1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef __DataTypes_h__
#define __DataTypes_h__
#include <assert.h>
#include <float.h>
#include <limits.h>
#include <math.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <strings.h>
#include <sys/types.h>
bool AlmostEqualUlps(float A, float B, int maxUlpsDiff);
int UlpsDiff(float A, float B);
int FloatAsInt(float A);
#define USE_EPSILON 0
#if USE_EPSILON
extern const double PointEpsilon;
extern const double SquaredEpsilon;
inline bool approximately_equal(double x, double y) {
return fabs(x - y) < PointEpsilon;
}
inline bool approximately_equal_squared(double x, double y) {
return fabs(x - y) < SquaredEpsilon;
}
inline bool approximately_greater(double x, double y) {
return x > y - PointEpsilon;
}
inline bool approximately_lesser(double x, double y) {
return x < y + PointEpsilon;
}
inline bool approximately_zero(double x) {
return fabs(x) < PointEpsilon;
}
inline bool approximately_zero_squared(double x) {
return fabs(x) < SquaredEpsilon;
}
inline bool approximately_negative(double x) {
return x < PointEpsilon;
}
#else
extern const int UlpsEpsilon;
#if defined(IN_TEST)
// FIXME: move to test-only header
const double PointEpsilon = 0.000001;
const double SquaredEpsilon = PointEpsilon * PointEpsilon;
#endif
inline bool approximately_zero(double x) {
return fabs(x) < FLT_EPSILON;
}
inline bool precisely_zero(double x) {
return fabs(x) < DBL_EPSILON;
}
inline bool approximately_zero(float x) {
return fabs(x) < FLT_EPSILON;
}
inline bool approximately_zero_squared(double x) {
return fabs(x) < FLT_EPSILON * FLT_EPSILON;
}
inline bool approximately_equal(double x, double y) {
if (approximately_zero(x - y)) {
return true;
}
// FIXME: since no other function uses ULPS, this one shouldn't either
return AlmostEqualUlps((float) x, (float) y, UlpsEpsilon);
}
inline bool approximately_equal_squared(double x, double y) {
return approximately_equal(x, y);
}
inline bool approximately_greater(double x, double y) {
return approximately_equal(x, y) ? false : x > y;
}
inline bool approximately_lesser(double x, double y) {
return approximately_equal(x, y) ? false : x < y;
}
inline double approximately_pin(double x) {
return approximately_zero(x) ? 0 : x;
}
inline float approximately_pin(float x) {
return approximately_zero(x) ? 0 : x;
}
inline bool approximately_greater_than_one(double x) {
return x > 1 - FLT_EPSILON;
}
inline bool precisely_greater_than_one(double x) {
return x > 1 - DBL_EPSILON;
}
inline bool approximately_less_than_zero(double x) {
return x < FLT_EPSILON;
}
inline bool precisely_less_than_zero(double x) {
return x < DBL_EPSILON;
}
inline bool approximately_negative(double x) {
return x < FLT_EPSILON;
}
inline bool precisely_negative(double x) {
return x < DBL_EPSILON;
}
inline bool approximately_one_or_less(double x) {
return x < 1 + FLT_EPSILON;
}
inline bool approximately_positive(double x) {
return x > -FLT_EPSILON;
}
inline bool approximately_zero_or_more(double x) {
return x > -FLT_EPSILON;
}
inline bool approximately_between(double a, double b, double c) {
assert(a <= c);
return a <= c ? approximately_negative(a - b) && approximately_negative(b - c)
: approximately_negative(b - a) && approximately_negative(c - b);
}
// returns true if (a <= b <= c) || (a >= b >= c)
inline bool between(double a, double b, double c) {
assert(((a <= b && b <= c) || (a >= b && b >= c)) == ((a - b) * (c - b) <= 0));
return (a - b) * (c - b) <= 0;
}
#endif
struct _Point {
double x;
double y;
void operator-=(const _Point& v) {
x -= v.x;
y -= v.y;
}
friend bool operator==(const _Point& a, const _Point& b) {
return a.x == b.x && a.y == b.y;
}
friend bool operator!=(const _Point& a, const _Point& b) {
return a.x!= b.x || a.y != b.y;
}
bool approximatelyEqual(const _Point& a) const {
return approximately_equal(a.y, y) && approximately_equal(a.x, x);
}
};
typedef _Point _Line[2];
typedef _Point Quadratic[3];
typedef _Point Cubic[4];
struct _Rect {
double left;
double top;
double right;
double bottom;
void add(const _Point& pt) {
if (left > pt.x) {
left = pt.x;
}
if (top > pt.y) {
top = pt.y;
}
if (right < pt.x) {
right = pt.x;
}
if (bottom < pt.y) {
bottom = pt.y;
}
}
// FIXME: used by debugging only ?
bool contains(const _Point& pt) {
return approximately_between(left, pt.x, right)
&& approximately_between(top, pt.y, bottom);
}
void set(const _Point& pt) {
left = right = pt.x;
top = bottom = pt.y;
}
void setBounds(const _Line& line) {
set(line[0]);
add(line[1]);
}
void setBounds(const Cubic& );
void setBounds(const Quadratic& );
void setRawBounds(const Cubic& );
void setRawBounds(const Quadratic& );
};
struct CubicPair {
const Cubic& first() const { return (const Cubic&) pts[0]; }
const Cubic& second() const { return (const Cubic&) pts[3]; }
_Point pts[7];
};
struct QuadraticPair {
const Quadratic& first() const { return (const Quadratic&) pts[0]; }
const Quadratic& second() const { return (const Quadratic&) pts[2]; }
_Point pts[5];
};
#endif // __DataTypes_h__
|