aboutsummaryrefslogtreecommitdiffhomepage
path: root/experimental/Intersection/QuadraticUtilities.cpp
blob: cba722be7f547810c488ae58a265a031d6228434 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "CubicUtilities.h"
#include "Extrema.h"
#include "QuadraticUtilities.h"
#include "TriangleUtilities.h"

// from http://blog.gludion.com/2009/08/distance-to-quadratic-bezier-curve.html
double nearestT(const Quadratic& quad, const _Point& pt) {
    _Vector pos = quad[0] - pt;
    // search points P of bezier curve with PM.(dP / dt) = 0
    // a calculus leads to a 3d degree equation :
    _Vector A = quad[1] - quad[0];
    _Vector B = quad[2] - quad[1];
    B -= A;
    double a = B.dot(B);
    double b = 3 * A.dot(B);
    double c = 2 * A.dot(A) + pos.dot(B);
    double d = pos.dot(A);
    double ts[3];
    int roots = cubicRootsValidT(a, b, c, d, ts);
    double d0 = pt.distanceSquared(quad[0]);
    double d2 = pt.distanceSquared(quad[2]);
    double distMin = SkTMin(d0, d2);
    int bestIndex = -1;
    for (int index = 0; index < roots; ++index) {
        _Point onQuad;
        xy_at_t(quad, ts[index], onQuad.x, onQuad.y);
        double dist = pt.distanceSquared(onQuad);
        if (distMin > dist) {
            distMin = dist;
            bestIndex = index;
        }
    }
    if (bestIndex >= 0) {
        return ts[bestIndex];
    }
    return d0 < d2 ? 0 : 1;
}

bool point_in_hull(const Quadratic& quad, const _Point& pt) {
    return pointInTriangle((const Triangle&) quad, pt);
}

_Point top(const Quadratic& quad, double startT, double endT) {
    Quadratic sub;
    sub_divide(quad, startT, endT, sub);
    _Point topPt = sub[0];
    if (topPt.y > sub[2].y || (topPt.y == sub[2].y && topPt.x > sub[2].x)) {
        topPt = sub[2];
    }
    if (!between(sub[0].y, sub[1].y, sub[2].y)) {
        double extremeT;
        if (findExtrema(sub[0].y, sub[1].y, sub[2].y, &extremeT)) {
            extremeT = startT + (endT - startT) * extremeT;
            _Point test;
            xy_at_t(quad, extremeT, test.x, test.y);
            if (topPt.y > test.y || (topPt.y == test.y && topPt.x > test.x)) {
                topPt = test;
            }
        }
    }
    return topPt;
}

/*
Numeric Solutions (5.6) suggests to solve the quadratic by computing
       Q = -1/2(B + sgn(B)Sqrt(B^2 - 4 A C))
and using the roots
      t1 = Q / A
      t2 = C / Q
*/
int add_valid_ts(double s[], int realRoots, double* t) {
    int foundRoots = 0;
    for (int index = 0; index < realRoots; ++index) {
        double tValue = s[index];
        if (approximately_zero_or_more(tValue) && approximately_one_or_less(tValue)) {
            if (approximately_less_than_zero(tValue)) {
                tValue = 0;
            } else if (approximately_greater_than_one(tValue)) {
                tValue = 1;
            }
            for (int idx2 = 0; idx2 < foundRoots; ++idx2) {
                if (approximately_equal(t[idx2], tValue)) {
                    goto nextRoot;
                }
            }
            t[foundRoots++] = tValue;
        }
nextRoot:
        ;
    }
    return foundRoots;
}

// note: caller expects multiple results to be sorted smaller first
// note: http://en.wikipedia.org/wiki/Loss_of_significance has an interesting
//  analysis of the quadratic equation, suggesting why the following looks at
//  the sign of B -- and further suggesting that the greatest loss of precision
//  is in b squared less two a c
int quadraticRootsValidT(double A, double B, double C, double t[2]) {
#if 0
    B *= 2;
    double square = B * B - 4 * A * C;
    if (approximately_negative(square)) {
        if (!approximately_positive(square)) {
            return 0;
        }
        square = 0;
    }
    double squareRt = sqrt(square);
    double Q = (B + (B < 0 ? -squareRt : squareRt)) / -2;
    int foundRoots = 0;
    double ratio = Q / A;
    if (approximately_zero_or_more(ratio) && approximately_one_or_less(ratio)) {
        if (approximately_less_than_zero(ratio)) {
            ratio = 0;
        } else if (approximately_greater_than_one(ratio)) {
            ratio = 1;
        }
        t[0] = ratio;
        ++foundRoots;
    }
    ratio = C / Q;
    if (approximately_zero_or_more(ratio) && approximately_one_or_less(ratio)) {
        if (approximately_less_than_zero(ratio)) {
            ratio = 0;
        } else if (approximately_greater_than_one(ratio)) {
            ratio = 1;
        }
        if (foundRoots == 0 || !approximately_negative(ratio - t[0])) {
            t[foundRoots++] = ratio;
        } else if (!approximately_negative(t[0] - ratio)) {
            t[foundRoots++] = t[0];
            t[0] = ratio;
        }
    }
#else
    double s[2];
    int realRoots = quadraticRootsReal(A, B, C, s);
    int foundRoots = add_valid_ts(s, realRoots, t);
#endif
    return foundRoots;
}

