aboutsummaryrefslogtreecommitdiffhomepage
path: root/experimental/Intersection/NearestPoint.cpp
blob: 2b3c11d20a95099d3e143d082121fdb3b6d3441e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
/*
Solving the Nearest Point-on-Curve Problem
and
A Bezier Curve-Based Root-Finder
by Philip J. Schneider
from "Graphics Gems", Academic Press, 1990
*/

 /*    point_on_curve.c    */

#include <stdio.h>
#include <malloc.h>
#include <math.h>
#include "GraphicsGems.h"

#define TESTMODE

/*
 *  Forward declarations
 */
Point2  NearestPointOnCurve();
static    int    FindRoots();
static    Point2    *ConvertToBezierForm();
static    double    ComputeXIntercept();
static    int    ControlPolygonFlatEnough();
static    int    CrossingCount();
static    Point2    Bezier();
static    Vector2    V2ScaleII();

int        MAXDEPTH = 64;    /*  Maximum depth for recursion */

#define    EPSILON    (ldexp(1.0,-MAXDEPTH-1)) /*Flatness control value */
#define    DEGREE    3            /*  Cubic Bezier curve        */
#define    W_DEGREE 5            /*  Degree of eqn to find roots of */

#ifdef TESTMODE
/*
 *  main :
 *    Given a cubic Bezier curve (i.e., its control points), and some
 *    arbitrary point in the plane, find the point on the curve
 *    closest to that arbitrary point.
 */
main()
{

 static Point2 bezCurve[4] = {    /*  A cubic Bezier curve    */
    { 0.0, 0.0 },
    { 1.0, 2.0 },
    { 3.0, 3.0 },
    { 4.0, 2.0 },
    };
    static Point2 arbPoint = { 3.5, 2.0 }; /*Some arbitrary point*/
    Point2    pointOnCurve;         /*  Nearest point on the curve */

    /*  Find the closest point */
    pointOnCurve = NearestPointOnCurve(arbPoint, bezCurve);
    printf("pointOnCurve : (%4.4f, %4.4f)\n", pointOnCurve.x,
        pointOnCurve.y);
}
#endif /* TESTMODE */


/*
 *  NearestPointOnCurve :
 *      Compute the parameter value of the point on a Bezier
 *        curve segment closest to some arbtitrary, user-input point.
 *        Return the point on the curve at that parameter value.
 *
 */
Point2 NearestPointOnCurve(P, V)
    Point2     P;            /* The user-supplied point      */
    Point2     *V;            /* Control points of cubic Bezier */
{
    Point2    *w;            /* Ctl pts for 5th-degree eqn    */
    double     t_candidate[W_DEGREE];    /* Possible roots        */
    int     n_solutions;        /* Number of roots found    */
    double    t;            /* Parameter value of closest pt*/

    /*  Convert problem to 5th-degree Bezier form    */
    w = ConvertToBezierForm(P, V);

    /* Find all possible roots of 5th-degree equation */
    n_solutions = FindRoots(w, W_DEGREE, t_candidate, 0);
    free((char *)w);

    /* Compare distances of P to all candidates, and to t=0, and t=1 */
    {
        double     dist, new_dist;
        Point2     p;
        Vector2  v;
        int        i;


    /* Check distance to beginning of curve, where t = 0    */
        dist = V2SquaredLength(V2Sub(&P, &V[0], &v));
            t = 0.0;

    /* Find distances for candidate points    */
        for (i = 0; i < n_solutions; i++) {
            p = Bezier(V, DEGREE, t_candidate[i],
            (Point2 *)NULL, (Point2 *)NULL);
            new_dist = V2SquaredLength(V2Sub(&P, &p, &v));
            if (new_dist < dist) {
                    dist = new_dist;
                    t = t_candidate[i];
            }
        }

