if DEBUG_PATH_CONSTRUCTION
        SkDebugf("%s %s (%1.9g,%1.9g)", __FUNCTION__,
                kLVerbStr[fVerb], edge[1].fX, edge[1].fY);
        if (fVerb > 1) {
            SkDebugf(" (%1.9g,%1.9g)", edge[2].fX, edge[2].fY);
        }
        if (fVerb > 2) {
            SkDebugf(" (%1.9g,%1.9g)", edge[3].fX, edge[3].fY);
        }
        SkDebugf("\n");
    #endif
        switch (fVerb) {
            case SkPath::kLine_Verb:
                path.lineTo(edge[1].fX, edge[1].fY);
                break;
            case SkPath::kQuad_Verb:
                path.quadTo(edge[1].fX, edge[1].fY, edge[2].fX, edge[2].fY);
                break;
            case SkPath::kCubic_Verb:
                path.cubicTo(edge[1].fX, edge[1].fY, edge[2].fX, edge[2].fY,
                        edge[3].fX, edge[3].fY);
                break;
        }
    }

    void addLine(const SkPoint pts[2]) {
        init(pts, SkPath::kLine_Verb);
        fBounds.set(pts, 2);
    }

    void addMoveTo(int tIndex, SkPath& path) {
        SkPoint pt;
        double firstT = t(tIndex);
        xyAtT(firstT, &pt);
    #if DEBUG_PATH_CONSTRUCTION
        SkDebugf("%s (%1.9g,%1.9g)\n", __FUNCTION__, pt.fX, pt.fY);
    #endif
        path.moveTo(pt.fX, pt.fY);
    }

    // add 2 to edge or out of range values to get T extremes
    void addOtherT(int index, double otherT, int otherIndex) {
        Span& span = fTs[index];
        span.fOtherT = otherT;
        span.fOtherIndex = otherIndex;
    }

    void addQuad(const SkPoint pts[3]) {
        init(pts, SkPath::kQuad_Verb);
        fBounds.setQuadBounds(pts);
    }

    int addT(double newT, Segment& other, int coincident) {
        // FIXME: in the pathological case where there is a ton of intercepts,
        //  binary search?
        int insertedAt = -1;
        Span* span;
        size_t tCount = fTs.count();
        for (size_t idx2 = 0; idx2 < tCount; ++idx2) {
            // OPTIMIZATION: if there are three or more identical Ts, then
            // the fourth and following could be further insertion-sorted so
            // that all the edges are clockwise or counterclockwise.
            // This could later limit segment tests to the two adjacent
            // neighbors, although it doesn't help with determining which
            // circular direction to go in.
            if (newT <= fTs[idx2].fT) {
                insertedAt = idx2;
                span = fTs.insert(idx2);
                goto finish;
            }
        }
        insertedAt = tCount;
        span = fTs.append();
finish:
        span->fT = newT;
        span->fOther = &other;
        span->fWinding = 1;
        if (span->fDone = newT == 1) {
            ++fDoneSpans;
        } 
        span->fCoincident = coincident;
        fCoincident |= coincident;
        return insertedAt;
    }

    void addTwoAngles(int start, int end, const SkPoint& endLoc,
            const Span* endSpan, bool startCo, SkTDArray<Angle>& angles) {
        // add edge leading into junction
        addAngle(angles, end, start, startCo);
        // add edge leading away from junction
        bool coincident;
        int step = start < end ? 1 : -1;
        int tIndex = nextSpan(end, step, endLoc, endSpan, NULL, coincident);
        if (tIndex >= 0) {
            lastSpan(tIndex, step, endLoc, endSpan->fT, coincident);
            addAngle(angles, end, tIndex, coincident);
        }
    }

    const Bounds& bounds() const {
        return fBounds;
    }

    void buildAngles(int index, int last, int step, const SkPoint& loc,
            SkTDArray<Angle>& angles) const {
        SkASSERT(index - last != 0);
        SkASSERT((index - last  < 0) ^ (step < 0));
        int end = last + step;  
        do {
            Span* span = &fTs[index];
            Segment* other = span->fOther;
            if (other->done()) {
                continue;
            }
        // if there is only one live crossing, and no coincidence, continue
        // in the same direction
        // if there is coincidence, the only choice may be to reverse direction
            // find edge on either side of intersection
            int oIndex = span->fOtherIndex;
            Span* otherSpan = &other->fTs[oIndex];
            SkASSERT(otherSpan->fOther == this);
            // if done == -1, prior span has already been processed
            bool otherCo;
            int localStep = step;
            int next = other->nextSpan(oIndex, localStep, loc, otherSpan,
                    NULL, otherCo);
            if (next < 0) {
                localStep = -step;
                next = other->nextSpan(oIndex, localStep, loc, otherSpan,
                    NULL, otherCo);
            }
            other->lastSpan(next, localStep, loc, otherSpan->fT, otherCo);
            // add candidate into and away from junction
            other->addTwoAngles(next, oIndex, loc, span, otherCo, angles);
            
        } while ((index += step) != end);
    }
    
    // figure out if the segment's ascending T goes clockwise or not
    // not enough context to write this as shown
    // instead, add all segments meeting at the top
    // sort them using buildAngleList
    // find the first in the sort
    // see if ascendingT goes to top
    bool clockwise(int /* tIndex */) const {
        SkASSERT(0); // incomplete
        return false;
    }

    bool done() const {
        SkASSERT(fDoneSpans <= fTs.count());
        return fDoneSpans == fTs.count();
    }

    int findCoincidentEnd(int start) const {
        int tCount = fTs.count();
        SkASSERT(start < tCount);
        const Span& span = fTs[start];
        SkASSERT(span.fCoincident);
        for (int index = start + 1; index < tCount; ++index) {
            const Span& match = fTs[index];
            if (match.fOther == span.fOther) {
                SkASSERT(match.fCoincident);
                return index;
            }
        }
        SkASSERT(0); // should never get here
        return -1;
    }
        
