aboutsummaryrefslogtreecommitdiffhomepage
path: root/experimental/Intersection/LineQuadraticIntersection.cpp
blob: 737b76749da6cd0072227a7e6e97c643943b9f0a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#include "CurveIntersection.h"
#include "Intersections.h"
#include "LineUtilities.h"
#include "QuadraticUtilities.h"

/* 
Find the interection of a line and quadratic by solving for valid t values.

From http://stackoverflow.com/questions/1853637/how-to-find-the-mathematical-function-defining-a-bezier-curve

"A Bezier curve is a parametric function. A quadratic Bezier curve (i.e. three 
control points) can be expressed as: F(t) = A(1 - t)^2 + B(1 - t)t + Ct^2 where 
A, B and C are points and t goes from zero to one.

This will give you two equations:

  x = a(1 - t)^2 + b(1 - t)t + ct^2
  y = d(1 - t)^2 + e(1 - t)t + ft^2

If you add for instance the line equation (y = kx + m) to that, you'll end up 
with three equations and three unknowns (x, y and t)."

Similar to above, the quadratic is represented as
  x = a(1-t)^2 + 2b(1-t)t + ct^2
  y = d(1-t)^2 + 2e(1-t)t + ft^2
and the line as
  y = g*x + h

Using Mathematica, solve for the values of t where the quadratic intersects the
line:

  (in)  t1 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - x, 
                       d*(1 - t)^2 + 2*e*(1 - t)*t  + f*t^2 - g*x - h, x]
  (out) -d + h + 2 d t - 2 e t - d t^2 + 2 e t^2 - f t^2 + 
         g  (a - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2)
  (in)  Solve[t1 == 0, t]
  (out) {
    {t -> (-2 d + 2 e +   2 a g - 2 b g    -
      Sqrt[(2 d - 2 e -   2 a g + 2 b g)^2 - 
          4 (-d + 2 e - f + a g - 2 b g    + c g) (-d + a g + h)]) /
         (2 (-d + 2 e - f + a g - 2 b g    + c g))
         },
    {t -> (-2 d + 2 e +   2 a g - 2 b g    +
      Sqrt[(2 d - 2 e -   2 a g + 2 b g)^2 - 
          4 (-d + 2 e - f + a g - 2 b g    + c g) (-d + a g + h)]) /
         (2 (-d + 2 e - f + a g - 2 b g    + c g))
         }
        }
        
Numeric Solutions (5.6) suggests to solve the quadratic by computing

       Q = -1/2(B + sgn(B)Sqrt(B^2 - 4 A C))

and using the roots

      t1 = Q / A
      t2 = C / Q
      
Using the results above (when the line tends towards horizontal)
       A =   (-(d - 2*e + f) + g*(a - 2*b + c)     )
       B = 2*( (d -   e    ) - g*(a -   b    )     )
       C =   (-(d          ) + g*(a          ) + h )

If g goes to infinity, we can rewrite the line in terms of x.
  x = g'*y + h'

And solve accordingly in Mathematica:

  (in)  t2 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - g'*y - h', 
                       d*(1 - t)^2 + 2*e*(1 - t)*t  + f*t^2 - y, y]
  (out)  a - h' - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2 - 
         g'  (d - 2 d t + 2 e t + d t^2 - 2 e t^2 + f t^2)
  (in)  Solve[t2 == 0, t]
  (out) {
    {t -> (2 a - 2 b -   2 d g' + 2 e g'    -
    Sqrt[(-2 a + 2 b +   2 d g' - 2 e g')^2 - 
          4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')]) /
         (2 (a - 2 b + c - d g' + 2 e g' - f g'))
         },
    {t -> (2 a - 2 b -   2 d g' + 2 e g'    +
    Sqrt[(-2 a + 2 b +   2 d g' - 2 e g')^2 - 
          4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')])/
         (2 (a - 2 b + c - d g' + 2 e g' - f g'))
         }
        }

Thus, if the slope of the line tends towards vertical, we use:
       A =   ( (a - 2*b + c) - g'*(d  - 2*e + f)      )
       B = 2*(-(a -   b    ) + g'*(d  -   e    )      )
       C =   ( (a          ) - g'*(d           ) - h' )
 */
 

class LineQuadraticIntersections : public Intersections {
public:

LineQuadraticIntersections(const Quadratic& q, const _Line& l, Intersections& i)
    : quad(q)
    , line(l)
    , intersections(i) {
}

bool intersect() {
    double slope;
    double axisIntercept;
    moreHorizontal = implicitLine(line, slope, axisIntercept);
    double A = quad[2].x; // c
    double B = quad[1].x; // b
    double C = quad[0].x; // a
    A += C - 2 * B; // A = a - 2*b + c
    B -= C; // B = -(a - b)
    double D = quad[2].y; // f
    double E = quad[1].y; // e
    double F = quad[0].y; // d
    D += F - 2 * E; // D = d - 2*e + f
    E -= F; // E = -(d - e)
    if (moreHorizontal) {
        A = A * slope - D;
        B = B * slope - E;
        C = C * slope - F + axisIntercept;
    } else {
        A = A - D * slope;
        B = B - E * slope;
        C = C - F * slope - axisIntercept;
    }
    double t[2];
    int roots = quadraticRoots(A, B, C, t);
    for (int x = 0; x < roots; ++x) {
        intersections.add(t[x], findLineT(t[x]));
    }
    return roots > 0;
}

int horizontalIntersect(double axisIntercept) {
    double D = quad[2].y; // f
    double E = quad[1].y; // e
    double F = quad[0].y; // d
    D += F - 2 * E; // D = d - 2*e + f
    E -= F; // E = -(d - e)
    F -= axisIntercept;
    return quadraticRoots(D, E, F, intersections.fT[0]);
}

protected:
    
double findLineT(double t) {
    const double* qPtr;
    const double* lPtr;
    if (moreHorizontal) {
        qPtr = &quad[0].x;
        lPtr = &line[0].x;
    } else {
        qPtr = &quad[0].y;
        lPtr = &line[0].y;
    }
    double s = 1 - t;
    double quadVal = qPtr[0] * s * s + 2 * qPtr[2] * s * t + qPtr[4] * t * t;
    return (quadVal - lPtr[0]) / (lPtr[2] - lPtr[0]);
}

private:

const Quadratic& quad;
const _Line& line;
Intersections& intersections;
bool moreHorizontal;

};

int horizontalIntersect(const Quadratic& quad, double left, double right,
        double y, double tRange[2]) {
    Intersections i;
    LineQuadraticIntersections q(quad, *((_Line*) 0), i);
    int result = q.horizontalIntersect(y);
    int tCount = 0;
    for (int index = 0; index < result; ++index) {
        double x, y;
        xy_at_t(quad, i.fT[0][index], x, y);
        if (x < left || x > right) {
            continue;
        }
        tRange[tCount++] = i.fT[0][index];
    }
    return tCount;
}

bool intersect(const Quadratic& quad, const _Line& line, Intersections& i) {
    LineQuadraticIntersections q(quad, line, i);
    return q.intersect();
}