    /* Finally, look at distance to end point, where t = 1.0 */
        new_dist = V2SquaredLength(V2Sub(&P, &V[DEGREE], &v));
            if (new_dist < dist) {
                dist = new_dist;
            t = 1.0;
        }
    }

    /*  Return the point on the curve at parameter value t */
    printf("t : %4.12f\n", t);
    return (Bezier(V, DEGREE, t, (Point2 *)NULL, (Point2 *)NULL));
}


/*
 *  ConvertToBezierForm :
 *        Given a point and a Bezier curve, generate a 5th-degree
 *        Bezier-format equation whose solution finds the point on the
 *      curve nearest the user-defined point.
 */
static Point2 *ConvertToBezierForm(P, V)
    Point2     P;            /* The point to find t for    */
    Point2     *V;            /* The control points        */
{
    int     i, j, k, m, n, ub, lb;
    int     row, column;        /* Table indices        */
    Vector2     c[DEGREE+1];        /* V(i)'s - P            */
    Vector2     d[DEGREE];        /* V(i+1) - V(i)        */
    Point2     *w;            /* Ctl pts of 5th-degree curve  */
    double     cdTable[3][4];        /* Dot product of c, d        */
    static double z[3][4] = {    /* Precomputed "z" for cubics    */
    {1.0, 0.6, 0.3, 0.1},
    {0.4, 0.6, 0.6, 0.4},
    {0.1, 0.3, 0.6, 1.0},
    };


    /*Determine the c's -- these are vectors created by subtracting*/
    /* point P from each of the control points                */
    for (i = 0; i <= DEGREE; i++) {
        V2Sub(&V[i], &P, &c[i]);
    }
    /* Determine the d's -- these are vectors created by subtracting*/
    /* each control point from the next                    */
    for (i = 0; i <= DEGREE - 1; i++) {
        d[i] = V2ScaleII(V2Sub(&V[i+1], &V[i], &d[i]), 3.0);
    }

    /* Create the c,d table -- this is a table of dot products of the */
    /* c's and d's                            */
    for (row = 0; row <= DEGREE - 1; row++) {
        for (column = 0; column <= DEGREE; column++) {
            cdTable[row][column] = V2Dot(&d[row], &c[column]);
        }
    }

    /* Now, apply the z's to the dot products, on the skew diagonal*/
    /* Also, set up the x-values, making these "points"        */
    w = (Point2 *)malloc((unsigned)(W_DEGREE+1) * sizeof(Point2));
    for (i = 0; i <= W_DEGREE; i++) {
        w[i].y = 0.0;
        w[i].x = (double)(i) / W_DEGREE;
    }

    n = DEGREE;
    m = DEGREE-1;
    for (k = 0; k <= n + m; k++) {
        lb = MAX(0, k - m);
        ub = MIN(k, n);
        for (i = lb; i <= ub; i++) {
            j = k - i;
            w[i+j].y += cdTable[j][i] * z[j][i];
        }
    }

    return (w);
}


/*
 *  FindRoots :
 *    Given a 5th-degree equation in Bernstein-Bezier form, find
 *    all of the roots in the interval [0, 1].  Return the number
 *    of roots found.
 */
static int FindRoots(w, degree, t, depth)
    Point2     *w;            /* The control points        */
    int     degree;        /* The degree of the polynomial    */
    double     *t;            /* RETURN candidate t-values    */
    int     depth;        /* The depth of the recursion    */
{
    int     i;
    Point2     Left[W_DEGREE+1],    /* New left and right         */
              Right[W_DEGREE+1];    /* control polygons        */
    int     left_count,        /* Solution count from        */
        right_count;        /* children            */
    double     left_t[W_DEGREE+1],    /* Solutions from kids        */
               right_t[W_DEGREE+1];

    switch (CrossingCount(w, degree)) {
           case 0 : {    /* No solutions here    */
         return 0;
    }
    case 1 : {    /* Unique solution    */
        /* Stop recursion when the tree is deep enough    */
        /* if deep enough, return 1 solution at midpoint     */
        if (depth >= MAXDEPTH) {
            t[0] = (w[0].x + w[W_DEGREE].x) / 2.0;
            return 1;
        }
        if (ControlPolygonFlatEnough(w, degree)) {
            t[0] = ComputeXIntercept(w, degree);
            return 1;
        }
        break;
    }
}

