1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
|
#include "EdgeDemo.h"
#include "EdgeWalker_Test.h"
#include "ShapeOps.h"
#import "SkCanvas.h"
#import "SkPaint.h"
extern void showPath(const SkPath& path, const char* str);
static bool drawPaths(SkCanvas* canvas, const SkPath& path, bool useOld)
{
SkPath out;
#define SHOW_PATH 0
#if SHOW_PATH
showPath(path, "original:");
#endif
if (useOld) {
simplify(path, true, out);
} else {
simplifyx(path, out);
}
#if SHOW_PATH
showPath(out, "simplified:");
#endif
SkPaint paint;
paint.setAntiAlias(true);
paint.setStyle(SkPaint::kStroke_Style);
// paint.setStrokeWidth(6);
// paint.setColor(0x1F003f7f);
// canvas->drawPath(path, paint);
paint.setColor(0xFF305F00);
paint.setStrokeWidth(1);
canvas->drawPath(out, paint);
return true;
}
// Three circles bounce inside a rectangle. The circles describe three, four
// or five points which in turn describe a polygon. The polygon points
// bounce inside the circles. The circles rotate and scale over time. The
// polygons are combined into a single path, simplified, and stroked.
static bool drawCircles(SkCanvas* canvas, int step, bool useOld)
{
const int circles = 3;
int scales[circles];
int angles[circles];
int locs[circles * 2];
int pts[circles * 2 * 4];
int c, p;
for (c = 0; c < circles; ++c) {
scales[c] = abs(10 - (step + c * 4) % 21);
angles[c] = (step + c * 6) % 600;
locs[c * 2] = abs(130 - (step + c * 9) % 261);
locs[c * 2 + 1] = abs(170 - (step + c * 11) % 341);
for (p = 0; p < 4; ++p) {
pts[c * 8 + p * 2] = abs(90 - ((step + c * 121 + p * 13) % 190));
pts[c * 8 + p * 2 + 1] = abs(110 - ((step + c * 223 + p * 17) % 230));
}
}
SkPath path;
for (c = 0; c < circles; ++c) {
for (p = 0; p < 4; ++p) {
SkScalar x = pts[c * 8 + p * 2];
SkScalar y = pts[c * 8 + p * 2 + 1];
x *= 3 + scales[c] / 10.0f;
y *= 3 + scales[c] / 10.0f;
SkScalar angle = angles[c] * 3.1415f * 2 / 600;
SkScalar temp = (SkScalar) (x * cos(angle) - y * sin(angle));
y = (SkScalar) (x * sin(angle) + y * cos(angle));
x = temp;
x += locs[c * 2] * 200 / 130.0f;
y += locs[c * 2 + 1] * 200 / 170.0f;
x += 50;
// y += 200;
if (p == 0) {
path.moveTo(x, y);
} else {
path.lineTo(x, y);
}
}
path.close();
}
return drawPaths(canvas, path, useOld);
}
static void createStar(SkPath& path, SkScalar innerRadius, SkScalar outerRadius,
SkScalar startAngle, int points, SkPoint center) {
SkScalar angle = startAngle;
for (int index = 0; index < points * 2; ++index) {
SkScalar radius = index & 1 ? outerRadius : innerRadius;
SkScalar x = (SkScalar) (radius * cos(angle));
SkScalar y = (SkScalar) (radius * sin(angle));
x += center.fX;
y += center.fY;
if (index == 0) {
path.moveTo(x, y);
} else {
path.lineTo(x, y);
}
angle += 3.1415f / points;
}
path.close();
}
static bool drawStars(SkCanvas* canvas, int step, bool useOld)
{
SkPath path;
const int stars = 25;
int pts[stars];
// static bool initialize = true;
int s;
for (s = 0; s < stars; ++s) {
pts[s] = 4 + (s % 7);
}
SkPoint locs[stars];
SkScalar angles[stars];
SkScalar innerRadius[stars];
SkScalar outerRadius[stars];
const int width = 640;
const int height = 480;
const int margin = 30;
const int minRadius = 120;
const int maxInner = 800;
const int maxOuter = 1153;
for (s = 0; s < stars; ++s) {
int starW = (int) (width - margin * 2 + (SkScalar) s * (stars - s) / stars);
locs[s].fX = (int) (step * (1.3f * (s + 1) / stars) + s * 121) % (starW * 2);
if (locs[s].fX > starW) {
locs[s].fX = starW * 2 - locs[s].fX;
}
locs[s].fX += margin;
int starH = (int) (height - margin * 2 + (SkScalar) s * s / stars);
locs[s].fY = (int) (step * (1.7f * (s + 1) / stars) + s * 183) % (starH * 2);
if (locs[s].fY > starH) {
locs[s].fY = starH * 2 - locs[s].fY;
}
locs[s].fY += margin;
angles[s] = ((step + s * 47) % (360 * 4)) * 3.1415f / 180 / 4;
innerRadius[s] = (step + s * 30) % (maxInner * 2);
if (innerRadius[s] > maxInner) {
innerRadius[s] = (maxInner * 2) - innerRadius[s];
}
innerRadius[s] = innerRadius[s] / 4 + minRadius;
outerRadius[s] = (step + s * 70) % (maxOuter * 2);
if (outerRadius[s] > maxOuter) {
outerRadius[s] = (maxOuter * 2) - outerRadius[s];
}
outerRadius[s] = outerRadius[s] / 4 + minRadius;
createStar(path, innerRadius[s] / 4.0f, outerRadius[s] / 4.0f,
angles[s], pts[s], locs[s]);
}
return drawPaths(canvas, path, useOld);
}
#if 0
