1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
|
#include "DataTypes.h"
#include "LineIntersection.h"
#include <algorithm> // used for std::swap
/*
Determine the intersection point of two line segments
Return FALSE if the lines don't intersect
from: http://paulbourke.net/geometry/lineline2d/
*/
int intersect(const _Line& a, const _Line& b, double aRange[2], double bRange[2]) {
double axLen = a[1].x - a[0].x;
double ayLen = a[1].y - a[0].y;
double bxLen = b[1].x - b[0].x;
double byLen = b[1].y - b[0].y;
/* Slopes match when denom goes to zero:
axLen / ayLen == bxLen / byLen
(ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen
byLen * axLen == ayLen * bxLen
byLen * axLen - ayLen * bxLen == 0 ( == denom )
*/
double denom = byLen * axLen - ayLen * bxLen;
if (approximately_zero_squared(denom)) {
/* See if the axis intercepts match:
ay - ax * ayLen / axLen == by - bx * ayLen / axLen
axLen * (ay - ax * ayLen / axLen) == axLen * (by - bx * ayLen / axLen)
axLen * ay - ax * ayLen == axLen * by - bx * ayLen
*/
if (approximately_equal_squared(axLen * a[0].y - ayLen * a[0].x,
axLen * b[0].y - ayLen * b[0].x)) {
const double* aPtr;
const double* bPtr;
if (fabs(axLen) > fabs(ayLen) || fabs(bxLen) > fabs(byLen)) {
aPtr = &a[0].x;
bPtr = &b[0].x;
} else {
aPtr = &a[0].y;
bPtr = &b[0].y;
}
double aMin = aPtr[0];
double aMax = aPtr[2];
double bMin = bPtr[0];
double bMax = bPtr[2];
if (aMin > aMax) {
std::swap(aMin, aMax);
}
if (bMin > bMax) {
std::swap(bMin, bMax);
}
if (aMax < bMin || bMax < aMin) {
return 0;
}
if (aRange) {
aRange[0] = bMin <= aMin ? 0 : (bMin - aMin) / (aMax - aMin);
aRange[1] = bMax >= aMax ? 1 : (bMax - aMin) / (aMax - aMin);
}
if (bRange) {
bRange[0] = aMin <= bMin ? 0 : (aMin - bMin) / (bMax - bMin);
bRange[1] = aMax >= bMax ? 1 : (aMax - bMin) / (bMax - bMin);
}
return 1 + ((aRange[0] != aRange[1]) || (bRange[0] != bRange[1]));
}
}
double ab0y = a[0].y - b[0].y;
double ab0x = a[0].x - b[0].x;
double numerA = ab0y * bxLen - byLen * ab0x;
if (numerA < 0 && denom > numerA || numerA > 0 && denom < numerA) {
return 0;
}
double numerB = ab0y * axLen - ayLen * ab0x;
if (numerB < 0 && denom > numerB || numerB > 0 && denom < numerB) {
return 0;
}
/* Is the intersection along the the segments */
if (aRange) {
aRange[0] = numerA / denom;
}
if (bRange) {
bRange[0] = numerB / denom;
}
return 1;
}
int horizontalIntersect(const _Line& line, double y, double tRange[2]) {
double min = line[0].y;
double max = line[1].y;
if (min > max) {
std::swap(min, max);
}
if (min > y || max < y) {
return 0;
}
if (approximately_equal(min, max)) {
tRange[0] = 0;
tRange[1] = 1;
return 2;
}
tRange[0] = (y - line[0].y) / (line[1].y - line[0].y);
return 1;
}
// OPTIMIZATION Given: dy = line[1].y - line[0].y
// and: xIntercept / (y - line[0].y) == (line[1].x - line[0].x) / dy
// then: xIntercept * dy == (line[1].x - line[0].x) * (y - line[0].y)
// Assuming that dy is always > 0, the line segment intercepts if:
// left * dy <= xIntercept * dy <= right * dy
// thus: left * dy <= (line[1].x - line[0].x) * (y - line[0].y) <= right * dy
// (clever as this is, it does not give us the t value, so may be useful only
// as a quick reject -- and maybe not then; it takes 3 muls, 3 adds, 2 cmps)
int horizontalLineIntersect(const _Line& line, double left, double right,
double y, double tRange[2]) {
int result = horizontalIntersect(line, y, tRange);
if (result != 1) {
return result;
}
// FIXME: this is incorrect if result == 2
double xIntercept = line[0].x + tRange[0] * (line[1].x - line[0].x);
if (xIntercept > right || xIntercept < left) {
return 0;
}
return result;
}
// from http://www.bryceboe.com/wordpress/wp-content/uploads/2006/10/intersect.py
// 4 subs, 2 muls, 1 cmp
static bool ccw(const _Point& A, const _Point& B, const _Point& C) {
return (C.y - A.y) * (B.x - A.x) > (B.y - A.y) * (C.x - A.x);
}
// 16 subs, 8 muls, 6 cmps
bool testIntersect(const _Line& a, const _Line& b) {
return ccw(a[0], b[0], b[1]) != ccw(a[1], b[0], b[1])
&& ccw(a[0], a[1], b[0]) != ccw(a[0], a[1], b[1]);
}
|