aboutsummaryrefslogtreecommitdiffhomepage
path: root/experimental/Intersection/ShapeOps.cpp
blob: 5356ca6bb6fba976b257cc52bb843b98ef29dd57 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "Simplify.h"

namespace Op {

#include "Simplify.cpp"

// FIXME: this and find chase should be merge together, along with
// other code that walks winding in angles
// OPTIMIZATION: Probably, the walked winding should be rolled into the angle structure
// so it isn't duplicated by walkers like this one
static Segment* findChaseOp(SkTDArray<Span*>& chase, int& tIndex, int& endIndex) {
    while (chase.count()) {
        Span* span;
        chase.pop(&span);
        const Span& backPtr = span->fOther->span(span->fOtherIndex);
        Segment* segment = backPtr.fOther;
        tIndex = backPtr.fOtherIndex;
        SkTDArray<Angle> angles;
        int done = 0;
        if (segment->activeAngle(tIndex, done, angles)) {
            Angle* last = angles.end() - 1;
            tIndex = last->start();
            endIndex = last->end();
   #if TRY_ROTATE
            *chase.insert(0) = span;
   #else
            *chase.append() = span;
   #endif
            return last->segment();
        }
        if (done == angles.count()) {
            continue;
        }
        SkTDArray<Angle*> sorted;
        bool sortable = Segment::SortAngles(angles, sorted);
#if DEBUG_SORT
        sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0, 0);
#endif
        if (!sortable) {
            continue;
        }
        // find first angle, initialize winding to computed fWindSum
        int firstIndex = -1;
        const Angle* angle;
        int winding;
        do {
            angle = sorted[++firstIndex];
            segment = angle->segment();
            winding = segment->windSum(angle);
        } while (winding == SK_MinS32);
        int spanWinding = segment->spanSign(angle->start(), angle->end());
    #if DEBUG_WINDING
        SkDebugf("%s winding=%d spanWinding=%d\n",
                __FUNCTION__, winding, spanWinding);
    #endif
        // turn span winding into contour winding
        if (spanWinding * winding < 0) {
            winding += spanWinding;
        }
        // we care about first sign and whether wind sum indicates this
        // edge is inside or outside. Maybe need to pass span winding
        // or first winding or something into this function?
        // advance to first undone angle, then return it and winding
        // (to set whether edges are active or not)
        int nextIndex = firstIndex + 1;
        int angleCount = sorted.count();
        int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
        angle = sorted[firstIndex];
        segment = angle->segment();
        int oWinding = segment->oppSum(angle);
    #if DEBUG_SORT
        segment->debugShowSort(__FUNCTION__, sorted, firstIndex, winding, oWinding);
    #endif
        winding -= segment->spanSign(angle);
        bool firstOperand = segment->operand();
        do {
            SkASSERT(nextIndex != firstIndex);
            if (nextIndex == angleCount) {
                nextIndex = 0;
            }
            angle = sorted[nextIndex];
            segment = angle->segment();
            int deltaSum = segment->spanSign(angle);
            bool angleIsOp = segment->operand() ^ firstOperand;
            int maxWinding;
            if (angleIsOp) {
                maxWinding = oWinding;
                oWinding -= deltaSum;
            } else {
                maxWinding = winding;
                winding -= deltaSum;
            }
    #if DEBUG_SORT
            SkDebugf("%s id=%d maxWinding=%d winding=%d oWinding=%d sign=%d\n", __FUNCTION__,
                    segment->debugID(), maxWinding, winding, oWinding, angle->sign());
    #endif
            tIndex = angle->start();
            endIndex = angle->end();
            int lesser = SkMin32(tIndex, endIndex);
            const Span& nextSpan = segment->span(lesser);
            if (!nextSpan.fDone) {
                if (angleIsOp) {
                    SkTSwap(winding, oWinding);
                }
                if (useInnerWinding(maxWinding, winding)) {
                    maxWinding = winding;
                }
                segment->markWinding(lesser, maxWinding, oWinding);
                break;
            }
        } while (++nextIndex != lastIndex);
   #if TRY_ROTATE
        *chase.insert(0) = span;
   #else
        *chase.append() = span;
   #endif
        return segment;
    }
    return NULL;
}

static bool windingIsActive(int winding, int oppWinding, int spanWinding,
        bool windingIsOp, ShapeOp op) {
    bool active = windingIsActive(winding, spanWinding);
    if (!active) {
        return false;
    }
    bool opActive = oppWinding != 0;
    return gOpLookup[op][opActive][windingIsOp];
}

