1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
|
// Another approach is to start with the implicit form of one curve and solve
// (seek implicit coefficients in QuadraticParameter.cpp
// by substituting in the parametric form of the other.
// The downside of this approach is that early rejects are difficult to come by.
// http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html#step
#include "CubicUtilities.h"
#include "CurveIntersection.h"
#include "Intersections.h"
#include "QuadraticParameterization.h"
#include "QuarticRoot.h"
#include "QuadraticUtilities.h"
#include "TSearch.h"
#if SK_DEBUG
#include "LineUtilities.h"
#endif
/* given the implicit form 0 = Ax^2 + Bxy + Cy^2 + Dx + Ey + F
* and given x = at^2 + bt + c (the parameterized form)
* y = dt^2 + et + f
* then
* 0 = A(at^2+bt+c)(at^2+bt+c)+B(at^2+bt+c)(dt^2+et+f)+C(dt^2+et+f)(dt^2+et+f)+D(at^2+bt+c)+E(dt^2+et+f)+F
*/
static int findRoots(const QuadImplicitForm& i, const Quadratic& q2, double roots[4],
bool oneHint, int firstCubicRoot) {
double a, b, c;
set_abc(&q2[0].x, a, b, c);
double d, e, f;
set_abc(&q2[0].y, d, e, f);
const double t4 = i.x2() * a * a
+ i.xy() * a * d
+ i.y2() * d * d;
const double t3 = 2 * i.x2() * a * b
+ i.xy() * (a * e + b * d)
+ 2 * i.y2() * d * e;
const double t2 = i.x2() * (b * b + 2 * a * c)
+ i.xy() * (c * d + b * e + a * f)
+ i.y2() * (e * e + 2 * d * f)
+ i.x() * a
+ i.y() * d;
const double t1 = 2 * i.x2() * b * c
+ i.xy() * (c * e + b * f)
+ 2 * i.y2() * e * f
+ i.x() * b
+ i.y() * e;
const double t0 = i.x2() * c * c
+ i.xy() * c * f
+ i.y2() * f * f
+ i.x() * c
+ i.y() * f
+ i.c();
int rootCount = reducedQuarticRoots(t4, t3, t2, t1, t0, oneHint, roots);
if (rootCount >= 0) {
return rootCount;
}
return quarticRootsReal(firstCubicRoot, t4, t3, t2, t1, t0, roots);
}
static int addValidRoots(const double roots[4], const int count, double valid[4]) {
int result = 0;
int index;
for (index = 0; index < count; ++index) {
if (!approximately_zero_or_more(roots[index]) || !approximately_one_or_less(roots[index])) {
continue;
}
double t = 1 - roots[index];
if (approximately_less_than_zero(t)) {
t = 0;
} else if (approximately_greater_than_one(t)) {
t = 1;
}
valid[result++] = t;
}
return result;
}
static bool onlyEndPtsInCommon(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
// the idea here is to see at minimum do a quick reject by rotating all points
// to either side of the line formed by connecting the endpoints
// if the opposite curves points are on the line or on the other side, the
// curves at most intersect at the endpoints
for (int oddMan = 0; oddMan < 3; ++oddMan) {
const _Point* endPt[2];
for (int opp = 1; opp < 3; ++opp) {
int end = oddMan ^ opp;
if (end == 3) {
end = opp;
}
endPt[opp - 1] = &q1[end];
}
double origX = endPt[0]->x;
double origY = endPt[0]->y;
double adj = endPt[1]->x - origX;
double opp = endPt[1]->y - origY;
double sign = (q1[oddMan].y - origY) * adj - (q1[oddMan].x - origX) * opp;
if (approximately_zero(sign)) {
goto tryNextHalfPlane;
}
for (int n = 0; n < 3; ++n) {
double test = (q2[n].y - origY) * adj - (q2[n].x - origX) * opp;
if (test * sign > 0) {
goto tryNextHalfPlane;
}
}
for (int i1 = 0; i1 < 3; i1 += 2) {
for (int i2 = 0; i2 < 3; i2 += 2) {
if (q1[i1] == q2[i2]) {
i.insert(i1 >> 1, i2 >> 1, q1[i1]);
}
}
}
SkASSERT(i.fUsed < 3);
return true;
tryNextHalfPlane:
;
}
return false;
}
// returns false if there's more than one intercept or the intercept doesn't match the point