    // start is the index of the beginning T of this edge
    // it is guaranteed to have an end which describes a non-zero length (?)
    // winding -1 means ccw, 1 means cw
    // step is in/out -1 or 1
    // spanIndex is returned
    Segment* findNext(int winding, int& startIndex, int& endIndex) {
        SkASSERT(startIndex != endIndex);
        int count = fTs.count();
        SkASSERT(startIndex < endIndex ? startIndex < count - 1
                : startIndex > 0);
        Span* startSpan = &fTs[startIndex];
        // FIXME:
        // since Ts can be stepped either way, done markers must be careful
        // not to assume that segment was only ascending in T. This shouldn't
        // be a problem unless pathologically a segment can be partially
        // ascending and partially descending -- maybe quads/cubic can do this?
        

        int step = startIndex < endIndex ? 1 : -1;
        SkPoint startLoc; // OPTIMIZATION: store this in the t span?
        xyAtT(startSpan->fT, &startLoc);
        SkPoint endLoc;
        bool startCo;
        int end = nextSpan(startIndex, step, startLoc, startSpan, &endLoc,
                startCo);
        SkASSERT(end >= 0);

        // preflight for coincidence -- if present, it may change winding
        // considerations and whether reversed edges can be followed
        bool many;
        int last = lastSpan(end, step, endLoc, fTs[end].fT, startCo, &many);
        
        // Discard opposing direction candidates if no coincidence was found.
        Span* endSpan = &fTs[end];
        Segment* other;
        if (!many) {
        // mark the smaller of startIndex, endIndex done, and all adjacent
        // spans with the same T value (but not 'other' spans)
            markDone(startIndex < endIndex ? startIndex : endIndex);
            SkASSERT(!startCo);
            // move in winding direction until edge in correct direction
            // balance wrong direction edges before finding correct one
            // this requres that the intersection is angularly sorted
            // for a single intersection, special case -- choose the opposite
            // edge that steps the same
            other = endSpan->fOther;
            startIndex = endSpan->fOtherIndex;
            endIndex = startIndex + step;
            SkASSERT(step < 0 ? endIndex >= 0 : endIndex < other->fTs.count());
            return other;
        }

        // more than one viable candidate -- measure angles to find best
        SkTDArray<Angle> angles;
        SkASSERT(startIndex - endIndex != 0);
        SkASSERT((startIndex - endIndex < 0) ^ (step < 0));
        addTwoAngles(startIndex, end, endLoc, endSpan, startCo, angles);
        buildAngles(end, last, step, endLoc, angles);
        SkTDArray<Angle*> sorted;
        sortAngles(angles, sorted);
        // find the starting edge
        int firstIndex = -1;
        int angleCount = angles.count();
        int angleIndex;
        const Angle* angle;
        for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) {
            angle = sorted[angleIndex];
            if (angle->segment() == this && angle->start() == end &&
                    angle->end() == startIndex) {
                firstIndex = angleIndex;
                break;
            }
        }
        SkASSERT(firstIndex >= 0);
        winding += angle->sign();
        int nextIndex = firstIndex;
        const Angle* nextAngle;
        do {
            if (++nextIndex == angleCount) {
                nextIndex = 0;
            }
            SkASSERT(nextIndex != firstIndex); // should never wrap around
            nextAngle = sorted[nextIndex];
            // OPTIMIZATION: Figure out all connections, given the initial
            // winding info (e.g., accumulate winding in span for reuse)
            winding -= nextAngle->sign();
            
   //         start here;
            // if the winding is non-zero, nextAngle does not connect to
            // current chain. We may be able to deduce whether it will be
            // in some future chain or ignored altogether based on winding,
            // but for the first cut, just detach it from this chain.
            if (!winding) {
                break;
            }
            // but how to detach? Maybe it is correct to mark both ends
            // for all of the sorted angles as done, regardless of whether we
            // also compute the connectedness and/or winding for the inner ones.
            
        } while (true);
        markDone(startIndex < endIndex ? startIndex : endIndex);
        other = nextAngle->segment();
        startIndex = nextAngle->start();
        endIndex = nextAngle->end();
        return other;
    }
    
    
        // so the span needs to contain the pairing info found here
        // this should include the winding computed for the edge, and
        //  what edge it connects to, and whether it is discarded
        //  (maybe discarded == abs(winding) > 1) ?
        // only need derivatives for duration of sorting, add a new struct
        // for pairings, remove extra spans that have zero length and
        //  reference an unused other
        // for coincident, the last span on the other may be marked done
        //  (always?)
        
        // if loop is exhausted, contour may be closed.
        // FIXME: pass in close point so we can check for closure

        // given a segment, and a sense of where 'inside' is, return the next
        // segment. If this segment has an intersection, or ends in multiple
        // segments, find the mate that continues the outside.
        // note that if there are multiples, but no coincidence, we can limit
        // choices to connections in the correct direction
        
