aboutsummaryrefslogtreecommitdiffhomepage
path: root/experimental/Intersection/EdgeWalker.cpp
blob: b810a91ba055afd0d9c5aab047b23c5804baa005 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097

/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "CurveIntersection.h"
#include "LineIntersection.h"
#include "SkPath.h"
#include "SkRect.h"
#include "SkTArray.h"
#include "SkTDArray.h"
#include "TSearch.h"

static int LineIntersect(const SkPoint a[2], const SkPoint b[2],
        double aRange[2], double bRange[2]) {
    _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
    _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
    return intersect(aLine, bLine, aRange, bRange);
}

static int LineIntersect(const SkPoint a[2], SkScalar y, double aRange[2]) {
    _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
    return horizontalIntersect(aLine, y, aRange);
}

static SkScalar LineYAtT(const SkPoint a[2], double t) {
    _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
    double y;
    xy_at_t(aLine, t, *(double*) 0, y);
    return SkDoubleToScalar(y);
}

static void LineSubDivide(const SkPoint a[2], double startT, double endT,
        SkPoint sub[2]) {
    _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
    _Line dst;
    sub_divide(aLine, startT, endT, dst);
    sub[0].fX = SkDoubleToScalar(dst[0].x);
    sub[0].fY = SkDoubleToScalar(dst[0].y);
    sub[1].fX = SkDoubleToScalar(dst[1].x);
    sub[1].fY = SkDoubleToScalar(dst[1].y);
}


// functions
void contourBounds(const SkPath& path, SkTDArray<SkRect>& boundsArray);
void simplify(const SkPath& path, bool asFill, SkPath& simple);
/*
list of edges
bounds for edge
sort
active T

if a contour's bounds is outside of the active area, no need to create edges 
*/

/* given one or more paths, 
 find the bounds of each contour, select the active contours
 for each active contour, compute a set of edges
 each edge corresponds to one or more lines and curves
 leave edges unbroken as long as possible
 when breaking edges, compute the t at the break but leave the control points alone

 */

void contourBounds(const SkPath& path, SkTDArray<SkRect>& boundsArray) {
    SkPath::Iter iter(path, false);
    SkPoint pts[4];
    SkPath::Verb verb;
    SkRect bounds;
    bounds.setEmpty();
    int count = 0;
    while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
        switch (verb) {
            case SkPath::kMove_Verb:
                if (!bounds.isEmpty()) {
                    *boundsArray.append() = bounds;
                }
                bounds.set(pts[0].fX, pts[0].fY, pts[0].fX, pts[0].fY);
                count = 0;
                break;
            case SkPath::kLine_Verb: 
                count = 1;
                break;
            case SkPath::kQuad_Verb:
                count = 2;
                break;
            case SkPath::kCubic_Verb:
                count = 3;
                break;
            case SkPath::kClose_Verb:
                count = 0;
                break;
            default:
                SkDEBUGFAIL("bad verb");
                return;
        }
        for (int i = 1; i <= count; ++i) {
            bounds.growToInclude(pts[i].fX, pts[i].fY);
        }
    }
}

static bool extendLine(const SkPoint line[2], const SkPoint& add) {
    // FIXME: allow this to extend lines that have slopes that are nearly equal
    SkScalar dx1 = line[1].fX - line[0].fX;
    SkScalar dy1 = line[1].fY - line[0].fY;
    SkScalar dx2 = add.fX - line[0].fX;
    SkScalar dy2 = add.fY - line[0].fY;
    return dx1 * dy2 == dx2 * dy1;
}

struct OutEdge {
    bool operator<(const OutEdge& rh) const {
        const SkPoint& first = fPts.begin()[0];
        const SkPoint& rhFirst = rh.fPts.begin()[0];
        return first.fY == rhFirst.fY
                ? first.fX < rhFirst.fX
                : first.fY < rhFirst.fY;
    }
    
    SkTDArray<SkPoint> fPts;
    SkTDArray<uint8_t> fVerbs; // FIXME: unused for now
};

// for sorting only
class OutBottomEdge : public OutEdge { 
public:    
    bool operator<(const OutBottomEdge& rh) const {
        const SkPoint& last = fPts.end()[-1];
        const SkPoint& rhLast = rh.fPts.end()[-1];
        return last.fY == rhLast.fY
                ? last.fX < rhLast.fX
                : last.fY < rhLast.fY;
    }
    
