aboutsummaryrefslogtreecommitdiffhomepage
path: root/experimental/Intersection/LineQuadraticIntersection.cpp
blob: 1bc831b643a068872bca08ab4a38060eee7d2c00 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
#include "CurveIntersection.h"
#include "Intersections.h"
#include "LineUtilities.h"
#include "QuadraticUtilities.h"

/* 
Find the interection of a line and quadratic by solving for valid t values.

From http://stackoverflow.com/questions/1853637/how-to-find-the-mathematical-function-defining-a-bezier-curve

"A Bezier curve is a parametric function. A quadratic Bezier curve (i.e. three 
control points) can be expressed as: F(t) = A(1 - t)^2 + B(1 - t)t + Ct^2 where 
A, B and C are points and t goes from zero to one.

This will give you two equations:

  x = a(1 - t)^2 + b(1 - t)t + ct^2
  y = d(1 - t)^2 + e(1 - t)t + ft^2

If you add for instance the line equation (y = kx + m) to that, you'll end up 
with three equations and three unknowns (x, y and t)."

Similar to above, the quadratic is represented as
  x = a(1-t)^2 + 2b(1-t)t + ct^2
  y = d(1-t)^2 + 2e(1-t)t + ft^2
and the line as
  y = g*x + h

Using Mathematica, solve for the values of t where the quadratic intersects the
line:

  (in)  t1 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - x, 
                       d*(1 - t)^2 + 2*e*(1 - t)*t  + f*t^2 - g*x - h, x]
  (out) -d + h + 2 d t - 2 e t - d t^2 + 2 e t^2 - f t^2 + 
         g  (a - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2)
  (in)  Solve[t1 == 0, t]
  (out) {
    {t -> (-2 d + 2 e +   2 a g - 2 b g    -
      Sqrt[(2 d - 2 e -   2 a g + 2 b g)^2 - 
          4 (-d + 2 e - f + a g - 2 b g    + c g) (-d + a g + h)]) /
         (2 (-d + 2 e - f + a g - 2 b g    + c g))
         },
    {t -> (-2 d + 2 e +   2 a g - 2 b g    +
      Sqrt[(2 d - 2 e -   2 a g + 2 b g)^2 - 
          4 (-d + 2 e - f + a g - 2 b g    + c g) (-d + a g + h)]) /
         (2 (-d + 2 e - f + a g - 2 b g    + c g))
         }
        }
        
Numeric Solutions (5.6) suggests to solve the quadratic by computing

       Q = -1/2(B + sgn(B)Sqrt(B^2 - 4 A C))

and using the roots

      t1 = Q / A
      t2 = C / Q
      
Using the results above (when the line tends towards horizontal)
       A =   (-(d - 2*e + f) + g*(a - 2*b + c)     )
       B = 2*( (d -   e    ) - g*(a -   b    )     )
       C =   (-(d          ) + g*(a          ) + h )

If g goes to infinity, we can rewrite the line in terms of x.
  x = g'*y + h'

And solve accordingly in Mathematica:

  (in)  t2 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - g'*y - h', 
                       d*(1 - t)^2 + 2*e*(1 - t)*t  + f*t^2 - y, y]
  (out)  a - h' - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2 - 
         g'  (d - 2 d t + 2 e t + d t^2 - 2 e t^2 + f t^2)
  (in)  Solve[t2 == 0, t]
  (out) {
    {t -> (2 a - 2 b -   2 d g' + 2 e g'    -
    Sqrt[(-2 a + 2 b +   2 d g' - 2 e g')^2 - 
          4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')]) /
         (2 (a - 2 b + c - d g' + 2 e g' - f g'))
         },
    {t -> (2 a - 2 b -   2 d g' + 2 e g'    +
    Sqrt[(-2 a + 2 b +   2 d g' - 2 e g')^2 - 
          4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')])/
         (2 (a - 2 b + c - d g' + 2 e g' - f g'))
         }
        }

Thus, if the slope of the line tends towards vertical, we use:
       A =   ( (a - 2*b + c) - g'*(d  - 2*e + f)      )
       B = 2*(-(a -   b    ) + g'*(d  -   e    )      )
       C =   ( (a          ) - g'*(d           ) - h' )
 */
 

class LineQuadraticIntersections : public Intersections {
public:

LineQuadraticIntersections(const Quadratic& q, const _Line& l, Intersections& i)
    : quad(q)
    , line(l)
    , intersections(i) {
}

bool intersect() {
    double slope;
    double axisIntercept;
    moreHorizontal = implicitLine(line, slope, axisIntercept);
    double A = quad[2].x; // c
    double B = quad[1].x; // b
    double C = quad[0].x; // a
    A += C - 2 * B; // A = a - 2*b + c
    B -= C; // B = -(a - b)
    double D = quad[2].y; // f
    double E = quad[1].y; // e
    double F = quad[0].y; // d
    D += F - 2 * E; // D = d - 2*e + f
    E -= F; // E = -(d - e)
    if (moreHorizontal) {
        A = A * slope - D;
        B = B * slope - E;
        C = C * slope - F + axisIntercept;
    } else {
        A = A - D * slope;
        B = B - E * slope;
        C = C - F * slope - axisIntercept;
    }
    double t[2];
    int roots = quadraticRoots(A, B, C, t);
    for (int x = 0; x < roots; ++x) {
        intersections.add(t[x], findLineT(t[x]));
    }
    return roots > 0;
}