// unlike quadratic roots, this does not discard real roots <= 0 or >= 1
int quadraticRootsReal(const double A, const double B, const double C, double s[2]) {
    const double p = B / (2 * A);
    const double q = C / A;
    if (approximately_zero(A) && (approximately_zero_inverse(p) || approximately_zero_inverse(q))) {
        if (approximately_zero(B)) {
            s[0] = 0;
            return C == 0;
        }
        s[0] = -C / B;
        return 1;
    }
    /* normal form: x^2 + px + q = 0 */
    const double p2 = p * p;
#if 0
    double D = AlmostEqualUlps(p2, q) ? 0 : p2 - q;
    if (D <= 0) {
        if (D < 0) {
            return 0;
        }
        s[0] = -p;
        SkDebugf("[%d] %1.9g\n", 1, s[0]);
        return 1;
    }
    double sqrt_D = sqrt(D);
    s[0] = sqrt_D - p;
    s[1] = -sqrt_D - p;
    SkDebugf("[%d] %1.9g %1.9g\n", 2, s[0], s[1]);
    return 2;
#else
    if (!AlmostEqualUlps(p2, q) && p2 < q) {
        return 0;
    }
    double sqrt_D = 0;
    if (p2 > q) {
        sqrt_D = sqrt(p2 - q);
    }
    s[0] = sqrt_D - p;
    s[1] = -sqrt_D - p;
#if 0
    if (AlmostEqualUlps(s[0], s[1])) {
        SkDebugf("[%d] %1.9g\n", 1, s[0]);
    } else {
        SkDebugf("[%d] %1.9g %1.9g\n", 2, s[0], s[1]);
    }
#endif
    return 1 + !AlmostEqualUlps(s[0], s[1]);
#endif
}

void toCubic(const Quadratic& quad, Cubic& cubic) {
    cubic[0] = quad[0];
    cubic[2] = quad[1];
    cubic[3] = quad[2];
    cubic[1].x = (cubic[0].x + cubic[2].x * 2) / 3;
    cubic[1].y = (cubic[0].y + cubic[2].y * 2) / 3;
    cubic[2].x = (cubic[3].x + cubic[2].x * 2) / 3;
    cubic[2].y = (cubic[3].y + cubic[2].y * 2) / 3;
}

static double derivativeAtT(const double* quad, double t) {
    double a = t - 1;
    double b = 1 - 2 * t;
    double c = t;
    return a * quad[0] + b * quad[2] + c * quad[4];
}

double dx_at_t(const Quadratic& quad, double t) {
    return derivativeAtT(&quad[0].x, t);
}

double dy_at_t(const Quadratic& quad, double t) {
    return derivativeAtT(&quad[0].y, t);
}

_Vector dxdy_at_t(const Quadratic& quad, double t) {
    double a = t - 1;
    double b = 1 - 2 * t;
    double c = t;
    _Vector result = { a * quad[0].x + b * quad[1].x + c * quad[2].x,
            a * quad[0].y + b * quad[1].y + c * quad[2].y };
    return result;
}

void xy_at_t(const Quadratic& quad, double t, double& x, double& y) {
    double one_t = 1 - t;
    double a = one_t * one_t;
    double b = 2 * one_t * t;
    double c = t * t;
    if (&x) {
        x = a * quad[0].x + b * quad[1].x + c * quad[2].x;
    }
    if (&y) {
        y = a * quad[0].y + b * quad[1].y + c * quad[2].y;
    }
}

_Point xy_at_t(const Quadratic& quad, double t) {
    double one_t = 1 - t;
    double a = one_t * one_t;
    double b = 2 * one_t * t;
    double c = t * t;
    _Point result = { a * quad[0].x + b * quad[1].x + c * quad[2].x,
            a * quad[0].y + b * quad[1].y + c * quad[2].y };
    return result;
}