};

class OutEdgeBuilder {
public:
    OutEdgeBuilder(bool fill)
        : fFill(fill) {
        }

    void addLine(const SkPoint line[2]) {
        size_t count = fEdges.count();
        for (size_t index = 0; index < count; ++index) {
            SkTDArray<SkPoint>& pts = fEdges[index].fPts;
            SkPoint* last = pts.end() - 1;
            if (last[0] == line[0]) {
                if (extendLine(&last[-1], line[1])) {
                    last[0] = line[1];
                } else {
                    *pts.append() = line[1];
                }
                return;
            }
        }
        OutEdge& edge = fEdges.push_back();
        *edge.fPts.append() = line[0];
        *edge.fPts.append() = line[1];
    }

    void assemble(SkPath& simple) {
        size_t listCount = fEdges.count();
        if (listCount == 0) {
            return;
        }
        do {
            size_t listIndex = 0;
            int advance = 1;
            while (listIndex < listCount && fTops[listIndex] == 0) {
                ++listIndex;
            }
            if (listIndex >= listCount) {
                break;
            }
            SkPoint firstPt;
            bool doMove = true;
            int edgeIndex;
            do {
                SkTDArray<SkPoint>& ptArray = fEdges[listIndex].fPts;
                SkASSERT(ptArray.count() > 0);
                SkPoint* pts, * end;
                if (advance < 0) {
                    pts = ptArray.end() - 1;
                    end = ptArray.begin();
                } else {
                    pts = ptArray.begin();
                    end = ptArray.end() - 1;
                }
                if (doMove) {
                    firstPt = pts[0];
                    simple.moveTo(pts[0].fX, pts[0].fY);
                    SkDebugf("%s moveTo (%g,%g)\n", __FUNCTION__, pts[0].fX, pts[0].fY);
                    doMove = false;
                } else {
                    simple.lineTo(pts[0].fX, pts[0].fY);
                    SkDebugf("%s 1 lineTo (%g,%g)\n", __FUNCTION__, pts[0].fX, pts[0].fY);
                    if (firstPt == pts[0]) {
                        simple.close();
                        SkDebugf("%s close\n", __FUNCTION__);
                        break;
                    }
                }
                while (pts != end) {
                    pts += advance;
                    simple.lineTo(pts->fX, pts->fY);
                    SkDebugf("%s 2 lineTo (%g,%g)\n", __FUNCTION__, pts[0].fX, pts[0].fY);
                }
                if (advance < 0) {
                    edgeIndex = fTops[listIndex];
                    fTops[listIndex] = 0;
                 } else {
                    edgeIndex = fBottoms[listIndex];
                    fBottoms[listIndex] = 0;
                }
                listIndex = abs(edgeIndex) - 1;
                if (edgeIndex < 0) {
                    fTops[listIndex] = 0;
                } else {
                    fBottoms[listIndex] = 0;
                }
                // if this and next edge go different directions 
                if (advance > 0 ^ edgeIndex < 0) {
                    advance = -advance;
                }
            } while (edgeIndex);
        } while (true);
    }
    
    static bool lessThan(SkTArray<OutEdge>& edges, const int* onePtr,
            const int* twoPtr) {
        int one = *onePtr;
        const OutEdge& oneEdge = edges[(one < 0 ? -one : one) - 1];
        const SkPoint* onePt = one < 0 ? oneEdge.fPts.begin()
                : oneEdge.fPts.end() - 1;
        int two = *twoPtr;
        const OutEdge& twoEdge = edges[(two < 0 ? -two : two) - 1];
        const SkPoint* twoPt = two < 0 ? twoEdge.fPts.begin()
                : twoEdge.fPts.end() - 1;
        return onePt->fY == twoPt->fY ? onePt->fX < twoPt->fX : onePt->fY < twoPt->fY;
    }

    // Sort the indices of paired points and then create more indices so
    // assemble() can find the next edge and connect the top or bottom
    void bridge() {
        size_t index;
        size_t count = fEdges.count();
        if (!count) {
            return;
        }
        SkASSERT(!fFill || (count & 1) == 0);
        fTops.setCount(count);
        sk_bzero(fTops.begin(), sizeof(fTops[0]) * count);
        fBottoms.setCount(count);
        sk_bzero(fBottoms.begin(), sizeof(fBottoms[0]) * count);
        SkTDArray<int> order;
        for (index = 1; index <= count; ++index) {
            *order.append() = index;
            *order.append() = -index;
        }
        QSort<SkTArray<OutEdge>, int>(fEdges, order.begin(), count * 2, lessThan);
        int* lastPtr = order.end() - 1;
        int* leftPtr = order.begin();
        while (leftPtr < lastPtr) {
            int leftIndex = *leftPtr;
            int leftOutIndex = abs(leftIndex) - 1;
            const OutEdge& left = fEdges[leftOutIndex];
            int* rightPtr = leftPtr + 1;
            int rightIndex = *rightPtr;
            int rightOutIndex = abs(rightIndex) - 1;
            const OutEdge& right = fEdges[rightOutIndex];
        // OPTIMIZATION: if fFill is true, we don't need leftMatch, rightMatch
            SkPoint& leftMatch = left.fPts[leftIndex < 0 ? 0
                    : left.fPts.count() - 1];
            SkPoint& rightMatch = right.fPts[rightIndex < 0 ? 0
                    : right.fPts.count() - 1];
            SkASSERT(!fFill || leftMatch.fY == rightMatch.fY);
            if (fFill || leftMatch == rightMatch) {
                if (leftIndex < 0) {
                    fTops[leftOutIndex] = rightIndex;
                } else {
                    fBottoms[leftOutIndex] = rightIndex;
                }
                if (rightIndex < 0) {
                    fTops[rightOutIndex] = leftIndex;
                } else {
                    fBottoms[rightOutIndex] = leftIndex;
                }
                ++rightPtr;
            }
            leftPtr = rightPtr;
        }
    }