// returns true if the intercept was successfully added or if the
// original quads need to be subdivided
static bool addIntercept(const Quadratic& q1, const Quadratic& q2, double tMin, double tMax,
Intersections& i, bool* subDivide) {
double tMid = (tMin + tMax) / 2;
_Point mid;
xy_at_t(q2, tMid, mid.x, mid.y);
_Line line;
line[0] = line[1] = mid;
_Vector dxdy = dxdy_at_t(q2, tMid);
line[0] -= dxdy;
line[1] += dxdy;
Intersections rootTs;
int roots = intersect(q1, line, rootTs);
if (roots == 0) {
if (subDivide) {
*subDivide = true;
}
return true;
}
if (roots == 2) {
return false;
}
_Point pt2;
xy_at_t(q1, rootTs.fT[0][0], pt2.x, pt2.y);
if (!pt2.approximatelyEqualHalf(mid)) {
return false;
}
i.insertSwap(rootTs.fT[0][0], tMid, pt2);
return true;
}
static bool isLinearInner(const Quadratic& q1, double t1s, double t1e, const Quadratic& q2,
double t2s, double t2e, Intersections& i, bool* subDivide) {
Quadratic hull;
sub_divide(q1, t1s, t1e, hull);
_Line line = {hull[2], hull[0]};
const _Line* testLines[] = { &line, (const _Line*) &hull[0], (const _Line*) &hull[1] };
size_t testCount = sizeof(testLines) / sizeof(testLines[0]);
SkTDArray<double> tsFound;
for (size_t index = 0; index < testCount; ++index) {
Intersections rootTs;
int roots = intersect(q2, *testLines[index], rootTs);
for (int idx2 = 0; idx2 < roots; ++idx2) {
double t = rootTs.fT[0][idx2];
#if SK_DEBUG
_Point qPt, lPt;
xy_at_t(q2, t, qPt.x, qPt.y);
xy_at_t(*testLines[index], rootTs.fT[1][idx2], lPt.x, lPt.y);
SkASSERT(qPt.approximatelyEqual(lPt));
#endif
if (approximately_negative(t - t2s) || approximately_positive(t - t2e)) {
continue;
}
*tsFound.append() = rootTs.fT[0][idx2];
}
}
int tCount = tsFound.count();
if (!tCount) {
return true;
}
double tMin, tMax;
if (tCount == 1) {
tMin = tMax = tsFound[0];
} else if (tCount > 1) {
QSort<double>(tsFound.begin(), tsFound.end() - 1);
tMin = tsFound[0];
tMax = tsFound[tsFound.count() - 1];
}
_Point end;
xy_at_t(q2, t2s, end.x, end.y);
bool startInTriangle = point_in_hull(hull, end);
if (startInTriangle) {
tMin = t2s;
}
xy_at_t(q2, t2e, end.x, end.y);
bool endInTriangle = point_in_hull(hull, end);
if (endInTriangle) {
tMax = t2e;
}
int split = 0;
_Vector dxy1, dxy2;
if (tMin != tMax || tCount > 2) {
dxy2 = dxdy_at_t(q2, tMin);
for (int index = 1; index < tCount; ++index) {
dxy1 = dxy2;
dxy2 = dxdy_at_t(q2, tsFound[index]);
double dot = dxy1.dot(dxy2);
if (dot < 0) {
split = index - 1;
break;
}
}
}
if (split == 0) { // there's one point
if (addIntercept(q1, q2, tMin, tMax, i, subDivide)) {
return true;
}
i.swap();
return isLinearInner(q2, tMin, tMax, q1, t1s, t1e, i, subDivide);
}
// At this point, we have two ranges of t values -- treat each separately at the split
bool result;
if (addIntercept(q1, q2, tMin, tsFound[split - 1], i, subDivide)) {
result = true;
} else {
i.swap();
result = isLinearInner(q2, tMin, tsFound[split - 1], q1, t1s, t1e, i, subDivide);
}
if (addIntercept(q1, q2, tsFound[split], tMax, i, subDivide)) {
result = true;
} else {
i.swap();
result |= isLinearInner(q2, tsFound[split], tMax, q1, t1s, t1e, i, subDivide);
}
return result;
}
static double flatMeasure(const Quadratic& q) {
_Vector mid = q[1] - q[0];
_Vector dxy = q[2] - q[0];
double length = dxy.length(); // OPTIMIZE: get rid of sqrt
return fabs(mid.cross(dxy) / length);
}
// FIXME ? should this measure both and then use the quad that is the flattest as the line?