static void tryRoncoOnce(const SkPath& path, const SkRect& target, bool show) {
// capture everything in a desired rectangle
SkPath tiny;
bool closed = true;
SkPath::Iter iter(path, false);
SkPoint pts[4];
SkPath::Verb verb;
int count = 0;
SkPoint lastPt;
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
count = 0;
break;
case SkPath::kLine_Verb:
count = 1;
break;
case SkPath::kQuad_Verb:
count = 2;
break;
case SkPath::kCubic_Verb:
count = 3;
break;
case SkPath::kClose_Verb:
if (!closed) {
tiny.close();
closed = true;
}
count = 0;
break;
default:
SkDEBUGFAIL("bad verb");
}
if (!count) {
continue;
}
SkRect bounds;
bounds.set(pts[0].fX, pts[0].fY, pts[0].fX, pts[0].fY);
for (int i = 1; i <= count; ++i) {
bounds.growToInclude(pts[i].fX + 0.1f, pts[i].fY + 0.1f);
}
if (!SkRect::Intersects(target, bounds)) {
continue;
}
if (closed) {
tiny.moveTo(pts[0].fX, pts[0].fY);
closed = false;
} else if (pts[0] != lastPt) {
tiny.lineTo(pts[0].fX, pts[0].fY);
}
switch (verb) {
case SkPath::kLine_Verb:
tiny.lineTo(pts[1].fX, pts[1].fY);
lastPt = pts[1];
break;
case SkPath::kQuad_Verb:
tiny.quadTo(pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY);
lastPt = pts[2];
break;
case SkPath::kCubic_Verb:
tiny.cubicTo(pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY, pts[3].fX, pts[3].fY);
lastPt = pts[3];
break;
default:
SkDEBUGFAIL("bad verb");
}
}
if (!closed) {
tiny.close();
}
if (show) {
showPath(tiny, NULL);
SkDebugf("simplified:\n");
}
testSimplifyx(tiny);
}
#endif
#if 0
static void tryRonco(const SkPath& path) {
int divMax = 64;
int divMin = 1;
int xDivMin = 0;
int yDivMin = 0;
bool allYs = true;
bool allXs = true;
if (1) {
divMax = divMin = 64;
xDivMin = 11;
yDivMin = 0;
allXs = true;
allYs = true;
}
for (int divs = divMax; divs >= divMin; divs /= 2) {
SkDebugf("divs=%d\n",divs);
const SkRect& overall = path.getBounds();
SkScalar cellWidth = overall.width() / divs * 2;
SkScalar cellHeight = overall.height() / divs * 2;
SkRect target;
int xDivMax = divMax == divMin && !allXs ? xDivMin + 1 : divs;
int yDivMax = divMax == divMin && !allYs ? yDivMin + 1 : divs;
for (int xDiv = xDivMin; xDiv < xDivMax; ++xDiv) {
SkDebugf("xDiv=%d\n",xDiv);
for (int yDiv = yDivMin; yDiv < yDivMax; ++yDiv) {
SkDebugf("yDiv=%d\n",yDiv);
target.setXYWH(overall.fLeft + (overall.width() - cellWidth) * xDiv / divs,
overall.fTop + (overall.height() - cellHeight) * yDiv / divs,
cellWidth, cellHeight);
tryRoncoOnce(path, target, divMax == divMin);
}
}
}
}
#endif
static bool drawLetters(SkCanvas* canvas, int step, bool useOld)
{
SkPath path;
const int width = 640;
const int height = 480;
const char testStr[] = "Merge";
const int testStrLen = sizeof(testStr) - 1;
SkPoint textPos[testStrLen];
SkScalar widths[testStrLen];
SkPaint paint;
paint.setTextSize(40);
paint.setAntiAlias(true);
paint.getTextWidths(testStr, testStrLen, widths, NULL);
SkScalar running = 0;
for (int x = 0; x < testStrLen; ++x) {
SkScalar width = widths[x];
widths[x] = running;
running += width;
}
SkScalar bias = (width - widths[testStrLen - 1]) / 2;
for (int x = 0; x < testStrLen; ++x) {
textPos[x].fX = bias + widths[x];
textPos[x].fY = height / 2;
}
paint.setTextSize(40 + step / 100.0f);
#if 0
bool oneShot = false;
for (int mask = 0; mask < 1 << testStrLen; ++mask) {
char maskStr[testStrLen];
#if 1
mask = 12;
oneShot = true;
#endif
SkDebugf("mask=%d\n", mask);
for (int letter = 0; letter < testStrLen; ++letter) {
maskStr[letter] = mask & (1 << letter) ? testStr[letter] : ' ';
}
paint.getPosTextPath(maskStr, testStrLen, textPos, &path);
// showPath(path, NULL);
// SkDebugf("%d simplified:\n", mask);
tryRonco(path);
// testSimplifyx(path);
if (oneShot) {
break;
}
}
#endif
paint.getPosTextPath(testStr, testStrLen, textPos, &path);
#if 0
tryRonco(path);
SkDebugf("RoncoDone!\n");
#endif
#if 0
showPath(path, NULL);
SkDebugf("simplified:\n");
#endif
return drawPaths(canvas, path, false);
}
static bool (*drawDemos[])(SkCanvas* , int , bool ) = {
drawStars,
drawCircles,
drawLetters,
};
static size_t drawDemosCount = sizeof(drawDemos) / sizeof(drawDemos[0]);
static bool (*firstTest)(SkCanvas* , int , bool) = drawStars;
bool DrawEdgeDemo(SkCanvas* canvas, int step, bool useOld) {
size_t index = 0;
if (firstTest) {
while (index < drawDemosCount && drawDemos[index] != firstTest) {
++index;
}
}
return (*drawDemos[index])(canvas, step, useOld);
}
|