        // mark found segments as done

    // FIXME: this is tricky code; needs its own unit test
    void findTooCloseToCall(int /* winding */ ) { // FIXME: winding should be considered
        int count = fTs.count();
        if (count < 3) { // require t=0, x, 1 at minimum
            return;
        }
        int matchIndex = 0;
        int moCount;
        Span* match;
        Segment* mOther;
        do {
            match = &fTs[matchIndex];
            mOther = match->fOther;
            moCount = mOther->fTs.count();
            if (moCount >= 3) {
                break;
            }
            if (++matchIndex >= count) {
                return;
            }
        } while (true); // require t=0, x, 1 at minimum
        SkPoint matchPt;
        // OPTIMIZATION: defer matchPt until qualifying toCount is found?
        xyAtT(match->fT, &matchPt);
        // look for a pair of nearby T values that map to the same (x,y) value
        // if found, see if the pair of other segments share a common point. If
        // so, the span from here to there is coincident.
        for (int index = matchIndex + 1; index < count; ++index) {
            Span* test = &fTs[index];
            Segment* tOther = test->fOther;
            int toCount = tOther->fTs.count();
            if (toCount < 3) { // require t=0, x, 1 at minimum
                continue;
            }
            SkPoint testPt;
            xyAtT(test->fT, &testPt);
            if (matchPt != testPt) {
                matchIndex = index;
                moCount = toCount;
                match = test;
                mOther = tOther;
                matchPt = testPt;
                continue;
            }
            int moStart = -1;
            int moEnd = -1;
            double moStartT, moEndT;
            for (int moIndex = 0; moIndex < moCount; ++moIndex) {
                Span& moSpan = mOther->fTs[moIndex];
                if (moSpan.fOther == this) {
                    if (moSpan.fOtherT == match->fT) {
                        moStart = moIndex;
                        moStartT = moSpan.fT;
                    }
                    continue;
                }
                if (moSpan.fOther == tOther) {
                    SkASSERT(moEnd == -1);
                    moEnd = moIndex;
                    moEndT = moSpan.fT;
                }
            }
            if (moStart < 0 || moEnd < 0) {
                continue;
            }
            // FIXME: if moStartT, moEndT are initialized to NaN, can skip this test
            if (moStartT == moEndT) {
                continue;
            }
            int toStart = -1;
            int toEnd = -1;
            double toStartT, toEndT;
            for (int toIndex = 0; toIndex < toCount; ++toIndex) {
                Span& toSpan = tOther->fTs[toIndex];
                if (toSpan.fOther == this) {
                    if (toSpan.fOtherT == test->fT) {
                        toStart = toIndex;
                        toStartT = toSpan.fT;
                    }
                    continue;
                }
                if (toSpan.fOther == mOther && toSpan.fOtherT == moEndT) {
                    SkASSERT(toEnd == -1);
                    toEnd = toIndex;
                    toEndT = toSpan.fT;
                }
            }
            // FIXME: if toStartT, toEndT are initialized to NaN, can skip this test
            if (toStart <= 0 || toEnd <= 0) {
                continue;
            }
            if (toStartT == toEndT) {
                continue;
            }
            // test to see if the segment between there and here is linear
            if (!mOther->isLinear(moStart, moEnd)
                    || !tOther->isLinear(toStart, toEnd)) {
                continue;
            }
            mOther->fTs[moStart].fCoincident = -1;
            tOther->fTs[toStart].fCoincident = -1;
            mOther->fTs[moEnd].fCoincident = 1;
            tOther->fTs[toEnd].fCoincident = 1;
        }
    }

    // OPTIMIZATION : for a pair of lines, can we compute points at T (cached)
    // and use more concise logic like the old edge walker code?
    // FIXME: this needs to deal with coincident edges
    Segment* findTop(int& tIndex, int& endIndex) {
        // iterate through T intersections and return topmost
        // topmost tangent from y-min to first pt is closer to horizontal
        int firstT = 0;
        int lastT = 0;
        SkScalar topY = fPts[0].fY;
        int count = fTs.count();
        int index;
        for (index = 1; index < count; ++index) {
            const Span& span = fTs[index];
            double t = span.fT;
            SkScalar yIntercept = t == 1 ? fPts[fVerb].fY : yAtT(t);
            if (topY > yIntercept) {
                topY = yIntercept;
                firstT = lastT = index;
            } else if (topY == yIntercept) {
                lastT = index;
            }
        }
        // if there's only a pair of segments, go with the endpoint chosen above
        if (firstT == lastT) {
            tIndex = firstT;
            endIndex = firstT > 0 ? tIndex - 1 : tIndex + 1;
            return this;
        }
        // sort the edges to find the leftmost
        SkPoint startLoc; // OPTIMIZATION: store this in the t span?
        const Span* startSpan = &fTs[firstT];
        xyAtT(startSpan->fT, &startLoc);
        SkPoint endLoc;
        bool nextCo;
        int end = nextSpan(firstT, 1, startLoc, startSpan, &endLoc, nextCo);
        if (end == -1) {
            end = nextSpan(firstT, -1, startLoc, startSpan, &endLoc, nextCo);
            SkASSERT(end != -1);
        }
        // if the topmost T is not on end, or is three-way or more, find left
        // look for left-ness from tLeft to firstT (matching y of other)
        SkTDArray<Angle> angles;
        SkASSERT(firstT - end != 0);
        addTwoAngles(end, firstT, endLoc, &fTs[firstT], nextCo, angles);
        buildAngles(firstT, lastT, 1, startLoc, angles);
        SkTDArray<Angle*> sorted;
        sortAngles(angles, sorted);
        Segment* leftSegment = sorted[0]->segment();
        tIndex = sorted[0]->end();
        endIndex = sorted[0]->start();
        return leftSegment;
    }

    // FIXME: not crazy about this
    // when the intersections are performed, the other index is into an
    // incomplete array. as the array grows, the indices become incorrect
    // while the following fixes the indices up again, it isn't smart about
    // skipping segments whose indices are already correct
    // assuming we leave the code that wrote the index in the first place
    void fixOtherTIndex() {
        int iCount = fTs.count();
        for (int i = 0; i < iCount; ++i) {
            Span& iSpan = fTs[i];
            double oT = iSpan.fOtherT;
            Segment* other = iSpan.fOther;
            int oCount = other->fTs.count();
            for (int o = 0; o < oCount; ++o) {
                Span& oSpan = other->fTs[o];
                if (oT == oSpan.fT && this == oSpan.fOther) {
                    iSpan.fOtherIndex = o;
                }
            }
        }
    }
    
    void init(const SkPoint pts[], SkPath::Verb verb) {
        fPts = pts;
        fVerb = verb;
        fDoneSpans = 0;
        fCoincident = 0;
    }

    bool intersected() const {
        return fTs.count() > 0;
    }
    
    bool isLinear(int start, int end) const {
        if (fVerb == SkPath::kLine_Verb) {
            return true;
        }
        if (fVerb == SkPath::kQuad_Verb) {
            SkPoint qPart[3];
            QuadSubDivide(fPts, fTs[start].fT, fTs[end].fT, qPart);
            return QuadIsLinear(qPart);
        } else {
            SkASSERT(fVerb == SkPath::kCubic_Verb);
            SkPoint cPart[4];
            CubicSubDivide(fPts, fTs[start].fT, fTs[end].fT, cPart);
            return CubicIsLinear(cPart);
        }
    }

    bool isHorizontal() const {
        return fBounds.fTop == fBounds.fBottom;
    }

    bool isVertical() const {
        return fBounds.fLeft == fBounds.fRight;
    }

    // last does not check for done spans because done is only set for the start
    int lastSpan(int end, int step, const SkPoint& startLoc,
            double startT, bool& coincident, bool* manyPtr = NULL) const {
        int last = end;
        int count = fTs.count();
        SkPoint lastLoc;
        int found = 0;
        do {
            end = last;
            if (fTs[end].fCoincident == -step) {
                coincident = true;
            }
            if (step > 0 ? ++last >= count : --last < 0) {
                break;
            }
            const Span& lastSpan = fTs[last];
            if (lastSpan.fT == startT) {
                ++found;
                continue;
            }
            xyAtT(lastSpan.fT, &lastLoc);
            if (startLoc != lastLoc) {
                break;
            }
            ++found;
        } while (true);
        if (manyPtr) {
            *manyPtr = found > 0;
        }
        return end;
    }

