aboutsummaryrefslogtreecommitdiffhomepage
path: root/experimental/Intersection/QuadraticImplicit.cpp
blob: d892ae97e02c6a751a66e80e24a3a80bed54e7a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
// Another approach is to start with the implicit form of one curve and solve
// (seek implicit coefficients in QuadraticParameter.cpp
// by substituting in the parametric form of the other.
// The downside of this approach is that early rejects are difficult to come by.
// http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html#step


#include "CurveIntersection.h"
#include "Intersections.h"
#include "QuadraticParameterization.h"
#include "QuarticRoot.h"
#include "QuadraticUtilities.h"

/* given the implicit form 0 = Ax^2 + Bxy + Cy^2 + Dx + Ey + F
 * and given x = at^2 + bt + c  (the parameterized form)
 *           y = dt^2 + et + f
 * then
 * 0 = A(at^2+bt+c)(at^2+bt+c)+B(at^2+bt+c)(dt^2+et+f)+C(dt^2+et+f)(dt^2+et+f)+D(at^2+bt+c)+E(dt^2+et+f)+F
 */

static int findRoots(const QuadImplicitForm& i, const Quadratic& q2, double roots[4]) {
    double a, b, c;
    set_abc(&q2[0].x, a, b, c);
    double d, e, f;
    set_abc(&q2[0].y, d, e, f);
    const double t4 =     i.x2() *  a * a
                    +     i.xy() *  a * d
                    +     i.y2() *  d * d;
    const double t3 = 2 * i.x2() *  a * b
                    +     i.xy() * (a * e +     b * d)
                    + 2 * i.y2() *  d * e;
    const double t2 =     i.x2() * (b * b + 2 * a * c)
                    +     i.xy() * (c * d +     b * e + a * f)
                    +     i.y2() * (e * e + 2 * d * f)
                    +     i.x()  *  a
                    +     i.y()  *  d;
    const double t1 = 2 * i.x2() *  b * c
                    +     i.xy() * (c * e + b * f)
                    + 2 * i.y2() *  e * f
                    +     i.x()  *  b
                    +     i.y()  *  e;
    const double t0 =     i.x2() *  c * c
                    +     i.xy() *  c * f
                    +     i.y2() *  f * f
                    +     i.x()  *  c
                    +     i.y()  *  f
                    +     i.c();
    return quarticRoots(t4, t3, t2, t1, t0, roots);
}

static void addValidRoots(const double roots[4], const int count, const int side, Intersections& i) {
    int index;
    for (index = 0; index < count; ++index) {
        if (!approximately_zero_or_more(roots[index]) || !approximately_one_or_less(roots[index])) {
            continue;
        }
        double t = 1 - roots[index];
        if (approximately_less_than_zero(t)) {
            t = 0;
        } else if (approximately_greater_than_one(t)) {
            t = 1;
        }
        i.insertOne(t, side);
    }
}

static bool onlyEndPtsInCommon(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
// the idea here is to see at minimum do a quick reject by rotating all points
// to either side of the line formed by connecting the endpoints
// if the opposite curves points are on the line or on the other side, the
// curves at most intersect at the endpoints
    for (int oddMan = 0; oddMan < 3; ++oddMan) {
        const _Point* endPt[2];
        for (int opp = 1; opp < 3; ++opp) {
            int end = oddMan ^ opp;
            if (end == 3) {
                end = opp;
            }
            endPt[opp - 1] = &q1[end];
        }
        double origX = endPt[0]->x;
        double origY = endPt[0]->y;
        double adj = endPt[1]->x - origX;
        double opp = endPt[1]->y - origY;
        double sign = (q1[oddMan].y - origY) * adj - (q1[oddMan].x - origX) * opp;
        assert(!approximately_zero(sign));
        for (int n = 0; n < 3; ++n) {
            double test = (q2[n].y - origY) * adj - (q2[n].x - origX) * opp;
            if (test * sign > 0) {
                goto tryNextHalfPlane;
            }
        }
        for (int i1 = 0; i1 < 3; i1 += 2) {
            for (int i2 = 0; i2 < 3; i2 += 2) {
                if (q1[i1] == q2[i2]) {
                    i.insert(i1 >> 1, i2 >> 1);
                }
            }
        }
        assert(i.fUsed < 3);
        return true;
tryNextHalfPlane:
        ;
    }
    return false;
}

bool intersect2(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
    // if the quads share an end point, check to see if they overlap