    /* Otherwise, solve recursively after    */
    /* subdividing control polygon        */
    Bezier(w, degree, 0.5, Left, Right);
    left_count  = FindRoots(Left,  degree, left_t, depth+1);
    right_count = FindRoots(Right, degree, right_t, depth+1);


    /* Gather solutions together    */
    for (i = 0; i < left_count; i++) {
        t[i] = left_t[i];
    }
    for (i = 0; i < right_count; i++) {
         t[i+left_count] = right_t[i];
    }

    /* Send back total number of solutions    */
    return (left_count+right_count);
}


/*
 * CrossingCount :
 *    Count the number of times a Bezier control polygon
 *    crosses the 0-axis. This number is >= the number of roots.
 *
 */
static int CrossingCount(V, degree)
    Point2    *V;            /*  Control pts of Bezier curve    */
    int        degree;            /*  Degreee of Bezier curve     */
{
    int     i;
    int     n_crossings = 0;    /*  Number of zero-crossings    */
    int        sign, old_sign;        /*  Sign of coefficients    */

    sign = old_sign = SGN(V[0].y);
    for (i = 1; i <= degree; i++) {
        sign = SGN(V[i].y);
        if (sign != old_sign) n_crossings++;
        old_sign = sign;
    }
    return n_crossings;
}



/*
 *  ControlPolygonFlatEnough :
 *    Check if the control polygon of a Bezier curve is flat enough
 *    for recursive subdivision to bottom out.
 *
 */
static int ControlPolygonFlatEnough(V, degree)
    Point2    *V;        /* Control points    */
    int     degree;        /* Degree of polynomial    */
{
    int     i;            /* Index variable        */
    double     *distance;        /* Distances from pts to line    */
    double     max_distance_above;    /* maximum of these        */
    double     max_distance_below;
    double     error;            /* Precision of root        */
    double     intercept_1,
               intercept_2,
               left_intercept,
               right_intercept;
    double     a, b, c;        /* Coefficients of implicit    */
                        /* eqn for line from V[0]-V[deg]*/

    /* Find the  perpendicular distance        */
    /* from each interior control point to     */
    /* line connecting V[0] and V[degree]    */
    distance = (double *)malloc((unsigned)(degree + 1) *                     sizeof(double));
    {
    double    abSquared;

    /* Derive the implicit equation for line connecting first *'
    /*  and last control points */
    a = V[0].y - V[degree].y;
    b = V[degree].x - V[0].x;
    c = V[0].x * V[degree].y - V[degree].x * V[0].y;

    abSquared = (a * a) + (b * b);

        for (i = 1; i < degree; i++) {
        /* Compute distance from each of the points to that line    */
            distance[i] = a * V[i].x + b * V[i].y + c;
            if (distance[i] > 0.0) {
                distance[i] = (distance[i] * distance[i]) / abSquared;
            }
            if (distance[i] < 0.0) {
                distance[i] = -((distance[i] * distance[i]) /                         abSquared);
            }
        }
    }


    /* Find the largest distance    */
    max_distance_above = 0.0;
    max_distance_below = 0.0;
    for (i = 1; i < degree; i++) {
        if (distance[i] < 0.0) {
            max_distance_below = MIN(max_distance_below, distance[i]);
        };
        if (distance[i] > 0.0) {
            max_distance_above = MAX(max_distance_above, distance[i]);
        }
    }
    free((char *)distance);

    {
    double    det, dInv;
    double    a1, b1, c1, a2, b2, c2;

