1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "CurveIntersection.h"
#include "QuadraticParameterization.h"
#include "QuadraticUtilities.h"
/* from http://tom.cs.byu.edu/~tom/papers/cvgip84.pdf 4.1
*
* This paper proves that Syvester's method can compute the implicit form of
* the quadratic from the parameterized form.
*
* Given x = a*t*t + b*t + c (the parameterized form)
* y = d*t*t + e*t + f
*
* we want to find an equation of the implicit form:
*
* A*x*x + B*x*y + C*y*y + D*x + E*y + F = 0
*
* The implicit form can be expressed as a 4x4 determinant, as shown.
*
* The resultant obtained by Syvester's method is
*
* | a b (c - x) 0 |
* | 0 a b (c - x) |
* | d e (f - y) 0 |
* | 0 d e (f - y) |
*
* which expands to
*
* d*d*x*x + -2*a*d*x*y + a*a*y*y
* + (-2*c*d*d + b*e*d - a*e*e + 2*a*f*d)*x
* + (-2*f*a*a + e*b*a - d*b*b + 2*d*c*a)*y
* +
* | a b c 0 |
* | 0 a b c | == 0.
* | d e f 0 |
* | 0 d e f |
*
* Expanding the constant determinant results in
*
* | a b c | | b c 0 |
* a*| e f 0 | + d*| a b c | ==
* | d e f | | d e f |
*
* a*(a*f*f + c*e*e - c*f*d - b*e*f) + d*(b*b*f + c*c*d - c*a*f - c*e*b)
*
*/
static bool straight_forward = true;
QuadImplicitForm::QuadImplicitForm(const Quadratic& q) {
double a, b, c;
set_abc(&q[0].x, a, b, c);
double d, e, f;
set_abc(&q[0].y, d, e, f);
// compute the implicit coefficients
if (straight_forward) { // 42 muls, 13 adds
p[xx_coeff] = d * d;
p[xy_coeff] = -2 * a * d;
p[yy_coeff] = a * a;
p[x_coeff] = -2*c*d*d + b*e*d - a*e*e + 2*a*f*d;
p[y_coeff] = -2*f*a*a + e*b*a - d*b*b + 2*d*c*a;
p[c_coeff] = a*(a*f*f + c*e*e - c*f*d - b*e*f)
+ d*(b*b*f + c*c*d - c*a*f - c*e*b);
} else { // 26 muls, 11 adds
double aa = a * a;
double ad = a * d;
double dd = d * d;
p[xx_coeff] = dd;
p[xy_coeff] = -2 * ad;
p[yy_coeff] = aa;
double be = b * e;
double bde = be * d;
double cdd = c * dd;
double ee = e * e;
p[x_coeff] = -2*cdd + bde - a*ee + 2*ad*f;
double aaf = aa * f;
double abe = a * be;
double ac = a * c;
double bb_2ac = b*b - 2*ac;
p[y_coeff] = -2*aaf + abe - d*bb_2ac;
p[c_coeff] = aaf*f + ac*ee + d*f*bb_2ac - abe*f + c*cdd - c*bde;
}
}
/* Given a pair of quadratics, determine their parametric coefficients.
* If the scaled coefficients are nearly equal, then the part of the quadratics
* may be coincident.
* FIXME: optimization -- since comparison short-circuits on no match,
* lazily compute the coefficients, comparing the easiest to compute first.
* xx and yy first; then xy; and so on.
*/
bool QuadImplicitForm::implicit_match(const QuadImplicitForm& p2) const {
int first = 0;
for (int index = 0; index < coeff_count; ++index) {
if (approximately_zero(p[index]) && approximately_zero(p2.p[index])) {
first += first == index;
continue;
}
if (first == index) {
continue;
}
if (!AlmostEqualUlps(p[index] * p2.p[first], p[first] * p2.p[index])) {
return false;
}
}
return true;
}
bool implicit_matches(const Quadratic& quad1, const Quadratic& quad2) {
QuadImplicitForm i1(quad1); // a'xx , b'xy , c'yy , d'x , e'y , f
QuadImplicitForm i2(quad2);
return i1.implicit_match(i2);
}
static double tangent(const double* quadratic, double t) {
double a, b, c;
set_abc(quadratic, a, b, c);
return 2 * a * t + b;
}
void tangent(const Quadratic& quadratic, double t, _Point& result) {
result.x = tangent(&quadratic[0].x, t);
result.y = tangent(&quadratic[0].y, t);
}
// unit test to return and validate parametric coefficients
#include "QuadraticParameterization_TestUtility.cpp"
|