    if (onlyEndPtsInCommon(q1, q2, i)) {
        return i.intersected();
    }
    QuadImplicitForm i1(q1);
    QuadImplicitForm i2(q2);
    if (i1.implicit_match(i2)) {
        // FIXME: compute T values
        // compute the intersections of the ends to find the coincident span
        bool useVertical = fabs(q1[0].x - q1[2].x) < fabs(q1[0].y - q1[2].y);
        double t;
        if ((t = axialIntersect(q1, q2[0], useVertical)) >= 0) {
            i.addCoincident(t, 0);
        }
        if ((t = axialIntersect(q1, q2[2], useVertical)) >= 0) {
            i.addCoincident(t, 1);
        }
        useVertical = fabs(q2[0].x - q2[2].x) < fabs(q2[0].y - q2[2].y);
        if ((t = axialIntersect(q2, q1[0], useVertical)) >= 0) {
            i.addCoincident(0, t);
        }
        if ((t = axialIntersect(q2, q1[2], useVertical)) >= 0) {
            i.addCoincident(1, t);
        }
        assert(i.fCoincidentUsed <= 2);
        return i.fCoincidentUsed > 0;
    }
    double roots1[4], roots2[4];
    int rootCount = findRoots(i2, q1, roots1);
    // OPTIMIZATION: could short circuit here if all roots are < 0 or > 1
#ifndef NDEBUG
    int rootCount2 =
#endif
        findRoots(i1, q2, roots2);
    assert(rootCount == rootCount2);
    addValidRoots(roots1, rootCount, 0, i);
    addValidRoots(roots2, rootCount, 1, i);
    if (i.insertBalanced() && i.fUsed <= 1) {
        if (i.fUsed == 1) {
            _Point xy1, xy2;
            xy_at_t(q1, i.fT[0][0], xy1.x, xy1.y);
            xy_at_t(q2, i.fT[1][0], xy2.x, xy2.y);
            if (!xy1.approximatelyEqual(xy2)) {
                --i.fUsed;
                --i.fUsed2;
            }
        }
        return i.intersected();
    }
    _Point pts[4];
    bool matches[4];
    int flipCheck[4];
    int closest[4];
    double dist[4];
    int index, ndex2;
    int flipIndex = 0;
    for (ndex2 = 0; ndex2 < i.fUsed2; ++ndex2) {
        xy_at_t(q2, i.fT[1][ndex2], pts[ndex2].x, pts[ndex2].y);
        matches[ndex2] = false;
    }
    for (index = 0; index < i.fUsed; ++index) {
        _Point xy;
        xy_at_t(q1, i.fT[0][index], xy.x, xy.y);
        dist[index] = DBL_MAX;
        closest[index] = -1;
        for (ndex2 = 0; ndex2 < i.fUsed2; ++ndex2) {
            if (!pts[ndex2].approximatelyEqual(xy)) {
                continue;
            }
            double dx = pts[ndex2].x - xy.x;
            double dy = pts[ndex2].y - xy.y;
            double distance = dx * dx + dy * dy;
            if (dist[index] <= distance) {
                continue;
            }
            for (int outer = 0; outer < index; ++outer) {
                if (closest[outer] != ndex2) {
                    continue;
                }
                if (dist[outer] < distance) {
                    goto next;
                }
                closest[outer] = -1;
            }
            dist[index] = distance;
            closest[index] = ndex2;
        next:
            ;
        }
    }
    for (index = 0; index < i.fUsed; ) {
        for (ndex2 = 0; ndex2 < i.fUsed2; ++ndex2) {
             if (closest[index] == ndex2) {
                assert(flipIndex < 4);
                flipCheck[flipIndex++] = ndex2;
                matches[ndex2] = true;
                goto next2;
             }
        }
        if (--i.fUsed > index) {
            memmove(&i.fT[0][index], &i.fT[0][index + 1], (i.fUsed - index) * sizeof(i.fT[0][0]));
            memmove(&closest[index], &closest[index + 1], (i.fUsed - index) * sizeof(closest[0]));
            continue;
        }
    next2:
        ++index;
    }
    for (ndex2 = 0; ndex2 < i.fUsed2; ) {
        if (!matches[ndex2]) {
             if (--i.fUsed2 > ndex2) {
                memmove(&i.fT[1][ndex2], &i.fT[1][ndex2 + 1], (i.fUsed2 - ndex2) * sizeof(i.fT[1][0]));
                memmove(&matches[ndex2], &matches[ndex2 + 1], (i.fUsed2 - ndex2) * sizeof(matches[0]));
                continue;
             }
        }
        ++ndex2;
    }
    i.fFlip = i.fUsed >= 2 && flipCheck[0] > flipCheck[1];
    assert(i.insertBalanced());
    return i.intersected();
}