    /*  Implicit equation for zero line */
    a1 = 0.0;
    b1 = 1.0;
    c1 = 0.0;

    /*  Implicit equation for "above" line */
    a2 = a;
    b2 = b;
    c2 = c + max_distance_above;

    det = a1 * b2 - a2 * b1;
    dInv = 1.0/det;

    intercept_1 = (b1 * c2 - b2 * c1) * dInv;

    /*  Implicit equation for "below" line */
    a2 = a;
    b2 = b;
    c2 = c + max_distance_below;

    det = a1 * b2 - a2 * b1;
    dInv = 1.0/det;

    intercept_2 = (b1 * c2 - b2 * c1) * dInv;
    }

    /* Compute intercepts of bounding box    */
    left_intercept = MIN(intercept_1, intercept_2);
    right_intercept = MAX(intercept_1, intercept_2);

    error = 0.5 * (right_intercept-left_intercept);
    if (error < EPSILON) {
        return 1;
    }
    else {
        return 0;
    }
}



/*
 *  ComputeXIntercept :
 *    Compute intersection of chord from first control point to last
 *      with 0-axis.
 *
 */
/* NOTE: "T" and "Y" do not have to be computed, and there are many useless
 * operations in the following (e.g. "0.0 - 0.0").
 */
static double ComputeXIntercept(V, degree)
    Point2     *V;            /*  Control points    */
    int        degree;         /*  Degree of curve    */
{
    double    XLK, YLK, XNM, YNM, XMK, YMK;
    double    det, detInv;
    double    S, T;
    double    X, Y;

    XLK = 1.0 - 0.0;
    YLK = 0.0 - 0.0;
    XNM = V[degree].x - V[0].x;
    YNM = V[degree].y - V[0].y;
    XMK = V[0].x - 0.0;
    YMK = V[0].y - 0.0;

    det = XNM*YLK - YNM*XLK;
    detInv = 1.0/det;

    S = (XNM*YMK - YNM*XMK) * detInv;
/*  T = (XLK*YMK - YLK*XMK) * detInv; */

    X = 0.0 + XLK * S;
/*  Y = 0.0 + YLK * S; */

    return X;
}


/*
 *  Bezier :
 *    Evaluate a Bezier curve at a particular parameter value
 *      Fill in control points for resulting sub-curves if "Left" and
 *    "Right" are non-null.
 *
 */
static Point2 Bezier(V, degree, t, Left, Right)
    int     degree;        /* Degree of bezier curve    */
    Point2     *V;            /* Control pts            */
    double     t;            /* Parameter value        */
    Point2     *Left;        /* RETURN left half ctl pts    */
    Point2     *Right;        /* RETURN right half ctl pts    */
{
    int     i, j;        /* Index variables    */
    Point2     Vtemp[W_DEGREE+1][W_DEGREE+1];


    /* Copy control points    */
    for (j =0; j <= degree; j++) {
        Vtemp[0][j] = V[j];
    }

    /* Triangle computation    */
    for (i = 1; i <= degree; i++) {
        for (j =0 ; j <= degree - i; j++) {
            Vtemp[i][j].x =
                  (1.0 - t) * Vtemp[i-1][j].x + t * Vtemp[i-1][j+1].x;
            Vtemp[i][j].y =
                  (1.0 - t) * Vtemp[i-1][j].y + t * Vtemp[i-1][j+1].y;
        }
    }

    if (Left != NULL) {
        for (j = 0; j <= degree; j++) {
            Left[j]  = Vtemp[j][0];
        }
    }
    if (Right != NULL) {
        for (j = 0; j <= degree; j++) {
            Right[j] = Vtemp[degree-j][j];
        }
    }

    return (Vtemp[degree][0]);
}

static Vector2 V2ScaleII(v, s)
    Vector2    *v;
    double    s;
{
    Vector2 result;

    result.x = v->x * s; result.y = v->y * s;
    return (result);
}