static bool isLinear(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
double measure = flatMeasure(q1);
// OPTIMIZE: (get rid of sqrt) use approximately_zero
if (!approximately_zero_sqrt(measure)) {
return false;
}
return isLinearInner(q1, 0, 1, q2, 0, 1, i, NULL);
}
// FIXME: if flat measure is sufficiently large, then probably the quartic solution failed
static void relaxedIsLinear(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
double m1 = flatMeasure(q1);
double m2 = flatMeasure(q2);
#if SK_DEBUG
double min = SkTMin(m1, m2);
if (min > 5) {
SkDebugf("%s maybe not flat enough.. %1.9g\n", __FUNCTION__, min);
}
#endif
i.reset();
const Quadratic& rounder = m2 < m1 ? q1 : q2;
const Quadratic& flatter = m2 < m1 ? q2 : q1;
bool subDivide = false;
isLinearInner(flatter, 0, 1, rounder, 0, 1, i, &subDivide);
if (subDivide) {
QuadraticPair pair;
chop_at(flatter, pair, 0.5);
Intersections firstI, secondI;
relaxedIsLinear(pair.first(), rounder, firstI);
for (int index = 0; index < firstI.used(); ++index) {
i.insert(firstI.fT[0][index] * 0.5, firstI.fT[1][index], firstI.fPt[index]);
}
relaxedIsLinear(pair.second(), rounder, secondI);
for (int index = 0; index < secondI.used(); ++index) {
i.insert(0.5 + secondI.fT[0][index] * 0.5, secondI.fT[1][index], secondI.fPt[index]);
}
}
if (m2 < m1) {
i.swapPts();
}
}
#if 0
static void unsortableExpanse(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
const Quadratic* qs[2] = { &q1, &q2 };
// need t values for start and end of unsortable expanse on both curves
// try projecting lines parallel to the end points
i.fT[0][0] = 0;
i.fT[0][1] = 1;
int flip = -1; // undecided
for (int qIdx = 0; qIdx < 2; qIdx++) {
for (int t = 0; t < 2; t++) {
_Point dxdy;
dxdy_at_t(*qs[qIdx], t, dxdy);
_Line perp;
perp[0] = perp[1] = (*qs[qIdx])[t == 0 ? 0 : 2];
perp[0].x += dxdy.y;
perp[0].y -= dxdy.x;
perp[1].x -= dxdy.y;
perp[1].y += dxdy.x;
Intersections hitData;
int hits = intersectRay(*qs[qIdx ^ 1], perp, hitData);
SkASSERT(hits <= 1);
if (hits) {
if (flip < 0) {
_Point dxdy2;
dxdy_at_t(*qs[qIdx ^ 1], hitData.fT[0][0], dxdy2);
double dot = dxdy.dot(dxdy2);
flip = dot < 0;
i.fT[1][0] = flip;
i.fT[1][1] = !flip;
}
i.fT[qIdx ^ 1][t ^ flip] = hitData.fT[0][0];
}
}
}
i.fUnsortable = true; // failed, probably coincident or near-coincident
i.fUsed = 2;
}
#endif
// each time through the loop, this computes values it had from the last loop
// if i == j == 1, the center values are still good
// otherwise, for i != 1 or j != 1, four of the values are still good
// and if i == 1 ^ j == 1, an additional value is good
static bool binarySearch(const Quadratic& quad1, const Quadratic& quad2, double& t1Seed,
double& t2Seed, _Point& pt) {
double tStep = ROUGH_EPSILON;
_Point t1[3], t2[3];
int calcMask = ~0;
do {
if (calcMask & (1 << 1)) t1[1] = xy_at_t(quad1, t1Seed);
if (calcMask & (1 << 4)) t2[1] = xy_at_t(quad2, t2Seed);
if (t1[1].approximatelyEqual(t2[1])) {
pt = t1[1];
#if ONE_OFF_DEBUG
SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) == (%1.9g,%1.9g)\n", __FUNCTION__,
