1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
|
#include "CurveIntersection.h"
#include "Intersection_Tests.h"
#include "Intersections.h"
#include "LineUtilities.h"
#include "TestUtilities.h"
struct lineCubic {
Cubic cubic;
_Line line;
} lineCubicTests[] = {
{{{0, 0}, {0, 1}, {0, 1}, {1, 1}}, {{0, 1}, {1, 0}}}
};
size_t lineCubicTests_count = sizeof(lineCubicTests) / sizeof(lineCubicTests[0]);
const int firstLineCubicIntersectionTest = 0;
void LineCubicIntersection_Test() {
for (size_t index = firstLineCubicIntersectionTest; index < lineCubicTests_count; ++index) {
const Cubic& cubic = lineCubicTests[index].cubic;
const _Line& line = lineCubicTests[index].line;
Cubic reduce1;
_Line reduce2;
int order1 = reduceOrder(cubic, reduce1, kReduceOrder_NoQuadraticsAllowed);
int order2 = reduceOrder(line, reduce2);
if (order1 < 4) {
printf("[%d] cubic order=%d\n", (int) index, order1);
}
if (order2 < 2) {
printf("[%d] line order=%d\n", (int) index, order2);
}
if (order1 == 4 && order2 == 2) {
double range1[2], range2[2];
int roots = intersect(reduce1, reduce2, range1, range2);
for (int pt = 0; pt < roots; ++pt) {
double tt1 = range1[pt];
double tx1, ty1;
xy_at_t(cubic, tt1, tx1, ty1);
double tt2 = range2[pt];
double tx2, ty2;
xy_at_t(line, tt2, tx2, ty2);
if (!approximately_equal(tx1, tx2)) {
printf("%s [%d,%d] x!= t1=%g (%g,%g) t2=%g (%g,%g)\n",
__FUNCTION__, (int)index, pt, tt1, tx1, ty1, tt2, tx2, ty2);
}
if (!approximately_equal(ty1, ty2)) {
printf("%s [%d,%d] y!= t1=%g (%g,%g) t2=%g (%g,%g)\n",
__FUNCTION__, (int)index, pt, tt1, tx1, ty1, tt2, tx2, ty2);
}
}
}
}
}
|