aboutsummaryrefslogtreecommitdiffhomepage
path: root/experimental/Intersection/LineQuadraticIntersection.cpp
blob: f855d97e4c4bca4a67a0905bc7fa373a2631ab67 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "CurveIntersection.h"
#include "Intersections.h"
#include "LineUtilities.h"
#include "QuadraticUtilities.h"

/*
Find the interection of a line and quadratic by solving for valid t values.

From http://stackoverflow.com/questions/1853637/how-to-find-the-mathematical-function-defining-a-bezier-curve

"A Bezier curve is a parametric function. A quadratic Bezier curve (i.e. three
control points) can be expressed as: F(t) = A(1 - t)^2 + B(1 - t)t + Ct^2 where
A, B and C are points and t goes from zero to one.

This will give you two equations:

  x = a(1 - t)^2 + b(1 - t)t + ct^2
  y = d(1 - t)^2 + e(1 - t)t + ft^2

If you add for instance the line equation (y = kx + m) to that, you'll end up
with three equations and three unknowns (x, y and t)."

Similar to above, the quadratic is represented as
  x = a(1-t)^2 + 2b(1-t)t + ct^2
  y = d(1-t)^2 + 2e(1-t)t + ft^2
and the line as
  y = g*x + h

Using Mathematica, solve for the values of t where the quadratic intersects the
line:

  (in)  t1 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - x,
                       d*(1 - t)^2 + 2*e*(1 - t)*t  + f*t^2 - g*x - h, x]
  (out) -d + h + 2 d t - 2 e t - d t^2 + 2 e t^2 - f t^2 +
         g  (a - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2)
  (in)  Solve[t1 == 0, t]
  (out) {
    {t -> (-2 d + 2 e +   2 a g - 2 b g    -
      Sqrt[(2 d - 2 e -   2 a g + 2 b g)^2 -
          4 (-d + 2 e - f + a g - 2 b g    + c g) (-d + a g + h)]) /
         (2 (-d + 2 e - f + a g - 2 b g    + c g))
         },
    {t -> (-2 d + 2 e +   2 a g - 2 b g    +
      Sqrt[(2 d - 2 e -   2 a g + 2 b g)^2 -
          4 (-d + 2 e - f + a g - 2 b g    + c g) (-d + a g + h)]) /
         (2 (-d + 2 e - f + a g - 2 b g    + c g))
         }
        }

Using the results above (when the line tends towards horizontal)
       A =   (-(d - 2*e + f) + g*(a - 2*b + c)     )
       B = 2*( (d -   e    ) - g*(a -   b    )     )
       C =   (-(d          ) + g*(a          ) + h )

If g goes to infinity, we can rewrite the line in terms of x.
  x = g'*y + h'

And solve accordingly in Mathematica:

  (in)  t2 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - g'*y - h',
                       d*(1 - t)^2 + 2*e*(1 - t)*t  + f*t^2 - y, y]
  (out)  a - h' - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2 -
         g'  (d - 2 d t + 2 e t + d t^2 - 2 e t^2 + f t^2)
  (in)  Solve[t2 == 0, t]
  (out) {
    {t -> (2 a - 2 b -   2 d g' + 2 e g'    -
    Sqrt[(-2 a + 2 b +   2 d g' - 2 e g')^2 -
          4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')]) /
         (2 (a - 2 b + c - d g' + 2 e g' - f g'))
         },
    {t -> (2 a - 2 b -   2 d g' + 2 e g'    +
    Sqrt[(-2 a + 2 b +   2 d g' - 2 e g')^2 -
          4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')])/
         (2 (a - 2 b + c - d g' + 2 e g' - f g'))
         }
        }

Thus, if the slope of the line tends towards vertical, we use:
       A =   ( (a - 2*b + c) - g'*(d  - 2*e + f)      )
       B = 2*(-(a -   b    ) + g'*(d  -   e    )      )
       C =   ( (a          ) - g'*(d           ) - h' )
 */


class LineQuadraticIntersections {
public:

LineQuadraticIntersections(const Quadratic& q, const _Line& l, Intersections& i)
    : quad(q)
    , line(l)
    , intersections(i) {
}

int intersectRay(double roots[2]) {
/*
    solve by rotating line+quad so line is horizontal, then finding the roots
    set up matrix to rotate quad to x-axis
    |cos(a) -sin(a)|
    |sin(a)  cos(a)|
    note that cos(a) = A(djacent) / Hypoteneuse
              sin(a) = O(pposite) / Hypoteneuse
    since we are computing Ts, we can ignore hypoteneuse, the scale factor:
    |  A     -O    |
    |  O      A    |
    A = line[1].x - line[0].x (adjacent side of the right triangle)
    O = line[1].y - line[0].y (opposite side of the right triangle)
    for each of the three points (e.g. n = 0 to 2)
    quad[n].y' = (quad[n].y - line[0].y) * A - (quad[n].x - line[0].x) * O
*/
    double adj = line[1].x - line[0].x;
    double opp = line[1].y - line[0].y;
    double r[3];
    for (int n = 0; n < 3; ++n) {
        r[n] = (quad[n].y - line[0].y) * adj - (quad[n].x - line[0].x) * opp;
    }
    double A = r[2];
    double B = r[1];
    double C = r[0];
    A += C - 2 * B; // A = a - 2*b + c
    B -= C; // B = -(b - c)
    return quadraticRootsValidT(A, 2 * B, C, roots);
}

int intersect() {
    addEndPoints();
    double rootVals[2];
    int roots = intersectRay(rootVals);
    for (int index = 0; index < roots; ++index) {
        double quadT = rootVals[index];
        double lineT = findLineT(quadT);
        if (pinTs(quadT, lineT)) {
            _Point pt;
            xy_at_t(line, lineT, pt.x, pt.y);
            intersections.insert(quadT, lineT, pt);
        }
    }
    return intersections.fUsed;
}

int horizontalIntersect(double axisIntercept, double roots[2]) {
    double D = quad[2].y; // f
    double E = quad[1].y; // e
    double F = quad[0].y; // d
    D += F - 2 * E; // D = d - 2*e + f
    E -= F; // E = -(d - e)
    F -= axisIntercept;
    return quadraticRootsValidT(D, 2 * E, F, roots);
}

int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) {
    addHorizontalEndPoints(left, right, axisIntercept);
    double rootVals[2];
    int roots = horizontalIntersect(axisIntercept, rootVals);
    for (int index = 0; index < roots; ++index) {
        _Point pt;
        double quadT = rootVals[index];
        xy_at_t(quad, quadT, pt.x, pt.y);
        double lineT = (pt.x - left) / (right - left);
        if (pinTs(quadT, lineT)) {
            intersections.insert(quadT, lineT, pt);
        }
    }
    if (flipped) {
        flip();
    }
    return intersections.fUsed;
}

int verticalIntersect(double axisIntercept, double roots[2]) {
    double D = quad[2].x; // f
    double E = quad[1].x; // e
    double F = quad[0].x; // d
    D += F - 2 * E; // D = d - 2*e + f
    E -= F; // E = -(d - e)
    F -= axisIntercept;
    return quadraticRootsValidT(D, 2 * E, F, roots);
}

int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) {
    addVerticalEndPoints(top, bottom, axisIntercept);
    double rootVals[2];
    int roots = verticalIntersect(axisIntercept, rootVals);
    for (int index = 0; index < roots; ++index) {
        _Point pt;
        double quadT = rootVals[index];
        xy_at_t(quad, quadT, pt.x, pt.y);
        double lineT = (pt.y - top) / (bottom - top);
        if (pinTs(quadT, lineT)) {
            intersections.insert(quadT, lineT, pt);
        }
    }
    if (flipped) {
        flip();
    }
    return intersections.fUsed;
}

protected:

// add endpoints first to get zero and one t values exactly
void addEndPoints()
{
    for (int qIndex = 0; qIndex < 3; qIndex += 2) {
        for (int lIndex = 0; lIndex < 2; lIndex++) {
            if (quad[qIndex] == line[lIndex]) {
                intersections.insert(qIndex >> 1, lIndex, line[lIndex]);
            }
        }
    }
}

void addHorizontalEndPoints(double left, double right, double y)
{
    for (int qIndex = 0; qIndex < 3; qIndex += 2) {
        if (quad[qIndex].y != y) {
            continue;
        }
        if (quad[qIndex].x == left) {
            intersections.insert(qIndex >> 1, 0, quad[qIndex]);
        }
        if (quad[qIndex].x == right) {
            intersections.insert(qIndex >> 1, 1, quad[qIndex]);
        }
    }
}