int horizontalIntersect(double axisIntercept) {
    double D = quad[2].y; // f
    double E = quad[1].y; // e
    double F = quad[0].y; // d
    D += F - 2 * E; // D = d - 2*e + f
    E -= F; // E = -(d - e)
    F -= axisIntercept;
    return quadraticRoots(D, E, F, intersections.fT[0]);
}

int verticalIntersect(double axisIntercept) {
    double D = quad[2].x; // f
    double E = quad[1].x; // e
    double F = quad[0].x; // d
    D += F - 2 * E; // D = d - 2*e + f
    E -= F; // E = -(d - e)
    F -= axisIntercept;
    return quadraticRoots(D, E, F, intersections.fT[0]);
}

protected:
    
double findLineT(double t) {
    const double* qPtr;
    const double* lPtr;
    if (moreHorizontal) {
        qPtr = &quad[0].x;
        lPtr = &line[0].x;
    } else {
        qPtr = &quad[0].y;
        lPtr = &line[0].y;
    }
    double s = 1 - t;
    double quadVal = qPtr[0] * s * s + 2 * qPtr[2] * s * t + qPtr[4] * t * t;
    return (quadVal - lPtr[0]) / (lPtr[2] - lPtr[0]);
}

private:

const Quadratic& quad;
const _Line& line;
Intersections& intersections;
bool moreHorizontal;

};

// utility for pairs of coincident quads
static double horizontalIntersect(const Quadratic& quad, const _Point& pt) {
    Intersections intersections;
    LineQuadraticIntersections q(quad, *((_Line*) 0), intersections);
    int result = q.horizontalIntersect(pt.y);
    if (result == 0) {
        return -1;
    }
    assert(result == 1);
    double x, y;
    xy_at_t(quad, intersections.fT[0][0], x, y);
    if (approximately_equal(x, pt.x)) {
        return intersections.fT[0][0];
    }
    return -1;
}

static double verticalIntersect(const Quadratic& quad, const _Point& pt) {
    Intersections intersections;
    LineQuadraticIntersections q(quad, *((_Line*) 0), intersections);
    int result = q.horizontalIntersect(pt.x);
    if (result == 0) {
        return -1;
    }
    assert(result == 1);
    double x, y;
    xy_at_t(quad, intersections.fT[0][0], x, y);
    if (approximately_equal(y, pt.y)) {
        return intersections.fT[0][0];
    }
    return -1;
}

double axialIntersect(const Quadratic& q1, const _Point& p, bool vertical) {
    if (vertical) {
        return verticalIntersect(q1, p);
    }
    return horizontalIntersect(q1, p);
}

int horizontalIntersect(const Quadratic& quad, double left, double right,
        double y, double tRange[2]) {
    Intersections i;
    LineQuadraticIntersections q(quad, *((_Line*) 0), i);
    int result = q.horizontalIntersect(y);
    int tCount = 0;
    for (int index = 0; index < result; ++index) {
        double x, y;
        xy_at_t(quad, i.fT[0][index], x, y);
        if (x < left || x > right) {
            continue;
        }
        tRange[tCount++] = i.fT[0][index];
    }
    return tCount;
}

int horizontalIntersect(const Quadratic& quad, double left, double right, double y,
        bool flipped, Intersections& intersections) {
    LineQuadraticIntersections q(quad, *((_Line*) 0), intersections);
    int result = q.horizontalIntersect(y);
    for (int index = 0; index < result; ) {
        double x, y;
        xy_at_t(quad, intersections.fT[0][index], x, y);
        if (x < left || x > right) {
            if (--result > index) {
                intersections.fT[0][index] = intersections.fT[0][result];
            }
            continue;
        }
        intersections.fT[0][index] = (x - left) / (right - left);
        ++index;
    }
    if (flipped) {
        // OPTIMIZATION: instead of swapping, pass original line, use [1].x - [0].x
        for (int index = 0; index < result; ++index) {
            intersections.fT[1][index] = 1 - intersections.fT[1][index];
        }
    }
    return result;
}

int verticalIntersect(const Quadratic& quad, double top, double bottom, double x,
        bool flipped, Intersections& intersections) {
    LineQuadraticIntersections q(quad, *((_Line*) 0), intersections);
    int result = q.verticalIntersect(x);
    for (int index = 0; index < result; ) {
        double x, y;
        xy_at_t(quad, intersections.fT[0][index], x, y);
        if (y < top || y > bottom) {
            if (--result > index) {
                intersections.fT[0][index] = intersections.fT[0][result];
            }
            continue;
        }
        intersections.fT[0][index] = (y - top) / (bottom - top);
        ++index;
    }
    if (flipped) {
        // OPTIMIZATION: instead of swapping, pass original line, use [1].x - [0].x
        for (int index = 0; index < result; ++index) {
            intersections.fT[1][index] = 1 - intersections.fT[1][index];
        }
    }
    return result;
}

bool intersect(const Quadratic& quad, const _Line& line, Intersections& i) {
    LineQuadraticIntersections q(quad, line, i);
    return q.intersect();
}