protected:
    SkTArray<OutEdge> fEdges;
    SkTDArray<int> fTops;
    SkTDArray<int> fBottoms;
    bool fFill;
};

// Bounds, unlike Rect, does not consider a vertical line to be empty.
struct Bounds : public SkRect {
    static bool Intersects(const Bounds& a, const Bounds& b) {
        return a.fLeft <= b.fRight && b.fLeft <= a.fRight &&
                a.fTop <= b.fBottom && b.fTop <= a.fBottom;
    }
    
    bool isEmpty() {
        return fLeft > fRight || fTop > fBottom
                || fLeft == fRight && fTop == fBottom
                || isnan(fLeft) || isnan(fRight)
                || isnan(fTop) || isnan(fBottom);
    }
};

struct Intercepts {
    SkTDArray<double> fTs;
};

struct InEdge {
    bool operator<(const InEdge& rh) const {
        return fBounds.fTop == rh.fBounds.fTop
                ? fBounds.fLeft < rh.fBounds.fLeft
                : fBounds.fTop < rh.fBounds.fTop;
    }

    bool add(double* ts, size_t count, ptrdiff_t verbIndex) {
        // FIXME: in the pathological case where there is a ton of intercepts, binary search?
        bool foundIntercept = false;
        Intercepts& intercepts = fIntercepts[verbIndex];
        for (size_t index = 0; index < count; ++index) {
            double t = ts[index];
            if (t <= 0 || t >= 1) {
                continue;
            }
            foundIntercept = true;
            size_t tCount = intercepts.fTs.count();
            for (size_t idx2 = 0; idx2 < tCount; ++idx2) {
                if (t <= intercepts.fTs[idx2]) {
                    if (t < intercepts.fTs[idx2]) {
                        *intercepts.fTs.insert(idx2) = t;
                        break;
                    }
                }
            }
            if (tCount == 0 || t > intercepts.fTs[tCount - 1]) {
                *intercepts.fTs.append() = t;
            }
        }
        return foundIntercept;
    }

    bool cached(const InEdge* edge) {
        // FIXME: in the pathological case where there is a ton of edges, binary search?
        size_t count = fCached.count();
        for (size_t index = 0; index < count; ++index) {
            if (edge == fCached[index]) {
                return true;
            }
            if (edge < fCached[index]) {
                *fCached.insert(index) = edge;
                return false;
            }
        }
        *fCached.append() = edge;
        return false;
    }

    void complete(signed char winding) {
        SkPoint* ptPtr = fPts.begin();
        SkPoint* ptLast = fPts.end();
        if (ptPtr == ptLast) {
            SkDebugf("empty edge\n");
            SkASSERT(0);
            // FIXME: delete empty edge?
            return;
        }
        fBounds.set(ptPtr->fX, ptPtr->fY, ptPtr->fX, ptPtr->fY);
        ++ptPtr;
        while (ptPtr != ptLast) {
            fBounds.growToInclude(ptPtr->fX, ptPtr->fY);
            ++ptPtr;
        }
        fIntercepts.push_back_n(fVerbs.count());
        if ((fWinding = winding) < 0) { // reverse verbs, pts, if bottom to top
            size_t index;
            size_t last = fPts.count() - 1;
            for (index = 0; index < last; ++index, --last) {
                SkTSwap<SkPoint>(fPts[index], fPts[last]);
            }
            last = fVerbs.count() - 1;
            for (index = 0; index < last; ++index, --last) {
                SkTSwap<uint8_t>(fVerbs[index], fVerbs[last]);
            }
        }
        fContainsIntercepts = false;
    }

    // temporary data : move this to a separate struct?
    SkTDArray<const InEdge*> fCached; // list of edges already intercepted
    SkTArray<Intercepts> fIntercepts; // one per verb
    