    SkScalar leftMost(int start, int end) const {
        return (*SegmentLeftMost[fVerb])(fPts, fTs[start].fT, fTs[end].fT);
    }
    
    void markDone(int index) {
        SkASSERT(!done());
        double referenceT = fTs[index].fT;
        int lesser = index;
        while (--lesser >= 0 && referenceT == fTs[lesser].fT) {
            SkASSERT(!fTs[lesser].fDone);
            fTs[lesser].fDone = true;
            fDoneSpans++;
        }
        do {
            SkASSERT(!fTs[index].fDone);
            fTs[index].fDone = true;
            fDoneSpans++;
        } while (++index < fTs.count() && referenceT == fTs[index].fT);
    }

    // note the assert logic looks for unexpected done of span start
    int nextSpan(int from, int step, const SkPoint& fromLoc,
            const Span* fromSpan, SkPoint* toLoc, bool& coincident) const {
        coincident = false;
        SkASSERT(!done());
        int count = fTs.count();
        int to = from;
        while (step > 0 ? ++to < count : --to >= 0) {
            Span* span = &fTs[to];
            if (span->fCoincident == step) {
                coincident = true;
            }
            if (fromSpan->fT == span->fT) {
                continue;
            }
            SkPoint loc;
            xyAtT(span->fT, &loc);
            if (fromLoc == loc) {
                continue;
            }
            SkASSERT(step < 0 || !fTs[from].fDone);
            SkASSERT(step > 0 || !span->fDone);
            if (toLoc) {
                *toLoc = loc;
            }
            return to;
        }
        return -1;
    }

    const SkPoint* pts() const {
        return fPts;
    }

    void reset() {
        init(NULL, (SkPath::Verb) -1);
        fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
        fTs.reset();
    }

    // OPTIMIZATION: mark as debugging only if used solely by tests
    double t(int tIndex) const {
        SkASSERT(tIndex >= 0);
        SkASSERT(tIndex < fTs.count());
        return fTs[tIndex].fT;
    }
    
    void updatePts(const SkPoint pts[]) {
        fPts = pts;
    }

    SkPath::Verb verb() const {
        return fVerb;
    }

    SkScalar xAtT(double t) const {
        SkASSERT(t >= 0 && t <= 1);
        return (*SegmentXAtT[fVerb])(fPts, t);
    }

    void xyAtT(double t, SkPoint* pt) const {
        SkASSERT(t >= 0 && t <= 1);
        (*SegmentXYAtT[fVerb])(fPts, t, pt);
    }

    SkScalar yAtT(double t) const {
        SkASSERT(t >= 0 && t <= 1);
        return (*SegmentYAtT[fVerb])(fPts, t);
    }

#if DEBUG_DUMP
    void dump() const {
        const char className[] = "Segment";
        const int tab = 4;
        for (int i = 0; i < fTs.count(); ++i) {
            SkPoint out;
            (*SegmentXYAtT[fVerb])(fPts, t(i), &out);
            SkDebugf("%*s [%d] %s.fTs[%d]=%1.9g (%1.9g,%1.9g) other=%d"
                    " otherT=%1.9g winding=%d\n",
                    tab + sizeof(className), className, fID,
                    kLVerbStr[fVerb], i, fTs[i].fT, out.fX, out.fY,
                    fTs[i].fOther->fID, fTs[i].fOtherT, fTs[i].fWinding);
        }
        SkDebugf("%*s [%d] fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)",
                tab + sizeof(className), className, fID,
                fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom);
    }
#endif

private:
    const SkPoint* fPts;
    SkPath::Verb fVerb;
    Bounds fBounds;
    SkTDArray<Span> fTs; // two or more (always includes t=0 t=1)
    // FIXME: coincident only needs two bits (-1, 0, 1)
    int fCoincident; // non-zero if some coincident span inside 
    int fDoneSpans; // used for quick check that segment is finished
#if DEBUG_DUMP
    int fID;
#endif
};

class Contour {
public:
    Contour() {
        reset();
#if DEBUG_DUMP
        fID = ++gContourID;
#endif
    }

    bool operator<(const Contour& rh) const {
        return fBounds.fTop == rh.fBounds.fTop
                ? fBounds.fLeft < rh.fBounds.fLeft
                : fBounds.fTop < rh.fBounds.fTop;
    }

    void addCubic(const SkPoint pts[4]) {
        fSegments.push_back().addCubic(pts);
        fContainsCurves = true;
    }

    int addLine(const SkPoint pts[2]) {
        fSegments.push_back().addLine(pts);
        return fSegments.count();
    }

    int addQuad(const SkPoint pts[3]) {
        fSegments.push_back().addQuad(pts);
        fContainsCurves = true;
        return fSegments.count();
    }

    const Bounds& bounds() const {
        return fBounds;
    }
    
    void complete() {
        setBounds();
        fContainsIntercepts = false;
    }

    void containsIntercepts() {
        fContainsIntercepts = true;
    }

    void findTooCloseToCall(int winding) {
        int segmentCount = fSegments.count();
        for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
            fSegments[sIndex].findTooCloseToCall(winding);
        }
    }

    void fixOtherTIndex() {
        int segmentCount = fSegments.count();
        for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
            fSegments[sIndex].fixOtherTIndex();
        }
    }

    void reset() {
        fSegments.reset();
        fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
        fContainsCurves = fContainsIntercepts = false;
    }
    
