1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
// from http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c
/*
* Roots3And4.c
*
* Utility functions to find cubic and quartic roots,
* coefficients are passed like this:
*
* c[0] + c[1]*x + c[2]*x^2 + c[3]*x^3 + c[4]*x^4 = 0
*
* The functions return the number of non-complex roots and
* put the values into the s array.
*
* Author: Jochen Schwarze (schwarze@isa.de)
*
* Jan 26, 1990 Version for Graphics Gems
* Oct 11, 1990 Fixed sign problem for negative q's in SolveQuartic
* (reported by Mark Podlipec),
* Old-style function definitions,
* IsZero() as a macro
* Nov 23, 1990 Some systems do not declare acos() and cbrt() in
* <math.h>, though the functions exist in the library.
* If large coefficients are used, EQN_EPS should be
* reduced considerably (e.g. to 1E-30), results will be
* correct but multiple roots might be reported more
* than once.
*/
#include <math.h>
#include "CubicUtilities.h"
#include "QuadraticUtilities.h"
#include "QuarticRoot.h"
int reducedQuarticRoots(const double t4, const double t3, const double t2, const double t1,
const double t0, const bool oneHint, double roots[4]) {
#if SK_DEBUG
// create a string mathematica understands
// GDB set print repe 15 # if repeated digits is a bother
// set print elements 400 # if line doesn't fit
char str[1024];
bzero(str, sizeof(str));
sprintf(str, "Solve[%1.19g x^4 + %1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]",
t4, t3, t2, t1, t0);
mathematica_ize(str, sizeof(str));
#if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA
SkDebugf("%s\n", str);
#endif
#endif
#if 0 && SK_DEBUG
bool t4Or = approximately_zero_when_compared_to(t4, t0) // 0 is one root
|| approximately_zero_when_compared_to(t4, t1)
|| approximately_zero_when_compared_to(t4, t2);
bool t4And = approximately_zero_when_compared_to(t4, t0) // 0 is one root
&& approximately_zero_when_compared_to(t4, t1)
&& approximately_zero_when_compared_to(t4, t2);
if (t4Or != t4And) {
SkDebugf("%s t4 or and\n", __FUNCTION__);
}
bool t3Or = approximately_zero_when_compared_to(t3, t0)
|| approximately_zero_when_compared_to(t3, t1)
|| approximately_zero_when_compared_to(t3, t2);
bool t3And = approximately_zero_when_compared_to(t3, t0)
&& approximately_zero_when_compared_to(t3, t1)
&& approximately_zero_when_compared_to(t3, t2);
if (t3Or != t3And) {
SkDebugf("%s t3 or and\n", __FUNCTION__);
}
bool t0Or = approximately_zero_when_compared_to(t0, t1) // 0 is one root
&& approximately_zero_when_compared_to(t0, t2)
&& approximately_zero_when_compared_to(t0, t3)
&& approximately_zero_when_compared_to(t0, t4);
bool t0And = approximately_zero_when_compared_to(t0, t1) // 0 is one root
&& approximately_zero_when_compared_to(t0, t2)
&& approximately_zero_when_compared_to(t0, t3)
&& approximately_zero_when_compared_to(t0, t4);
if (t0Or != t0And) {
SkDebugf("%s t0 or and\n", __FUNCTION__);
}
#endif
if (approximately_zero_when_compared_to(t4, t0) // 0 is one root
&& approximately_zero_when_compared_to(t4, t1)
&& approximately_zero_when_compared_to(t4, t2)) {
if (approximately_zero_when_compared_to(t3, t0)
&& approximately_zero_when_compared_to(t3, t1)
&& approximately_zero_when_compared_to(t3, t2)) {
return quadraticRootsReal(t2, t1, t0, roots);
}
if (approximately_zero_when_compared_to(t4, t3)) {
return cubicRootsReal(t3, t2, t1, t0, roots);
}
}
if ((approximately_zero_when_compared_to(t0, t1) || approximately_zero(t1))// 0 is one root
// && approximately_zero_when_compared_to(t0, t2)