    // persistent data
    SkTDArray<SkPoint> fPts;
    SkTDArray<uint8_t> fVerbs;
    Bounds fBounds;
    signed char fWinding;
    bool fContainsIntercepts;
};

class InEdgeBuilder {
public:

InEdgeBuilder(const SkPath& path, bool ignoreHorizontal, SkTArray<InEdge>& edges) 
    : fPath(path)
    , fCurrentEdge(NULL)
    , fEdges(edges)
    , fIgnoreHorizontal(ignoreHorizontal)
{
    walk();
}

protected:

void addEdge() {
    SkASSERT(fCurrentEdge);
    fCurrentEdge->fPts.append(fPtCount - fPtOffset, &fPts[fPtOffset]);
    fPtOffset = 1;
    *fCurrentEdge->fVerbs.append() = fVerb;
}

bool complete() {
    if (fCurrentEdge && fCurrentEdge->fVerbs.count()) {
        fCurrentEdge->complete(fWinding);
        fCurrentEdge = NULL;
        return true;
    }
    return false;
}

int direction(int count) {
    fPtCount = count;
    fIgnorableHorizontal = fIgnoreHorizontal && isHorizontal();
    if (fIgnorableHorizontal) {
        return 0;
    }
    int last = count - 1;
    return fPts[0].fY == fPts[last].fY
            ? fPts[0].fX == fPts[last].fX ? 0 : fPts[0].fX < fPts[last].fX
            ? 1 : -1 : fPts[0].fY < fPts[last].fY ? 1 : -1;
}

bool isHorizontal() {
    SkScalar y = fPts[0].fY;
    for (int i = 1; i < fPtCount; ++i) {
        if (fPts[i].fY != y) {
            return false;
        }
    }
    return true;
}

void startEdge() {
    if (!fCurrentEdge) {
        fCurrentEdge = fEdges.push_back_n(1);
    }
    fWinding = 0;
    fPtOffset = 0;
}

void walk() {
    SkPath::Iter iter(fPath, true);
    int winding;
    while ((fVerb = iter.next(fPts)) != SkPath::kDone_Verb) {
        switch (fVerb) {
            case SkPath::kMove_Verb:
                startEdge();
                continue;
            case SkPath::kLine_Verb:
                winding = direction(2);
                break;
            case SkPath::kQuad_Verb:
                winding = direction(3);
                break;
            case SkPath::kCubic_Verb:
                winding = direction(4);
                break;
            case SkPath::kClose_Verb:
                SkASSERT(fCurrentEdge);
                complete();
                continue;
            default:
                SkDEBUGFAIL("bad verb");
                return;
        }
        if (fIgnorableHorizontal) {
            if (complete()) {
                startEdge();
            }
            continue;
        }
        if (fWinding + winding == 0) {
            // FIXME: if prior verb or this verb is a horizontal line, reverse
            // it instead of starting a new edge
            SkASSERT(fCurrentEdge);
            fCurrentEdge->complete(fWinding);
            startEdge();
        }
        fWinding = winding;
        addEdge();
    }
    if (!complete()) {
        if (fCurrentEdge) {
            fEdges.pop_back();
        }
    }
}

private:
    const SkPath& fPath;
    InEdge* fCurrentEdge;
    SkTArray<InEdge>& fEdges;
    SkPoint fPts[4];
    SkPath::Verb fVerb;
    int fPtCount;
    int fPtOffset;
    int8_t fWinding;
    bool fIgnorableHorizontal;
    bool fIgnoreHorizontal;
};

struct WorkEdge {
    SkScalar bottom() const {
        return fPts[verb()].fY;
    }

    void init(const InEdge* edge) {
        fEdge = edge;
        fPts = edge->fPts.begin();
        fVerb = edge->fVerbs.begin();
    }

    bool next() {
        SkASSERT(fVerb < fEdge->fVerbs.end());
        fPts += *fVerb++;
        return fVerb != fEdge->fVerbs.end();
    }

    SkPath::Verb verb() const {
        return (SkPath::Verb) *fVerb;
    }

    ptrdiff_t verbIndex() const {
        return fVerb - fEdge->fVerbs.begin();
    }
    
    int winding() const {
        return fEdge->fWinding;
    }

    const InEdge* fEdge;
    const SkPoint* fPts;
    const uint8_t* fVerb;
};