    // OPTIMIZATION: feel pretty uneasy about this. It seems like once again
    // we need to sort and walk edges in y, but that on the surface opens the
    // same can of worms as before. But then, this is a rough sort based on 
    // segments' top, and not a true sort, so it could be ameniable to regular
    // sorting instead of linear searching. Still feel like I'm missing something
    Segment* topSegment() {
        int segmentCount = fSegments.count();
        SkASSERT(segmentCount > 0);
        int best = -1;
        Segment* bestSegment = NULL;
        while (++best < segmentCount) {
            Segment* testSegment = &fSegments[best];
            if (testSegment->done()) {
                continue;
            }
            bestSegment = testSegment;
            break;
        }
        if (!bestSegment) {
            return NULL;
        }
        SkScalar bestTop = bestSegment->bounds().fTop;
        for (int test = best + 1; test < segmentCount; ++test) {
            Segment* testSegment = &fSegments[test];
            if (testSegment->done()) {
                continue;
            }
            SkScalar testTop = testSegment->bounds().fTop;
            if (bestTop > testTop) {
                bestTop = testTop;
                bestSegment = testSegment;
            }
        }
        return bestSegment;
    }

#if DEBUG_DUMP
    void dump() {
        int i;
        const char className[] = "Contour";
        const int tab = 4;
        SkDebugf("%s %p (contour=%d)\n", className, this, fID);
        for (i = 0; i < fSegments.count(); ++i) {
            SkDebugf("%*s.fSegments[%d]:\n", tab + sizeof(className),
                    className, i);
            fSegments[i].dump();
        }
        SkDebugf("%*s.fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)\n",
                tab + sizeof(className), className,
                fBounds.fLeft, fBounds.fTop,
                fBounds.fRight, fBounds.fBottom);
        SkDebugf("%*s.fContainsIntercepts=%d\n", tab + sizeof(className),
                className, fContainsIntercepts);
        SkDebugf("%*s.fContainsCurves=%d\n", tab + sizeof(className),
                className, fContainsCurves);
    }
#endif

protected:
    void setBounds() {
        int count = fSegments.count();
        if (count == 0) {
            SkDebugf("%s empty contour\n", __FUNCTION__);
            SkASSERT(0);
            // FIXME: delete empty contour?
            return;
        }
        fBounds = fSegments.front().bounds();
        for (int index = 1; index < count; ++index) {
            fBounds.growToInclude(fSegments[index].bounds());
        }
    }

public:
    SkTArray<Segment> fSegments; // not worth accessor functions?

private:
    Bounds fBounds;
    bool fContainsIntercepts;
    bool fContainsCurves;
#if DEBUG_DUMP
    int fID;
#endif
};

class EdgeBuilder {
public:

EdgeBuilder(const SkPath& path, SkTArray<Contour>& contours)
    : fPath(path)
    , fCurrentContour(NULL)
    , fContours(contours)
{
#if DEBUG_DUMP
    gContourID = 0;
    gSegmentID = 0;
#endif
    walk();
}

protected:

void complete() {
    if (fCurrentContour && fCurrentContour->fSegments.count()) {
        fCurrentContour->complete();
        fCurrentContour = NULL;
    }
}

void walk() {
    // FIXME:remove once we can access path pts directly
    SkPath::RawIter iter(fPath); // FIXME: access path directly when allowed
    SkPoint pts[4];
    SkPath::Verb verb;
    do {
        verb = iter.next(pts);
        *fPathVerbs.append() = verb;
        if (verb == SkPath::kMove_Verb) {
            *fPathPts.append() = pts[0];
        } else if (verb >= SkPath::kLine_Verb && verb <= SkPath::kCubic_Verb) {
            fPathPts.append(verb, &pts[1]);
        }
    } while (verb != SkPath::kDone_Verb);
    // FIXME: end of section to remove once path pts are accessed directly

    SkPath::Verb reducedVerb;
    uint8_t* verbPtr = fPathVerbs.begin();
    const SkPoint* pointsPtr = fPathPts.begin();
    const SkPoint* finalCurveStart = NULL;
    const SkPoint* finalCurveEnd = NULL;
    while ((verb = (SkPath::Verb) *verbPtr++) != SkPath::kDone_Verb) {
        switch (verb) {
            case SkPath::kMove_Verb:
                complete();
                if (!fCurrentContour) {
                    fCurrentContour = fContours.push_back_n(1);
                    finalCurveEnd = pointsPtr++;
                    *fExtra.append() = -1; // start new contour
                }
                continue;
            case SkPath::kLine_Verb:
                // skip degenerate points
                if (pointsPtr[-1].fX != pointsPtr[0].fX
                        || pointsPtr[-1].fY != pointsPtr[0].fY) {
                    fCurrentContour->addLine(&pointsPtr[-1]);
                }
                break;
            case SkPath::kQuad_Verb:
                
                reducedVerb = QuadReduceOrder(&pointsPtr[-1], fReducePts);
                if (reducedVerb == 0) {
                    break; // skip degenerate points
                }
                if (reducedVerb == 1) {
                    *fExtra.append() = 
                            fCurrentContour->addLine(fReducePts.end() - 2);
                    break;
                }
                fCurrentContour->addQuad(&pointsPtr[-1]);
                break;
            case SkPath::kCubic_Verb:
                reducedVerb = CubicReduceOrder(&pointsPtr[-1], fReducePts);
                if (reducedVerb == 0) {
                    break; // skip degenerate points
                }
                if (reducedVerb == 1) {
                    *fExtra.append() =
                            fCurrentContour->addLine(fReducePts.end() - 2);
                    break;
                }
                if (reducedVerb == 2) {
                    *fExtra.append() =
                            fCurrentContour->addQuad(fReducePts.end() - 3);
                    break;
                }
                fCurrentContour->addCubic(&pointsPtr[-1]);
                break;
            case SkPath::kClose_Verb:
                SkASSERT(fCurrentContour);
                if (finalCurveStart && finalCurveEnd
                        && *finalCurveStart != *finalCurveEnd) {
                    *fReducePts.append() = *finalCurveStart;
                    *fReducePts.append() = *finalCurveEnd;
                    *fExtra.append() =
                            fCurrentContour->addLine(fReducePts.end() - 2);
                }
                complete();
                continue;
            default:
                SkDEBUGFAIL("bad verb");
                return;
        }
        finalCurveStart = &pointsPtr[verb - 1];
        pointsPtr += verb;
        SkASSERT(fCurrentContour);
    }
    complete();
    if (fCurrentContour && !fCurrentContour->fSegments.count()) {
        fContours.pop_back();
    }
    // correct pointers in contours since fReducePts may have moved as it grew
    int cIndex = 0;
    fCurrentContour = &fContours[0];
    int extraCount = fExtra.count();
    SkASSERT(fExtra[0] == -1);
    int eIndex = 0;
    int rIndex = 0;
    while (++eIndex < extraCount) {
        int offset = fExtra[eIndex];
        if (offset < 0) {
            fCurrentContour = &fContours[++cIndex];
            continue;
        }
        Segment& segment = fCurrentContour->fSegments[offset - 1];
        segment.updatePts(&fReducePts[rIndex]);
        rIndex += segment.verb() + 1;
    }
    fExtra.reset(); // we're done with this
}