&& approximately_zero_when_compared_to(t0, t3)
&& approximately_zero_when_compared_to(t0, t4)) {
int num = cubicRootsReal(t4, t3, t2, t1, roots);
for (int i = 0; i < num; ++i) {
if (approximately_zero(roots[i])) {
return num;
}
}
roots[num++] = 0;
return num;
}
if (oneHint) {
SkASSERT(approximately_zero(t4 + t3 + t2 + t1 + t0)); // 1 is one root
int num = cubicRootsReal(t4, t4 + t3, -(t1 + t0), -t0, roots); // note that -C==A+B+D+E
for (int i = 0; i < num; ++i) {
if (approximately_equal(roots[i], 1)) {
return num;
}
}
roots[num++] = 1;
return num;
}
return -1;
}
int quarticRootsReal(int firstCubicRoot, const double A, const double B, const double C,
const double D, const double E, double s[4]) {
double u, v;
/* normal form: x^4 + Ax^3 + Bx^2 + Cx + D = 0 */
const double invA = 1 / A;
const double a = B * invA;
const double b = C * invA;
const double c = D * invA;
const double d = E * invA;
/* substitute x = y - a/4 to eliminate cubic term:
x^4 + px^2 + qx + r = 0 */
const double a2 = a * a;
const double p = -3 * a2 / 8 + b;
const double q = a2 * a / 8 - a * b / 2 + c;
const double r = -3 * a2 * a2 / 256 + a2 * b / 16 - a * c / 4 + d;
int num;
if (approximately_zero(r)) {
/* no absolute term: y(y^3 + py + q) = 0 */
num = cubicRootsReal(1, 0, p, q, s);
s[num++] = 0;
} else {
/* solve the resolvent cubic ... */
double cubicRoots[3];
int roots = cubicRootsReal(1, -p / 2, -r, r * p / 2 - q * q / 8, cubicRoots);
int index;
#if 0 && SK_DEBUG // enable to verify that any cubic root is as good as any other
double tries[3][4];
int nums[3];
for (index = 0; index < roots; ++index) {
/* ... and take one real solution ... */
const double z = cubicRoots[index];
/* ... to build two quadric equations */
u = z * z - r;
v = 2 * z - p;
if (approximately_zero_squared(u)) {
u = 0;
} else if (u > 0) {
u = sqrt(u);
} else {
SkDebugf("%s u=%1.9g <0\n", __FUNCTION__, u);
continue;
}
if (approximately_zero_squared(v)) {
v = 0;
} else if (v > 0) {
v = sqrt(v);
} else {
SkDebugf("%s v=%1.9g <0\n", __FUNCTION__, v);
continue;
}
nums[index] = quadraticRootsReal(1, q < 0 ? -v : v, z - u, tries[index]);
nums[index] += quadraticRootsReal(1, q < 0 ? v : -v, z + u, tries[index] + nums[index]);
/* resubstitute */
const double sub = a / 4;
for (int i = 0; i < nums[index]; ++i) {
tries[index][i] -= sub;
}
}
for (index = 0; index < roots; ++index) {
SkDebugf("%s", __FUNCTION__);
for (int idx2 = 0; idx2 < nums[index]; ++idx2) {
SkDebugf(" %1.9g", tries[index][idx2]);
}
SkDebugf("\n");
}
#endif
/* ... and take one real solution ... */
double z;
num = 0;
int num2 = 0;
for (index = firstCubicRoot; index < roots; ++index) {
z = cubicRoots[index];
/* ... to build two quadric equations */
u = z * z - r;
v = 2 * z - p;
if (approximately_zero_squared(u)) {
u = 0;
} else if (u > 0) {
u = sqrt(u);
} else {
continue;
}
if (approximately_zero_squared(v)) {
v = 0;
} else if (v > 0) {
v = sqrt(v);
} else {
continue;
}
num = quadraticRootsReal(1, q < 0 ? -v : v, z - u, s);
num2 = quadraticRootsReal(1, q < 0 ? v : -v, z + u, s + num);
if (!((num | num2) & 1)) {
break; // prefer solutions without single quad roots
}
}
num += num2;
if (!num) {
return 0; // no valid cubic root
}
}
/* resubstitute */
const double sub = a / 4;
for (int i = 0; i < num; ++i) {
s[i] -= sub;
}
// eliminate duplicates
for (int i = 0; i < num - 1; ++i) {
for (int j = i + 1; j < num; ) {
if (AlmostEqualUlps(s[i], s[j])) {
if (j < --num) {
s[j] = s[num];
}
} else {
++j;
}
}
}
return num;
}
|