// always constructed with SkTDArray because new edges are inserted
// this may be a inappropriate optimization, suggesting that a separate array of
// ActiveEdge* may be faster to insert and search
struct ActiveEdge {
    bool operator<(const ActiveEdge& rh) const {
        return fX < rh.fX;
    }

    void calcLeft() {
        fX = fWorkEdge.fPts[fWorkEdge.verb()].fX;
    }

    void init(const InEdge* edge) {
        fWorkEdge.init(edge);
        initT();
    }
    
    void initT() {
        const Intercepts& intercepts = fWorkEdge.fEdge->fIntercepts.front();
        SkASSERT(fWorkEdge.verbIndex() <= fWorkEdge.fEdge->fIntercepts.count());
        const Intercepts* interceptPtr = &intercepts + fWorkEdge.verbIndex();
        fTs = &interceptPtr->fTs; 
  //  the above is conceptually the same as
  //    fTs = &fWorkEdge.fEdge->fIntercepts[fWorkEdge.verbIndex()].fTs;
  //  but templated arrays don't allow returning a pointer to the end() element
        fTIndex = 0;
    }

    bool nextT() {
        SkASSERT(fTIndex <= fTs->count());
        return ++fTIndex == fTs->count() + 1;
    }
    
    bool next() {
        bool result = fWorkEdge.next();
        initT();
        return result;
    }

    double t() {
        if (fTIndex == 0) {
            return 0;
        }
        if (fTIndex > fTs->count()) {
            return 1;
        }
        return (*fTs)[fTIndex - 1];
    }

    WorkEdge fWorkEdge;
    const SkTDArray<double>* fTs;
    SkScalar fX;
    int fTIndex;
    bool fSkip;
};

static void addToActive(SkTDArray<ActiveEdge>& activeEdges, const InEdge* edge) {
    size_t count = activeEdges.count();
    for (size_t index = 0; index < count; ++index) {
        if (edge == activeEdges[index].fWorkEdge.fEdge) {
            return;
        }
    }
    ActiveEdge* active = activeEdges.append();
    active->init(edge);
}

    // find any intersections in the range of active edges
static void addBottomT(InEdge** currentPtr, InEdge** lastPtr, SkScalar bottom) {
    InEdge** testPtr = currentPtr;
    InEdge* test = *testPtr;
    while (testPtr != lastPtr) {
        if (test->fBounds.fBottom > bottom) {
            WorkEdge wt;
            wt.init(test);
            do {
                // FIXME: add all curve types
                // OPTIMIZATION: if bottom intersection does not change
                // the winding on either side of the split, don't intersect
                if (wt.verb() == SkPath::kLine_Verb) {
                    double wtTs[2];
                    int pts = LineIntersect(wt.fPts, bottom, wtTs);
                    if (pts) {
                        test->fContainsIntercepts |= test->add(wtTs, pts,
                                wt.verbIndex());
                    }
                }
            } while (wt.next());
        }
        test = *++testPtr;
    }
}

static void addIntersectingTs(InEdge** currentPtr, InEdge** lastPtr) {
    InEdge** testPtr = currentPtr;
    InEdge* test = *testPtr;
    while (testPtr != lastPtr - 1) {
        InEdge* next = *++testPtr;
        if (!test->cached(next)
                && Bounds::Intersects(test->fBounds, next->fBounds)) {
            WorkEdge wt, wn;
            wt.init(test);
            wn.init(next);
            do {
                // FIXME: add all combinations of curve types
                if (wt.verb() == SkPath::kLine_Verb
                        && wn.verb() == SkPath::kLine_Verb) {
                    double wtTs[2], wnTs[2];
                    int pts = LineIntersect(wt.fPts, wn.fPts, wtTs, wnTs);
                    if (pts) {
                        test->fContainsIntercepts |= test->add(wtTs, pts,
                                wt.verbIndex());
                        next->fContainsIntercepts |= next->add(wnTs, pts,
                                wn.verbIndex());
                    }
                }
            } while (wt.bottom() <= wn.bottom() ? wt.next() : wn.next());
        }
        test = next;
    }
}

static InEdge** advanceEdges(SkTDArray<ActiveEdge>& activeEdges,
        InEdge** currentPtr, InEdge** lastPtr,  SkScalar y) {
    InEdge** testPtr = currentPtr - 1;
    while (++testPtr != lastPtr) {
        if ((*testPtr)->fBounds.fBottom > y) {
            continue;
        }
        InEdge* test = *testPtr;
        ActiveEdge* activePtr = activeEdges.begin() - 1;
        ActiveEdge* lastActive = activeEdges.end();
        while (++activePtr != lastActive) {
            if (activePtr->fWorkEdge.fEdge == test) {
                activeEdges.remove(activePtr - activeEdges.begin());
                break;
            }
        }
        if (testPtr == currentPtr) {
            ++currentPtr;
        }
    }
    return currentPtr;
}