private:
    const SkPath& fPath;
    SkTDArray<SkPoint> fPathPts; // FIXME: point directly to path pts instead
    SkTDArray<uint8_t> fPathVerbs; // FIXME: remove
    Contour* fCurrentContour;
    SkTArray<Contour>& fContours;
    SkTDArray<SkPoint> fReducePts; // segments created on the fly
    SkTDArray<int> fExtra; // -1 marks new contour, > 0 offsets into contour
};

class Work {
public:
    enum SegmentType {
        kHorizontalLine_Segment = -1,
        kVerticalLine_Segment = 0,
        kLine_Segment = SkPath::kLine_Verb,
        kQuad_Segment = SkPath::kQuad_Verb,
        kCubic_Segment = SkPath::kCubic_Verb,
    };

    // FIXME: does it make sense to write otherIndex now if we're going to
    // fix it up later?
    void addOtherT(int index, double otherT, int otherIndex) {
        fContour->fSegments[fIndex].addOtherT(index, otherT, otherIndex);
    }

    // Avoid collapsing t values that are close to the same since
    // we walk ts to describe consecutive intersections. Since a pair of ts can
    // be nearly equal, any problems caused by this should be taken care
    // of later.
    // On the edge or out of range values are negative; add 2 to get end
    int addT(double newT, const Work& other, int coincident) {
        fContour->containsIntercepts();
        return fContour->fSegments[fIndex].addT(newT,
                other.fContour->fSegments[other.fIndex], coincident);
    }

    bool advance() {
        return ++fIndex < fLast;
    }

    SkScalar bottom() const {
        return bounds().fBottom;
    }

    const Bounds& bounds() const {
        return fContour->fSegments[fIndex].bounds();
    }
    
    const SkPoint* cubic() const {
        return fCubic;
    }

    void init(Contour* contour) {
        fContour = contour;
        fIndex = 0;
        fLast = contour->fSegments.count();
    }

    SkScalar left() const {
        return bounds().fLeft;
    }

    void promoteToCubic() {
        fCubic[0] = pts()[0];
        fCubic[2] = pts()[1];
        fCubic[3] = pts()[2];
        fCubic[1].fX = (fCubic[0].fX + fCubic[2].fX * 2) / 3;
        fCubic[1].fY = (fCubic[0].fY + fCubic[2].fY * 2) / 3;
        fCubic[2].fX = (fCubic[3].fX + fCubic[2].fX * 2) / 3;
        fCubic[2].fY = (fCubic[3].fY + fCubic[2].fY * 2) / 3;
    }

    const SkPoint* pts() const {
        return fContour->fSegments[fIndex].pts();
    }

    SkScalar right() const {
        return bounds().fRight;
    }

    ptrdiff_t segmentIndex() const {
        return fIndex;
    }

    SegmentType segmentType() const {
        const Segment& segment = fContour->fSegments[fIndex];
        SegmentType type = (SegmentType) segment.verb();
        if (type != kLine_Segment) {
            return type;
        }
        if (segment.isHorizontal()) {
            return kHorizontalLine_Segment;
        }
        if (segment.isVertical()) {
            return kVerticalLine_Segment;
        }
        return kLine_Segment;
    }

    bool startAfter(const Work& after) {
        fIndex = after.fIndex;
        return advance();
    }

    SkScalar top() const {
        return bounds().fTop;
    }

    SkPath::Verb verb() const {
        return fContour->fSegments[fIndex].verb();
    }

    SkScalar x() const {
        return bounds().fLeft;
    }

    bool xFlipped() const {
        return x() != pts()[0].fX;
    }

    SkScalar y() const {
        return bounds().fTop;
    }

    bool yFlipped() const {
        return y() != pts()[0].fX;
    }

protected:
    Contour* fContour;
    SkPoint fCubic[4];
    int fIndex;
    int fLast;
};

#if DEBUG_ADD_INTERSECTING_TS
static void debugShowLineIntersection(int pts, const Work& wt,
        const Work& wn, const double wtTs[2], const double wnTs[2]) {
    if (!pts) {
        SkDebugf("%s no intersect (%1.9g,%1.9g %1.9g,%1.9g) (%1.9g,%1.9g %1.9g,%1.9g)\n",
                __FUNCTION__, wt.pts()[0].fX, wt.pts()[0].fY,
                wt.pts()[1].fX, wt.pts()[1].fY, wn.pts()[0].fX, wn.pts()[0].fY,
                wn.pts()[1].fX, wn.pts()[1].fY);
        return;
    }
    SkPoint wtOutPt, wnOutPt;
    LineXYAtT(wt.pts(), wtTs[0], &wtOutPt);
    LineXYAtT(wn.pts(), wnTs[0], &wnOutPt);
    SkDebugf("%s wtTs[0]=%g (%g,%g, %g,%g) (%g,%g)",
            __FUNCTION__,
            wtTs[0], wt.pts()[0].fX, wt.pts()[0].fY,
            wt.pts()[1].fX, wt.pts()[1].fY, wtOutPt.fX, wtOutPt.fY);
    if (pts == 2) {
        SkDebugf(" wtTs[1]=%g", wtTs[1]);
    }
    SkDebugf(" wnTs[0]=%g (%g,%g, %g,%g) (%g,%g)\n",
            wnTs[0], wn.pts()[0].fX, wn.pts()[0].fY,
            wn.pts()[1].fX, wn.pts()[1].fY, wnOutPt.fX, wnOutPt.fY);
    if (pts == 2) {
        SkDebugf(" wnTs[1]=%g", wnTs[1]);
    SkDebugf("\n");
    }
#else
static void debugShowLineIntersection(int , const Work& ,
        const Work& , const double [2], const double [2]) {
}
#endif