void addVerticalEndPoints(double top, double bottom, double x)
{
    for (int qIndex = 0; qIndex < 3; qIndex += 2) {
        if (quad[qIndex].x != x) {
            continue;
        }
        if (quad[qIndex].y == top) {
            intersections.insert(qIndex >> 1, 0, quad[qIndex]);
        }
        if (quad[qIndex].y == bottom) {
            intersections.insert(qIndex >> 1, 1, quad[qIndex]);
        }
    }
}

double findLineT(double t) {
    double x, y;
    xy_at_t(quad, t, x, y);
    double dx = line[1].x - line[0].x;
    double dy = line[1].y - line[0].y;
    if (fabs(dx) > fabs(dy)) {
        return (x - line[0].x) / dx;
    }
    return (y - line[0].y) / dy;
}

void flip() {
    // OPTIMIZATION: instead of swapping, pass original line, use [1].y - [0].y
    int roots = intersections.fUsed;
    for (int index = 0; index < roots; ++index) {
        intersections.fT[1][index] = 1 - intersections.fT[1][index];
    }
}

static bool pinTs(double& quadT, double& lineT) {
    if (!approximately_one_or_less(lineT)) {
        return false;
    }
    if (!approximately_zero_or_more(lineT)) {
        return false;
    }
    if (precisely_less_than_zero(quadT)) {
        quadT = 0;
    } else if (precisely_greater_than_one(quadT)) {
        quadT = 1;
    }
    if (precisely_less_than_zero(lineT)) {
        lineT = 0;
    } else if (precisely_greater_than_one(lineT)) {
        lineT = 1;
    }
    return true;
}

private:

const Quadratic& quad;
const _Line& line;
Intersections& intersections;
};

// utility for pairs of coincident quads
static double horizontalIntersect(const Quadratic& quad, const _Point& pt) {
    LineQuadraticIntersections q(quad, *((_Line*) 0), *((Intersections*) 0));
    double rootVals[2];
    int roots = q.horizontalIntersect(pt.y, rootVals);
    for (int index = 0; index < roots; ++index) {
        double x;
        double t = rootVals[index];
        xy_at_t(quad, t, x, *(double*) 0);
        if (AlmostEqualUlps(x, pt.x)) {
            return t;
        }
    }
    return -1;
}

static double verticalIntersect(const Quadratic& quad, const _Point& pt) {
    LineQuadraticIntersections q(quad, *((_Line*) 0), *((Intersections*) 0));
    double rootVals[2];
    int roots = q.verticalIntersect(pt.x, rootVals);
    for (int index = 0; index < roots; ++index) {
        double y;
        double t = rootVals[index];
        xy_at_t(quad, t, *(double*) 0, y);
        if (AlmostEqualUlps(y, pt.y)) {
            return t;
        }
    }
    return -1;
}

double axialIntersect(const Quadratic& q1, const _Point& p, bool vertical) {
    if (vertical) {
        return verticalIntersect(q1, p);
    }
    return horizontalIntersect(q1, p);
}

int horizontalIntersect(const Quadratic& quad, double left, double right,
        double y, double tRange[2]) {
    LineQuadraticIntersections q(quad, *((_Line*) 0), *((Intersections*) 0));
    double rootVals[2];
    int result = q.horizontalIntersect(y, rootVals);
    int tCount = 0;
    for (int index = 0; index < result; ++index) {
        double x, y;
        xy_at_t(quad, rootVals[index], x, y);
        if (x < left || x > right) {
            continue;
        }
        tRange[tCount++] = rootVals[index];
    }
    return tCount;
}

int horizontalIntersect(const Quadratic& quad, double left, double right, double y,
        bool flipped, Intersections& intersections) {
    LineQuadraticIntersections q(quad, *((_Line*) 0), intersections);
    return q.horizontalIntersect(y, left, right, flipped);
}

int verticalIntersect(const Quadratic& quad, double top, double bottom, double x,
        bool flipped, Intersections& intersections) {
    LineQuadraticIntersections q(quad, *((_Line*) 0), intersections);
    return q.verticalIntersect(x, top, bottom, flipped);
}

int intersect(const Quadratic& quad, const _Line& line, Intersections& i) {
    LineQuadraticIntersections q(quad, line, i);
    return q.intersect();
}

int intersectRay(const Quadratic& quad, const _Line& line, Intersections& i) {
    LineQuadraticIntersections q(quad, line, i);
    return q.intersectRay(i.fT[0]);
}