aboutsummaryrefslogtreecommitdiffhomepage
path: root/experimental/Intersection/QuadraticReduceOrder.cpp
blob: 27c7a29bf299be19e9fc2d1dce32f2ba587f919c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "CurveIntersection.h"
#include "Extrema.h"
#include "IntersectionUtilities.h"
#include "LineParameters.h"

static double interp_quad_coords(double a, double b, double c, double t)
{
    double ab = interp(a, b, t);
    double bc = interp(b, c, t);
    return interp(ab, bc, t);
}

static int coincident_line(const Quadratic& quad, Quadratic& reduction) {
    reduction[0] = reduction[1] = quad[0];
    return 1;
}

static int vertical_line(const Quadratic& quad, ReduceOrder_Styles reduceStyle,
        Quadratic& reduction) {
    double tValue;
    reduction[0] = quad[0];
    reduction[1] = quad[2];
    if (reduceStyle == kReduceOrder_TreatAsFill) {
        return 2;
    }
    int smaller = reduction[1].y > reduction[0].y;
    int larger = smaller ^ 1;
    if (findExtrema(quad[0].y, quad[1].y, quad[2].y, &tValue)) {
        double yExtrema = interp_quad_coords(quad[0].y, quad[1].y, quad[2].y, tValue);
        if (reduction[smaller].y > yExtrema) {
            reduction[smaller].y = yExtrema;
        } else if (reduction[larger].y < yExtrema) {
            reduction[larger].y = yExtrema;
        }
    }
    return 2;
}

static int horizontal_line(const Quadratic& quad, ReduceOrder_Styles reduceStyle,
        Quadratic& reduction) {
    double tValue;
    reduction[0] = quad[0];
    reduction[1] = quad[2];
    if (reduceStyle == kReduceOrder_TreatAsFill) {
        return 2;
    }
    int smaller = reduction[1].x > reduction[0].x;
    int larger = smaller ^ 1;
    if (findExtrema(quad[0].x, quad[1].x, quad[2].x, &tValue)) {
        double xExtrema = interp_quad_coords(quad[0].x, quad[1].x, quad[2].x, tValue);
        if (reduction[smaller].x > xExtrema) {
            reduction[smaller].x = xExtrema;
        }  else if (reduction[larger].x < xExtrema) {
            reduction[larger].x = xExtrema;
        }
    }
    return 2;
}

static int check_linear(const Quadratic& quad, ReduceOrder_Styles reduceStyle,
        int minX, int maxX, int minY, int maxY, Quadratic& reduction) {
    int startIndex = 0;
    int endIndex = 2;
    while (quad[startIndex].approximatelyEqual(quad[endIndex])) {
        --endIndex;
        if (endIndex == 0) {
            printf("%s shouldn't get here if all four points are about equal", __FUNCTION__);
            SkASSERT(0);
        }
    }
    if (!isLinear(quad, startIndex, endIndex)) {
        return 0;
    }
    // four are colinear: return line formed by outside
    reduction[0] = quad[0];
    reduction[1] = quad[2];
    if (reduceStyle == kReduceOrder_TreatAsFill) {
        return 2;
    }
    int sameSide;
    bool useX = quad[maxX].x - quad[minX].x >= quad[maxY].y - quad[minY].y;
    if (useX) {
        sameSide = sign(quad[0].x - quad[1].x) + sign(quad[2].x - quad[1].x);
    } else {
        sameSide = sign(quad[0].y - quad[1].y) + sign(quad[2].y - quad[1].y);
    }
    if ((sameSide & 3) != 2) {
        return 2;
    }
    double tValue;
    int root;
    if (useX) {
        root = findExtrema(quad[0].x, quad[1].x, quad[2].x, &tValue);
    } else {
        root = findExtrema(quad[0].y, quad[1].y, quad[2].y, &tValue);
    }
    if (root) {
        _Point extrema;
        extrema.x = interp_quad_coords(quad[0].x, quad[1].x, quad[2].x, tValue);
        extrema.y = interp_quad_coords(quad[0].y, quad[1].y, quad[2].y, tValue);
        // sameSide > 0 means mid is smaller than either [0] or [2], so replace smaller
        int replace;
        if (useX) {
            if (extrema.x < quad[0].x ^ extrema.x < quad[2].x) {
                return 2;
            }
            replace = (extrema.x < quad[0].x | extrema.x < quad[2].x)
                    ^ (quad[0].x < quad[2].x);
        } else {
            if (extrema.y < quad[0].y ^ extrema.y < quad[2].y) {
                return 2;
            }
            replace = (extrema.y < quad[0].y | extrema.y < quad[2].y)
                    ^ (quad[0].y < quad[2].y);
        }
        reduction[replace] = extrema;
    }
    return 2;
}

bool isLinear(const Quadratic& quad, int startIndex, int endIndex) {
    LineParameters lineParameters;
    lineParameters.quadEndPoints(quad, startIndex, endIndex);
    // FIXME: maybe it's possible to avoid this and compare non-normalized
    lineParameters.normalize();
    double distance = lineParameters.controlPtDistance(quad);
    return approximately_zero(distance);
}

// reduce to a quadratic or smaller
// look for identical points
// look for all four points in a line
    // note that three points in a line doesn't simplify a cubic
// look for approximation with single quadratic
    // save approximation with multiple quadratics for later
int reduceOrder(const Quadratic& quad, Quadratic& reduction, ReduceOrder_Styles reduceStyle) {
    int index, minX, maxX, minY, maxY;
    int minXSet, minYSet;
    minX = maxX = minY = maxY = 0;
    minXSet = minYSet = 0;
    for (index = 1; index < 3; ++index) {
        if (quad[minX].x > quad[index].x) {
            minX = index;
        }
        if (quad[minY].y > quad[index].y) {
            minY = index;
        }
        if (quad[maxX].x < quad[index].x) {
            maxX = index;
        }
        if (quad[maxY].y < quad[index].y) {
            maxY = index;
        }
    }
    for (index = 0; index < 3; ++index) {
        if (AlmostEqualUlps(quad[index].x, quad[minX].x)) {
            minXSet |= 1 << index;
        }
        if (AlmostEqualUlps(quad[index].y, quad[minY].y)) {
            minYSet |= 1 << index;
        }
    }
    if (minXSet == 0x7) { // test for vertical line
        if (minYSet == 0x7) { // return 1 if all four are coincident
            return coincident_line(quad, reduction);
        }
        return vertical_line(quad, reduceStyle, reduction);
    }
    if (minYSet == 0xF) { // test for horizontal line
        return horizontal_line(quad, reduceStyle, reduction);
    }
    int result = check_linear(quad, reduceStyle, minX, maxX, minY, maxY, reduction);
    if (result) {
        return result;
    }
    memcpy(reduction, quad, sizeof(Quadratic));
    return 3;
}