t1Seed, t2Seed, t1[1].x, t1[1].y, t1[2].x, t1[2].y);
#endif
return true;
}
if (calcMask & (1 << 0)) t1[0] = xy_at_t(quad1, t1Seed - tStep);
if (calcMask & (1 << 2)) t1[2] = xy_at_t(quad1, t1Seed + tStep);
if (calcMask & (1 << 3)) t2[0] = xy_at_t(quad2, t2Seed - tStep);
if (calcMask & (1 << 5)) t2[2] = xy_at_t(quad2, t2Seed + tStep);
double dist[3][3];
// OPTIMIZE: using calcMask value permits skipping some distance calcuations
// if prior loop's results are moved to correct slot for reuse
dist[1][1] = t1[1].distanceSquared(t2[1]);
int best_i = 1, best_j = 1;
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
if (i == 1 && j == 1) {
continue;
}
dist[i][j] = t1[i].distanceSquared(t2[j]);
if (dist[best_i][best_j] > dist[i][j]) {
best_i = i;
best_j = j;
}
}
}
if (best_i == 1 && best_j == 1) {
tStep /= 2;
if (tStep < FLT_EPSILON_HALF) {
break;
}
calcMask = (1 << 0) | (1 << 2) | (1 << 3) | (1 << 5);
continue;
}
if (best_i == 0) {
t1Seed -= tStep;
t1[2] = t1[1];
t1[1] = t1[0];
calcMask = 1 << 0;
} else if (best_i == 2) {
t1Seed += tStep;
t1[0] = t1[1];
t1[1] = t1[2];
calcMask = 1 << 2;
} else {
calcMask = 0;
}
if (best_j == 0) {
t2Seed -= tStep;
t2[2] = t2[1];
t2[1] = t2[0];
calcMask |= 1 << 3;
} else if (best_j == 2) {
t2Seed += tStep;
t2[0] = t2[1];
t2[1] = t2[2];
calcMask |= 1 << 5;
}
} while (true);
#if ONE_OFF_DEBUG
SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) != (%1.9g,%1.9g) %s\n", __FUNCTION__,
t1Seed, t2Seed, t1[1].x, t1[1].y, t1[2].x, t1[2].y);
#endif
return false;
}
bool intersect2(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
// if the quads share an end point, check to see if they overlap
if (onlyEndPtsInCommon(q1, q2, i)) {
return i.intersected();
}
if (onlyEndPtsInCommon(q2, q1, i)) {
i.swapPts();
return i.intersected();
}
// see if either quad is really a line
if (isLinear(q1, q2, i)) {
return i.intersected();
}
if (isLinear(q2, q1, i)) {
i.swapPts();
return i.intersected();
}
QuadImplicitForm i1(q1);
QuadImplicitForm i2(q2);
if (i1.implicit_match(i2)) {
// FIXME: compute T values
// compute the intersections of the ends to find the coincident span
bool useVertical = fabs(q1[0].x - q1[2].x) < fabs(q1[0].y - q1[2].y);
double t;
if ((t = axialIntersect(q1, q2[0], useVertical)) >= 0) {
i.insertCoincident(t, 0, q2[0]);
}
if ((t = axialIntersect(q1, q2[2], useVertical)) >= 0) {
i.insertCoincident(t, 1, q2[2]);
}
useVertical = fabs(q2[0].x - q2[2].x) < fabs(q2[0].y - q2[2].y);
if ((t = axialIntersect(q2, q1[0], useVertical)) >= 0) {
i.insertCoincident(0, t, q1[0]);
}
if ((t = axialIntersect(q2, q1[2], useVertical)) >= 0) {
i.insertCoincident(1, t, q1[2]);
}
SkASSERT(i.coincidentUsed() <= 2);
return i.coincidentUsed() > 0;
}
int index;
bool useCubic = q1[0] == q2[0] || q1[0] == q2[2] || q1[2] == q2[0];
double roots1[4];
int rootCount = findRoots(i2, q1, roots1, useCubic, 0);
// OPTIMIZATION: could short circuit here if all roots are < 0 or > 1
double roots1Copy[4];