static bool addIntersectTs(Contour* test, Contour* next) {

    if (test != next) {
        if (test->bounds().fBottom < next->bounds().fTop) {
            return false;
        }
        if (!Bounds::Intersects(test->bounds(), next->bounds())) {
            return true;
        }
    }
    Work wt;
    wt.init(test);
    do {
        Work wn;
        wn.init(next);
        if (test == next && !wn.startAfter(wt)) {
            continue;
        }
        do {
            if (!Bounds::Intersects(wt.bounds(), wn.bounds())) {
                continue;
            }
            int pts;
            Intersections ts;
            bool swap = false;
            switch (wt.segmentType()) {
                case Work::kHorizontalLine_Segment:
                    swap = true;
                    switch (wn.segmentType()) {
                        case Work::kHorizontalLine_Segment:
                        case Work::kVerticalLine_Segment:
                        case Work::kLine_Segment: {
                            pts = HLineIntersect(wn.pts(), wt.left(),
                                    wt.right(), wt.y(), wt.xFlipped(), ts);
                            debugShowLineIntersection(pts, wt, wn,
                                    ts.fT[1], ts.fT[0]);
                            break;
                        }
                        case Work::kQuad_Segment: {
                            pts = HQuadIntersect(wn.pts(), wt.left(),
                                    wt.right(), wt.y(), wt.xFlipped(), ts);
                            break;
                        }
                        case Work::kCubic_Segment: {
                            pts = HCubicIntersect(wn.pts(), wt.left(),
                                    wt.right(), wt.y(), wt.xFlipped(), ts);
                            break;
                        }
                        default:
                            SkASSERT(0);
                    }
                    break;
                case Work::kVerticalLine_Segment:
                    swap = true;
                    switch (wn.segmentType()) {
                        case Work::kHorizontalLine_Segment:
                        case Work::kVerticalLine_Segment:
                        case Work::kLine_Segment: {
                            pts = VLineIntersect(wn.pts(), wt.top(),
                                    wt.bottom(), wt.x(), wt.yFlipped(), ts);
                            debugShowLineIntersection(pts, wt, wn,
                                    ts.fT[1], ts.fT[0]);
                            break;
                        }
                        case Work::kQuad_Segment: {
                            pts = VQuadIntersect(wn.pts(), wt.top(),
                                    wt.bottom(), wt.x(), wt.yFlipped(), ts);
                            break;
                        }
                        case Work::kCubic_Segment: {
                            pts = VCubicIntersect(wn.pts(), wt.top(),
                                    wt.bottom(), wt.x(), wt.yFlipped(), ts);
                            break;
                        }
                        default:
                            SkASSERT(0);
                    }
                    break;
                case Work::kLine_Segment:
                    switch (wn.segmentType()) {
                        case Work::kHorizontalLine_Segment:
                            pts = HLineIntersect(wt.pts(), wn.left(),
                                    wn.right(), wn.y(), wn.xFlipped(), ts);
                            debugShowLineIntersection(pts, wt, wn,
                                    ts.fT[1], ts.fT[0]);
                            break;
                        case Work::kVerticalLine_Segment:
                            pts = VLineIntersect(wt.pts(), wn.top(),
                                    wn.bottom(), wn.x(), wn.yFlipped(), ts);
                            debugShowLineIntersection(pts, wt, wn,
                                    ts.fT[1], ts.fT[0]);
                            break;
                        case Work::kLine_Segment: {
                            pts = LineIntersect(wt.pts(), wn.pts(), ts);
                            debugShowLineIntersection(pts, wt, wn,
                                    ts.fT[1], ts.fT[0]);
                            break;
                        }
                        case Work::kQuad_Segment: {
                            swap = true;
                            pts = QuadLineIntersect(wn.pts(), wt.pts(), ts);
                            break;
                        }
                        case Work::kCubic_Segment: {
                            swap = true;
                            pts = CubicLineIntersect(wn.pts(), wt.pts(), ts);
                            break;
                        }
                        default:
                            SkASSERT(0);
                    }
                    break;
                case Work::kQuad_Segment:
                    switch (wn.segmentType()) {
                        case Work::kHorizontalLine_Segment:
                            pts = HQuadIntersect(wt.pts(), wn.left(),
                                    wn.right(), wn.y(), wn.xFlipped(), ts);
                            break;
                        case Work::kVerticalLine_Segment:
                            pts = VQuadIntersect(wt.pts(), wn.top(),
                                    wn.bottom(), wn.x(), wn.yFlipped(), ts);
                            break;
                        case Work::kLine_Segment: {
                            pts = QuadLineIntersect(wt.pts(), wn.pts(), ts);
                            break;
                        }
                        case Work::kQuad_Segment: {
                            pts = QuadIntersect(wt.pts(), wn.pts(), ts);
                            break;
                        }
                        case Work::kCubic_Segment: {
                            wt.promoteToCubic();
                            pts = CubicIntersect(wt.cubic(), wn.pts(), ts);
                            break;
                        }
                        default:
                            SkASSERT(0);
                    }
                    break;
                case Work::kCubic_Segment:
                    switch (wn.segmentType()) {
                        case Work::kHorizontalLine_Segment:
                            pts = HCubicIntersect(wt.pts(), wn.left(),
                                    wn.right(), wn.y(), wn.xFlipped(), ts);
                            break;
                        case Work::kVerticalLine_Segment:
                            pts = VCubicIntersect(wt.pts(), wn.top(),
                                    wn.bottom(), wn.x(), wn.yFlipped(), ts);
                            break;
                        case Work::kLine_Segment: {
                            pts = CubicLineIntersect(wt.pts(), wn.pts(), ts);
                            break;
                        }
                        case Work::kQuad_Segment: {
                            wn.promoteToCubic();
                            pts = CubicIntersect(wt.pts(), wn.cubic(), ts);
                            break;
                        }
                        case Work::kCubic_Segment: {
                            pts = CubicIntersect(wt.pts(), wn.pts(), ts);
                            break;
                        }
                        default:
                            SkASSERT(0);
                    }
                    break;
                default:
                    SkASSERT(0);
            }
            // in addition to recording T values, record matching segment
            int coincident = pts == 2 && wn.segmentType() <= Work::kLine_Segment
                    && wt.segmentType() <= Work::kLine_Segment ? -1 :0;
            for (int pt = 0; pt < pts; ++pt) {
                SkASSERT(ts.fT[0][pt] >= 0 && ts.fT[0][pt] <= 1);
                SkASSERT(ts.fT[1][pt] >= 0 && ts.fT[1][pt] <= 1);
                int testTAt = wt.addT(ts.fT[swap][pt], wn, coincident);
                int nextTAt = wn.addT(ts.fT[!swap][pt], wt, coincident);
                wt.addOtherT(testTAt, ts.fT[!swap][pt], nextTAt);
                wn.addOtherT(nextTAt, ts.fT[swap][pt], testTAt);
                coincident = -coincident;
            }
        } while (wn.advance());
    } while (wt.advance());
    return true;
}