// compute bottom taking into account any intersected edges
static void computeInterceptBottom(SkTDArray<ActiveEdge>& activeEdges,
        SkScalar y, SkScalar& bottom) {
    ActiveEdge* activePtr = activeEdges.begin() - 1;
    ActiveEdge* lastActive = activeEdges.end();
    while (++activePtr != lastActive) {
        const InEdge* test = activePtr->fWorkEdge.fEdge;
        if (!test->fContainsIntercepts) {
            continue;
        }
        WorkEdge wt;
        wt.init(test);
        do {
            // FIXME: add all curve types
            const Intercepts& intercepts = test->fIntercepts[wt.verbIndex()];
            const SkTDArray<double>& fTs = intercepts.fTs;
            size_t count = fTs.count();
            for (size_t index = 0; index < count; ++index) {
                if (wt.verb() == SkPath::kLine_Verb) {
                    SkScalar yIntercept = LineYAtT(wt.fPts, fTs[index]);
                    if (yIntercept > y && bottom > yIntercept) {
                        bottom = yIntercept;
                    }
                }
            }
        } while (wt.next());
    }
}

static SkScalar findBottom(InEdge** currentPtr, 
        InEdge** edgeListEnd, SkTDArray<ActiveEdge>& activeEdges, SkScalar y,
        bool asFill, InEdge**& testPtr) {
    InEdge* current = *currentPtr;
    SkScalar bottom = current->fBounds.fBottom;
    
    // find the list of edges that cross y
    InEdge* test = *testPtr;
    while (testPtr != edgeListEnd) {
        SkScalar testTop = test->fBounds.fTop;
        if (bottom <= testTop) {
            break;
        }
        SkScalar testBottom = test->fBounds.fBottom;
        // OPTIMIZATION: Shortening the bottom is only interesting when filling
        // and when the edge is to the left of a longer edge. If it's a framing
        // edge, or part of the right, it won't effect the longer edges.
        if (testTop > y) {
            bottom = testTop;
            break;
        } 
        if (y < testBottom) {
            if (bottom > testBottom) {
                bottom = testBottom;
            }
            addToActive(activeEdges, test);
        }
        test = *++testPtr;
    }
    if (asFill && testPtr - currentPtr <= 1) {
        SkDebugf("expect 2 or more edges\n");
        SkASSERT(0);
    }
    return bottom;
}

static void makeEdgeList(SkTArray<InEdge>& edges, InEdge& edgeSentinel,
        SkTDArray<InEdge*>& edgeList) {
    size_t edgeCount = edges.count();
    if (edgeCount == 0) {
        return;
    }
    for (size_t index = 0; index < edgeCount; ++index) {
        *edgeList.append() = &edges[index];
    }
    edgeSentinel.fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
    *edgeList.append() = &edgeSentinel;
    ++edgeCount;
    QSort<InEdge>(edgeList.begin(), edgeCount);
}


static void skipCoincidence(int lastWinding, int winding, int windingMask,
            ActiveEdge* activePtr, ActiveEdge* firstCoincident) {
    if (((lastWinding & windingMask) == 0) ^ (winding & windingMask) != 0) {
        return;
    } 
    if (lastWinding) {
        activePtr->fSkip = false;
    } else {
        firstCoincident->fSkip = false;
    }
}

static void sortHorizontal(SkTDArray<ActiveEdge>& activeEdges,
        SkTDArray<ActiveEdge*>& edgeList, int windingMask) {
    size_t edgeCount = activeEdges.count();
    if (edgeCount == 0) {
        return;
    }
    size_t index;
    for (index = 0; index < edgeCount; ++index) {
        ActiveEdge& activeEdge = activeEdges[index];
        activeEdge.calcLeft();
        activeEdge.fSkip = false;
        *edgeList.append() = &activeEdge;
    }
    QSort<ActiveEdge>(edgeList.begin(), edgeCount);
    // remove coincident edges
    // OPTIMIZE: remove edges? This is tricky because the current logic expects
    // the winding count to be maintained while skipping coincident edges. In
    // addition to removing the coincident edges, the remaining edges would need
    // to have a different winding value, possibly different per intercept span.
    int lastWinding = 0;
    bool lastSkipped = false;
    ActiveEdge* activePtr = edgeList[0];
    ActiveEdge* firstCoincident = NULL;
    int winding = 0;
    for (index = 1; index < edgeCount; ++index) {
        winding += activePtr->fWorkEdge.winding();
        ActiveEdge* nextPtr = edgeList[index];
        if (activePtr->fX == nextPtr->fX) {
            SkDebugf("%s coincident\n", __FUNCTION__);
            if (!firstCoincident) {
                firstCoincident = activePtr;
            }
            activePtr->fSkip = nextPtr->fSkip = lastSkipped = true;
        } else if (lastSkipped) {
            skipCoincidence(lastWinding, winding, windingMask, activePtr,
                    firstCoincident);
            lastSkipped = false;
            firstCoincident = NULL;
        }
        if (!lastSkipped) {
            lastWinding = winding;
        }
        activePtr = nextPtr;
    }
    if (lastSkipped) {
        winding += activePtr->fWorkEdge.winding();
        skipCoincidence(lastWinding, winding, windingMask, activePtr,
                firstCoincident);
    }
}

