1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
|
#include "DataTypes.h"
#include "LineIntersection.h"
#include <algorithm> // used for std::swap
/*
Determine the intersection point of two line segments
Return FALSE if the lines don't intersect
from: http://paulbourke.net/geometry/lineline2d/
*/
int intersect(const _Line& a, const _Line& b, double aRange[2], double bRange[2]) {
double axLen = a[1].x - a[0].x;
double ayLen = a[1].y - a[0].y;
double bxLen = b[1].x - b[0].x;
double byLen = b[1].y - b[0].y;
/* Slopes match when denom goes to zero:
axLen / ayLen == bxLen / byLen
(ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen
byLen * axLen == ayLen * bxLen
byLen * axLen - ayLen * bxLen == 0 ( == denom )
*/
double denom = byLen * axLen - ayLen * bxLen;
if (approximately_zero_squared(denom)) {
/* See if the axis intercepts match:
ay - ax * ayLen / axLen == by - bx * ayLen / axLen
axLen * (ay - ax * ayLen / axLen) == axLen * (by - bx * ayLen / axLen)
axLen * ay - ax * ayLen == axLen * by - bx * ayLen
*/
if (approximately_equal_squared(axLen * a[0].y - ayLen * a[0].x,
axLen * b[0].y - ayLen * b[0].x)) {
const double* aPtr;
const double* bPtr;
if (fabs(axLen) > fabs(ayLen) || fabs(bxLen) > fabs(byLen)) {
aPtr = &a[0].x;
bPtr = &b[0].x;
} else {
aPtr = &a[0].y;
bPtr = &b[0].y;
}
double aMin = aPtr[0];
double aMax = aPtr[2];
double bMin = bPtr[0];
double bMax = bPtr[2];
if (aMin > aMax) {
std::swap(aMin, aMax);
}
if (bMin > bMax) {
std::swap(bMin, bMax);
}
if (aMax < bMin || bMax < aMin) {
return 0;
}
if (aRange) {
aRange[0] = bMin <= aMin ? 0 : (bMin - aMin) / (aMax - aMin);
aRange[1] = bMax >= aMax ? 1 : (bMax - aMin) / (aMax - aMin);
}
if (bRange) {
bRange[0] = aMin <= bMin ? 0 : (aMin - bMin) / (bMax - bMin);
bRange[1] = aMax >= bMax ? 1 : (aMax - bMin) / (bMax - bMin);
}
return 2;
}
}
double ab0y = a[0].y - b[0].y;
double ab0x = a[0].x - b[0].x;
double numerA = ab0y * bxLen - byLen * ab0x;
if (numerA < 0 && denom > numerA || numerA > 0 && denom < numerA) {
return 0;
}
double numerB = ab0y * axLen - ayLen * ab0x;
if (numerB < 0 && denom > numerB || numerB > 0 && denom < numerB) {
return 0;
}
/* Is the intersection along the the segments */
if (aRange) {
aRange[0] = numerA / denom;
}
if (bRange) {
bRange[0] = numerB / denom;
}
return 1;
}
int horizontalIntersect(const _Line& line, double y, double tRange[2]) {
double min = line[0].y;
double max = line[1].y;
if (min > max) {
std::swap(min, max);
}
if (min > y || max < y) {
return 0;
}
if (approximately_equal(min, max)) {
tRange[0] = 0;
tRange[1] = 1;
return 2;
}
tRange[0] = (y - line[0].y) / (line[1].y - line[0].y);
return 1;
}
// from http://www.bryceboe.com/wordpress/wp-content/uploads/2006/10/intersect.py
// 4 subs, 2 muls, 1 cmp
static bool ccw(const _Point& A, const _Point& B, const _Point& C) {
return (C.y - A.y) * (B.x - A.x) > (B.y - A.y) * (C.x - A.x);
}
// 16 subs, 8 muls, 6 cmps
bool testIntersect(const _Line& a, const _Line& b) {
return ccw(a[0], b[0], b[1]) != ccw(a[1], b[0], b[1])
&& ccw(a[0], a[1], b[0]) != ccw(a[0], a[1], b[1]);
}
|