// see if coincidence is formed by clipping non-concident segments
static void coincidenceCheck(SkTDArray<Contour*>& contourList, int winding) {
    int contourCount = contourList.count();
    for (size_t cIndex = 0; cIndex < contourCount; ++cIndex) {
        Contour* contour = contourList[cIndex];
        contour->findTooCloseToCall(winding);
    }
}

    
// OPTIMIZATION: not crazy about linear search here to find top active y.
// seems like we should break down and do the sort, or maybe sort each
// contours' segments? 
// Once the segment array is built, there's no reason I can think of not to
// sort it in Y. hmmm
static Segment* findTopContour(SkTDArray<Contour*>& contourList,
        int contourCount) {
    int cIndex = 0;
    Segment* topStart;
    do {
        Contour* topContour = contourList[cIndex];
        topStart = topContour->topSegment();
    } while (!topStart && ++cIndex < contourCount);
    if (!topStart) {
        return NULL;
    }
    SkScalar top = topStart->bounds().fTop;
    for (int cTest = cIndex + 1; cTest < contourCount; ++cTest) {
        Contour* contour = contourList[cTest];
        if (top < contour->bounds().fTop) {
            continue;
        }
        Segment* test = contour->topSegment();
        if (top > test->bounds().fTop) {
            cIndex = cTest;
            topStart = test;
            top = test->bounds().fTop;
        }
    }
    return topStart;
}

// Each segment may have an inside or an outside. Segments contained within
// winding may have insides on either side, and form a contour that should be
// ignored. Segments that are coincident with opposing direction segments may
// have outsides on either side, and should also disappear.
// 'Normal' segments will have one inside and one outside. Subsequent connections
// when winding should follow the intersection direction. If more than one edge
// is an option, choose first edge that continues the inside.
    // since we start with leftmost top edge, we'll traverse through a
    // smaller angle counterclockwise to get to the next edge.  
static void bridge(SkTDArray<Contour*>& contourList, SkPath& simple) {
    int contourCount = contourList.count();
    int winding = 0; // there are no contours outside this one
    do {
        Segment* topStart = findTopContour(contourList, contourCount);
        if (!topStart) {
            break;
        }
        // Start at the top. Above the top is outside, below is inside.
        // follow edges to intersection by changing the tIndex by direction.
        int tIndex, endIndex;
        Segment* topSegment = topStart->findTop(tIndex, endIndex);
        Segment* next = topSegment;
        next->addMoveTo(tIndex, simple);
        do {
            SkASSERT(!next->done());
            next->addCurveTo(tIndex, endIndex, simple);
            next = next->findNext(winding, tIndex, endIndex);
        } while (next != topSegment);
    #if DEBUG_PATH_CONSTRUCTION
        SkDebugf("%s close\n", __FUNCTION__);
    #endif
        simple.close();
    } while (true);
        
        // at intersection, stay on outside, but mark remaining edges as inside
            // or, only mark first pair as inside?
            // how is this going to work for contained (but not intersecting)
            //  segments?
 //   start here ;
    // find span
    // mark neighbors winding coverage
    // output span
    // mark span as processed
        
        

}

static void fixOtherTIndex(SkTDArray<Contour*>& contourList) {
    int contourCount = contourList.count();
    for (int cTest = 0; cTest < contourCount; ++cTest) {
        Contour* contour = contourList[cTest];
        contour->fixOtherTIndex();
    }
}

static void makeContourList(SkTArray<Contour>& contours,
        SkTDArray<Contour*>& list) {
    int count = contours.count();
    if (count == 0) {
        return;
    }
    for (int index = 0; index < count; ++index) {
        *list.append() = &contours[index];
    }
    QSort<Contour>(list.begin(), list.end() - 1);
}

void simplifyx(const SkPath& path, SkPath& simple) {
    // returns 1 for evenodd, -1 for winding, regardless of inverse-ness
    int winding = (path.getFillType() & 1) ? 1 : -1;
    simple.reset();
    simple.setFillType(SkPath::kEvenOdd_FillType);

    // turn path into list of segments
    SkTArray<Contour> contours;
    // FIXME: add self-intersecting cubics' T values to segment
    EdgeBuilder builder(path, contours);
    SkTDArray<Contour*> contourList;
    makeContourList(contours, contourList);
    Contour** currentPtr = contourList.begin();
    if (!currentPtr) {
        return;
    }
    Contour** listEnd = contourList.end();
    // find all intersections between segments
    do {
        Contour** nextPtr = currentPtr;
        Contour* current = *currentPtr++;
        Contour* next;
        do {
            next = *nextPtr++;
        } while (addIntersectTs(current, next) && nextPtr != listEnd);
    } while (currentPtr != listEnd);
    fixOtherTIndex(contourList);
    // eat through coincident edges
    coincidenceCheck(contourList, winding);
    // construct closed contours
    bridge(contourList, simple);
}