// stitch edge and t range that satisfies operation
static void stitchEdge(SkTDArray<ActiveEdge*>& edgeList, SkScalar y,
        SkScalar bottom, int windingMask, OutEdgeBuilder& outBuilder) {
    int winding = 0;
    ActiveEdge** activeHandle = edgeList.begin() - 1;
    ActiveEdge** lastActive = edgeList.end();
    SkDebugf("%s y=%g bottom=%g\n", __FUNCTION__, y, bottom);
    while (++activeHandle != lastActive) {
        ActiveEdge* activePtr = *activeHandle;
        const WorkEdge& wt = activePtr->fWorkEdge;
        int lastWinding = winding;
        winding += wt.winding();
        bool inWinding = (lastWinding & windingMask) == 0
                || (winding & windingMask) == 0;
        do {
            double currentT = activePtr->t();
            SkASSERT(currentT < 1);
            const SkPoint* points = wt.fPts;
            bool last;
            do {
                last = activePtr->nextT();
                double nextT = activePtr->t();
                // FIXME: add all combinations of curve types
                if (wt.verb() == SkPath::kLine_Verb) {
                    SkPoint clippedPts[2];
                    const SkPoint* clipped;
                    if (currentT * nextT != 0 || currentT + nextT != 1) {
                        // OPTIMIZATION: if !inWinding, we only need 
                        // clipped[1].fY
                        LineSubDivide(points, currentT, nextT, clippedPts);
                        clipped = clippedPts;
                    } else {
                        clipped = points;
                    }
                    if (inWinding && !activePtr->fSkip) {
                        SkDebugf("%s line %g,%g %g,%g\n", __FUNCTION__,
                                clipped[0].fX, clipped[0].fY,
                                clipped[1].fX, clipped[1].fY);
                        outBuilder.addLine(clipped);
                    }
                    if (clipped[1].fY >= bottom) {
                        if (last) {
                            activePtr->next();
                        }
                        goto nextEdge;
                    }
                }
                currentT = nextT;
            } while (!last);
        } while (activePtr->next());
nextEdge:
        ;
    }
}

void simplify(const SkPath& path, bool asFill, SkPath& simple) {
    // returns 1 for evenodd, -1 for winding, regardless of inverse-ness
    int windingMask = (path.getFillType() & 1) ? 1 : -1;
    simple.reset();
    simple.setFillType(SkPath::kEvenOdd_FillType);
    // turn path into list of edges increasing in y
    // if an edge is a quad or a cubic with a y extrema, note it, but leave it unbroken
    // once we have a list, sort it, then walk the list (walk edges twice that have y extrema's on top)
    //  and detect crossings -- look for raw bounds that cross over, then tight bounds that cross
    SkTArray<InEdge> edges;
    InEdgeBuilder builder(path, asFill, edges);
    SkTDArray<InEdge*> edgeList;
    InEdge edgeSentinel;
    makeEdgeList(edges, edgeSentinel, edgeList);
    InEdge** currentPtr = edgeList.begin();
    // walk the sorted edges from top to bottom, computing accumulated winding
    SkTDArray<ActiveEdge> activeEdges;
    OutEdgeBuilder outBuilder(asFill);
    SkScalar y = (*currentPtr)->fBounds.fTop;
    do {
        InEdge** lastPtr = currentPtr; // find the edge below the bottom of the first set
        SkScalar bottom = findBottom(currentPtr, edgeList.end(),
            activeEdges, y, asFill, lastPtr);
        addBottomT(currentPtr, lastPtr, bottom);
        addIntersectingTs(currentPtr, lastPtr);
        computeInterceptBottom(activeEdges, y, bottom);
        SkTDArray<ActiveEdge*> activeEdgeList;
        sortHorizontal(activeEdges, activeEdgeList, windingMask);
        stitchEdge(activeEdgeList, y, bottom, windingMask, outBuilder);
        y = bottom;
        currentPtr = advanceEdges(activeEdges, currentPtr, lastPtr, y);
    } while (*currentPtr != &edgeSentinel);
    // assemble output path from string of pts, verbs
    outBuilder.bridge();
    outBuilder.assemble(simple);
}

static void testSimplifyCoincidentVertical() {
    SkPath path, out;
    path.setFillType(SkPath::kWinding_FillType);
    path.addRect(10, 10, 30, 30);
    path.addRect(10, 30, 30, 40);
    simplify(path, true, out);
    SkRect rect;
    if (!out.isRect(&rect)) {
        SkDebugf("%s expected rect\n", __FUNCTION__);
    }
    if (rect != SkRect::MakeLTRB(10, 10, 30, 40)) {
        SkDebugf("%s expected union\n", __FUNCTION__);
    }
}