int r1Count = addValidRoots(roots1, rootCount, roots1Copy);
_Point pts1[4];
for (index = 0; index < r1Count; ++index) {
xy_at_t(q1, roots1Copy[index], pts1[index].x, pts1[index].y);
}
double roots2[4];
int rootCount2 = findRoots(i1, q2, roots2, useCubic, 0);
double roots2Copy[4];
int r2Count = addValidRoots(roots2, rootCount2, roots2Copy);
_Point pts2[4];
for (index = 0; index < r2Count; ++index) {
xy_at_t(q2, roots2Copy[index], pts2[index].x, pts2[index].y);
}
if (r1Count == r2Count && r1Count <= 1) {
if (r1Count == 1) {
if (pts1[0].approximatelyEqualHalf(pts2[0])) {
i.insert(roots1Copy[0], roots2Copy[0], pts1[0]);
} else if (pts1[0].moreRoughlyEqual(pts2[0])) {
// experiment: see if a different cubic solution provides the correct quartic answer
#if 0
for (int cu1 = 0; cu1 < 3; ++cu1) {
rootCount = findRoots(i2, q1, roots1, useCubic, cu1);
r1Count = addValidRoots(roots1, rootCount, roots1Copy);
if (r1Count == 0) {
continue;
}
for (int cu2 = 0; cu2 < 3; ++cu2) {
if (cu1 == 0 && cu2 == 0) {
continue;
}
rootCount2 = findRoots(i1, q2, roots2, useCubic, cu2);
r2Count = addValidRoots(roots2, rootCount2, roots2Copy);
if (r2Count == 0) {
continue;
}
SkASSERT(r1Count == 1 && r2Count == 1);
SkDebugf("*** [%d,%d] (%1.9g,%1.9g) %s (%1.9g,%1.9g)\n", cu1, cu2,
pts1[0].x, pts1[0].y, pts1[0].approximatelyEqualHalf(pts2[0])
? "==" : "!=", pts2[0].x, pts2[0].y);
}
}
#endif
// experiment: try to find intersection by chasing t
rootCount = findRoots(i2, q1, roots1, useCubic, 0);
r1Count = addValidRoots(roots1, rootCount, roots1Copy);
rootCount2 = findRoots(i1, q2, roots2, useCubic, 0);
r2Count = addValidRoots(roots2, rootCount2, roots2Copy);
if (binarySearch(q1, q2, roots1Copy[0], roots2Copy[0], pts1[0])) {
i.insert(roots1Copy[0], roots2Copy[0], pts1[0]);
}
}
}
return i.intersected();
}
int closest[4];
double dist[4];
bool foundSomething = false;
for (index = 0; index < r1Count; ++index) {
dist[index] = DBL_MAX;
closest[index] = -1;
for (int ndex2 = 0; ndex2 < r2Count; ++ndex2) {
if (!pts2[ndex2].approximatelyEqualHalf(pts1[index])) {
continue;
}
double dx = pts2[ndex2].x - pts1[index].x;
double dy = pts2[ndex2].y - pts1[index].y;
double distance = dx * dx + dy * dy;
if (dist[index] <= distance) {
continue;
}
for (int outer = 0; outer < index; ++outer) {
if (closest[outer] != ndex2) {
continue;
}
if (dist[outer] < distance) {
goto next;
}
closest[outer] = -1;
}
dist[index] = distance;
closest[index] = ndex2;
foundSomething = true;
next:
;
}
}
if (r1Count && r2Count && !foundSomething) {
relaxedIsLinear(q1, q2, i);
return i.intersected();
}
int used = 0;
do {
double lowest = DBL_MAX;
int lowestIndex = -1;
for (index = 0; index < r1Count; ++index) {
if (closest[index] < 0) {
continue;
}
if (roots1Copy[index] < lowest) {
lowestIndex = index;
lowest = roots1Copy[index];
}
}
if (lowestIndex < 0) {
break;
}
i.insert(roots1Copy[lowestIndex], roots2Copy[closest[lowestIndex]],
pts1[lowestIndex]);
closest[lowestIndex] = -1;
} while (++used < r1Count);
i.fFlip = false;
return i.intersected();
}
|