aboutsummaryrefslogtreecommitdiffhomepage
path: root/experimental/Intersection/DataTypes.h
blob: 33d88fa00775d3017c0896d50cae67e70ca6c383 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#ifndef __DataTypes_h__
#define __DataTypes_h__

#include <assert.h>
#include <float.h>
#include <limits.h>
#include <math.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <strings.h>
#include <sys/types.h>

extern bool AlmostEqualUlps(float A, float B);
// FIXME: delete
int UlpsDiff(float A, float B);
int FloatAsInt(float A);

#if defined(IN_TEST)
// FIXME: move to test-only header
const double PointEpsilon = 0.000001;
const double SquaredEpsilon = PointEpsilon * PointEpsilon;
#endif

inline bool approximately_zero(double x) {

    return fabs(x) < FLT_EPSILON;
}

inline bool precisely_zero(double x) {

    return fabs(x) < DBL_EPSILON;
}

inline bool approximately_zero(float x) {

    return fabs(x) < FLT_EPSILON;
}

inline bool approximately_zero_squared(double x) {
    return fabs(x) < FLT_EPSILON * FLT_EPSILON;
}

inline bool approximately_equal(double x, double y) {
    return approximately_zero(x - y);
}

inline bool approximately_equal_squared(double x, double y) {
    return approximately_equal(x, y);
}

inline bool approximately_greater(double x, double y) {
    return approximately_equal(x, y) ? false : x > y;
}

inline bool approximately_lesser(double x, double y) {
    return approximately_equal(x, y) ? false : x < y;
}

inline double approximately_pin(double x) {
    return approximately_zero(x) ? 0 : x;
}

inline float approximately_pin(float x) {
    return approximately_zero(x) ? 0 : x;
}

inline bool approximately_greater_than_one(double x) {
    return x > 1 - FLT_EPSILON;
}

inline bool precisely_greater_than_one(double x) {
    return x > 1 - DBL_EPSILON;
}

inline bool approximately_less_than_zero(double x) {
    return x < FLT_EPSILON;
}

inline bool precisely_less_than_zero(double x) {
    return x < DBL_EPSILON;
}

inline bool approximately_negative(double x) {
    return x < FLT_EPSILON;
}

inline bool precisely_negative(double x) {
    return x < DBL_EPSILON;
}

inline bool approximately_one_or_less(double x) {
    return x < 1 + FLT_EPSILON;
}

inline bool approximately_positive(double x) {
    return x > -FLT_EPSILON;
}

inline bool approximately_positive_squared(double x) {
    return x > -(FLT_EPSILON * FLT_EPSILON);
}

inline bool approximately_zero_or_more(double x) {
    return x > -FLT_EPSILON;
}

inline bool approximately_between(double a, double b, double c) {
    assert(a <= c);
    return a <= c ? approximately_negative(a - b) && approximately_negative(b - c)
            : approximately_negative(b - a) && approximately_negative(c - b);
}

// returns true if (a <= b <= c) || (a >= b >= c)
inline bool between(double a, double b, double c) {
    assert(((a <= b && b <= c) || (a >= b && b >= c)) == ((a - b) * (c - b) <= 0));
    return (a - b) * (c - b) <= 0;
}

struct _Point {
    double x;
    double y;

    void operator-=(const _Point& v) {
        x -= v.x;
        y -= v.y;
    }

    friend bool operator==(const _Point& a, const _Point& b) {
        return a.x == b.x && a.y == b.y;
    }

    friend bool operator!=(const _Point& a, const _Point& b) {
        return a.x!= b.x || a.y != b.y;
    }

    // note: this can not be implemented with
    // return approximately_equal(a.y, y) && approximately_equal(a.x, x);
    // because that will not take the magnitude of the values
    bool approximatelyEqual(const _Point& a) const {
        return AlmostEqualUlps((float) x, (float) a.x)
                && AlmostEqualUlps((float) y, (float) a.y);
    }

};

typedef _Point _Line[2];
typedef _Point Quadratic[3];
typedef _Point Cubic[4];

struct _Rect {
    double left;
    double top;
    double right;
    double bottom;

    void add(const _Point& pt) {
        if (left > pt.x) {
            left = pt.x;
        }
        if (top > pt.y) {
            top = pt.y;
        }
        if (right < pt.x) {
            right = pt.x;
        }
        if (bottom < pt.y) {
            bottom = pt.y;
        }
    }

    // FIXME: used by debugging only ?
    bool contains(const _Point& pt) {
        return approximately_between(left, pt.x, right)
                && approximately_between(top, pt.y, bottom);
    }

    void set(const _Point& pt) {
        left = right = pt.x;
        top = bottom = pt.y;
    }

    void setBounds(const _Line& line) {
        set(line[0]);
        add(line[1]);
    }

    void setBounds(const Cubic& );
    void setBounds(const Quadratic& );
    void setRawBounds(const Cubic& );
    void setRawBounds(const Quadratic& );
};

struct CubicPair {
    const Cubic& first() const { return (const Cubic&) pts[0]; }
    const Cubic& second() const { return (const Cubic&) pts[3]; }
    _Point pts[7];
};

struct QuadraticPair {
    const Quadratic& first() const { return (const Quadratic&) pts[0]; }
    const Quadratic& second() const { return (const Quadratic&) pts[2]; }
    _Point pts[5];
};

#endif // __DataTypes_h__