static bool bridgeOp(SkTDArray<Contour*>& contourList, const ShapeOp op,
        const int aXorMask, const int bXorMask, PathWrapper& simple) {
    bool firstContour = true;
    bool unsortable = false;
    bool closable = true;
    SkPoint topLeft = {SK_ScalarMin, SK_ScalarMin};
    do {
        int index, endIndex;
        Segment* current = findSortableTop(contourList, index, endIndex, topLeft);
        if (!current) {
            break;
        }
        int contourWinding, oppContourWinding;
        if (firstContour) {
            contourWinding = oppContourWinding = 0;
            firstContour = false;
        } else {
            int sumWinding = current->windSum(SkMin32(index, endIndex));
            // FIXME: don't I have to adjust windSum to get contourWinding?
            if (sumWinding == SK_MinS32) {
                sumWinding = current->computeSum(index, endIndex);
            }
            if (sumWinding == SK_MinS32) {
                contourWinding = innerContourCheck(contourList, current,
                        index, endIndex, false);
                oppContourWinding = innerContourCheck(contourList, current,
                        index, endIndex, true);
            } else {
                contourWinding = sumWinding;
                oppContourWinding = 0;
                SkASSERT(0);
                // FIXME: need to get oppContourWinding by building sort wheel and
                // retrieving sumWinding of uphill opposite span, calling inner contour check
                // if need be
                int spanWinding = current->spanSign(index, endIndex);
                bool inner = useInnerWinding(sumWinding - spanWinding, sumWinding);
                if (inner) {
                    contourWinding -= spanWinding;
                }
#if DEBUG_WINDING
                SkDebugf("%s sumWinding=%d spanWinding=%d sign=%d inner=%d result=%d\n", __FUNCTION__,
                        sumWinding, spanWinding, SkSign32(index - endIndex),
                        inner, contourWinding);
#endif
            }
#if DEBUG_WINDING
         //   SkASSERT(current->debugVerifyWinding(index, endIndex, contourWinding));
            SkDebugf("%s contourWinding=%d\n", __FUNCTION__, contourWinding);
#endif
        }
        int winding = contourWinding;
        int oppWinding = oppContourWinding;
        int spanWinding = current->spanSign(index, endIndex);
        SkTDArray<Span*> chaseArray;
        do {
            bool active = windingIsActive(winding, oppWinding, spanWinding,
                    current->operand(), op);
        #if DEBUG_WINDING
            SkDebugf("%s active=%s winding=%d oppWinding=%d spanWinding=%d\n",
                    __FUNCTION__, active ? "true" : "false",
                    winding, oppWinding, spanWinding);
        #endif
            do {
        #if DEBUG_ACTIVE_SPANS
                if (!unsortable && current->done()) {
                    debugShowActiveSpans(contourList);
                }
        #endif
                SkASSERT(unsortable || !current->done());
                int nextStart = index;
                int nextEnd = endIndex;
                Segment* next = current->findNextOp(chaseArray, active,
                        nextStart, nextEnd, winding, oppWinding, spanWinding,
                        unsortable, op, aXorMask, bXorMask);
                if (!next) {
                    SkASSERT(!unsortable);
                    if (active && !unsortable && simple.hasMove()
                            && current->verb() != SkPath::kLine_Verb
                            && !simple.isClosed()) {
                        current->addCurveTo(index, endIndex, simple, true);
                        SkASSERT(simple.isClosed());
                    }
                    break;
                }
                current->addCurveTo(index, endIndex, simple, active);
                current = next;
                index = nextStart;
                endIndex = nextEnd;
            } while (!simple.isClosed()
                    && ((active && !unsortable) || !current->done()));
            if (active) {
                if (!simple.isClosed()) {
                    SkASSERT(unsortable);
                    int min = SkMin32(index, endIndex);
                    if (!current->done(min)) {
                        current->addCurveTo(index, endIndex, simple, true);
                        current->markDone(SkMin32(index, endIndex), winding ? winding : spanWinding);
                    }
                    closable = false;
                }
                simple.close();
            }
            current = findChaseOp(chaseArray, index, endIndex);
        #if DEBUG_ACTIVE_SPANS
            debugShowActiveSpans(contourList);
        #endif
            if (!current) {
                break;
            }
            winding = updateWindings(current, index, endIndex, spanWinding, &oppWinding);
        } while (true);
    } while (true);
    return closable;
}

} // end of Op namespace


void operate(const SkPath& one, const SkPath& two, ShapeOp op, SkPath& result) {
    result.reset();
    result.setFillType(SkPath::kEvenOdd_FillType);
    // turn path into list of segments
    SkTArray<Op::Contour> contours;
    // FIXME: add self-intersecting cubics' T values to segment
    Op::EdgeBuilder builder(one, contours);
    const int aXorMask = builder.xorMask();
    builder.addOperand(two);
    const int bXorMask = builder.xorMask();
    builder.finish();
    SkTDArray<Op::Contour*> contourList;
    makeContourList(contours, contourList);
    Op::Contour** currentPtr = contourList.begin();
    if (!currentPtr) {
        return;
    }
    Op::Contour** listEnd = contourList.end();
    // find all intersections between segments
    do {
        Op::Contour** nextPtr = currentPtr;
        Op::Contour* current = *currentPtr++;
        Op::Contour* next;
        do {
            next = *nextPtr++;
        } while (addIntersectTs(current, next) && nextPtr != listEnd);
    } while (currentPtr != listEnd);
    // eat through coincident edges
    coincidenceCheck(contourList);
    fixOtherTIndex(contourList);
    sortSegments(contourList);
#if DEBUG_ACTIVE_SPANS
    debugShowActiveSpans(contourList);
#endif
    // construct closed contours
    Op::PathWrapper wrapper(result);
    bridgeOp(contourList, op, aXorMask, bXorMask, wrapper);
}