static void testSimplifyCoincidentHorizontal() {
    SkPath path, out;
    path.setFillType(SkPath::kWinding_FillType);
    path.addRect(10, 10, 30, 30);
    path.addRect(30, 10, 40, 30);
    simplify(path, true, out);
    SkRect rect;
    if (!out.isRect(&rect)) {
        SkDebugf("%s expected rect\n", __FUNCTION__);
    }
    if (rect != SkRect::MakeLTRB(10, 10, 40, 30)) {
        SkDebugf("%s expected union\n", __FUNCTION__);
    }
}

static void testSimplifyMulti() {
    SkPath path, out;
    path.setFillType(SkPath::kWinding_FillType);
    path.addRect(10, 10, 30, 30);
    path.addRect(20, 20, 40, 40);
    simplify(path, true, out);
    SkPath expected;
    expected.setFillType(SkPath::kEvenOdd_FillType);
    expected.moveTo(10,10); // two cutout corners
    expected.lineTo(10,30);
    expected.lineTo(20,30);
    expected.lineTo(20,40);
    expected.lineTo(40,40);
    expected.lineTo(40,20);
    expected.lineTo(30,20);
    expected.lineTo(30,10);
    expected.lineTo(10,10);
    expected.close();
    if (out != expected) {
        SkDebugf("%s expected equal\n", __FUNCTION__);
    }
    
    path = out;
    path.addRect(30, 10, 40, 20);
    path.addRect(10, 30, 20, 40);
    simplify(path, true, out);
    SkRect rect;
    if (!out.isRect(&rect)) {
        SkDebugf("%s expected rect\n", __FUNCTION__);
    }
    if (rect != SkRect::MakeLTRB(10, 10, 40, 40)) {
        SkDebugf("%s expected union\n", __FUNCTION__);
    }
    
    path = out;
    path.addRect(10, 10, 40, 40, SkPath::kCCW_Direction);
    simplify(path, true, out);
    if (!out.isEmpty()) {
        SkDebugf("%s expected empty\n", __FUNCTION__);
    }
}

static void testSimplifyAddL() {
    SkPath path, out;
    path.moveTo(10,10); // 'L' shape
    path.lineTo(10,40);
    path.lineTo(40,40);
    path.lineTo(40,20);
    path.lineTo(30,20);
    path.lineTo(30,10);
    path.lineTo(10,10);
    path.close();
    path.addRect(30, 10, 40, 20); // missing notch of 'L'
    simplify(path, true, out);
    SkRect rect;
    if (!out.isRect(&rect)) {
        SkDebugf("%s expected rect\n", __FUNCTION__);
    }
    if (rect != SkRect::MakeLTRB(10, 10, 40, 40)) {
        SkDebugf("%s expected union\n", __FUNCTION__);
    }
}

static void testSimplifyCoincidentCCW() {
    SkPath path, out;
    path.addRect(10, 10, 40, 40, SkPath::kCCW_Direction);
    path.addRect(10, 10, 40, 40, SkPath::kCCW_Direction);
    simplify(path, true, out);
    SkRect rect;
    if (!out.isRect(&rect)) {
        SkDebugf("%s expected rect\n", __FUNCTION__);
    }
    if (rect != SkRect::MakeLTRB(10, 10, 40, 40)) {
        SkDebugf("%s expected union\n", __FUNCTION__);
    }
}

static void testSimplifyCoincidentCW() {
    SkPath path, out;
    path.addRect(10, 10, 40, 40, SkPath::kCCW_Direction);
    path.addRect(10, 10, 40, 40, SkPath::kCW_Direction);
    simplify(path, true, out);
    if (!out.isEmpty()) {
        SkDebugf("%s expected empty\n", __FUNCTION__);
    }
}

void testSimplify();

void (*simplifyTests[])() = {
    testSimplifyCoincidentCW,
    testSimplifyCoincidentCCW,
    testSimplifyCoincidentVertical, 
    testSimplifyCoincidentHorizontal,
    testSimplifyAddL,                
    testSimplifyMulti,               
};

size_t simplifyTestsCount = sizeof(simplifyTests) / sizeof(simplifyTests[0]);

static void (*firstTest)()  = 0;

void testSimplify() {
    size_t index = 0;
    if (firstTest) {
        while (index < simplifyTestsCount && simplifyTests[index] != firstTest) {
            ++index;
        }
    }
    for ( ; index < simplifyTestsCount; ++index) {
        (*simplifyTests[index])();
    }
}