1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "CubicUtilities.h"
#include "Extrema.h"
#include "LineUtilities.h"
#include "QuadraticUtilities.h"
const int gPrecisionUnit = 256; // FIXME: arbitrary -- should try different values in test framework
// FIXME: cache keep the bounds and/or precision with the caller?
double calcPrecision(const Cubic& cubic) {
_Rect dRect;
dRect.setBounds(cubic); // OPTIMIZATION: just use setRawBounds ?
double width = dRect.right - dRect.left;
double height = dRect.bottom - dRect.top;
return (width > height ? width : height) / gPrecisionUnit;
}
#if SK_DEBUG
double calcPrecision(const Cubic& cubic, double t, double scale) {
Cubic part;
sub_divide(cubic, SkTMax(0., t - scale), SkTMin(1., t + scale), part);
return calcPrecision(part);
}
#endif
bool clockwise(const Cubic& c) {
double sum = (c[0].x - c[3].x) * (c[0].y + c[3].y);
for (int idx = 0; idx < 3; ++idx){
sum += (c[idx + 1].x - c[idx].x) * (c[idx + 1].y + c[idx].y);
}
return sum <= 0;
}
void coefficients(const double* cubic, double& A, double& B, double& C, double& D) {
A = cubic[6]; // d
B = cubic[4] * 3; // 3*c
C = cubic[2] * 3; // 3*b
D = cubic[0]; // a
A -= D - C + B; // A = -a + 3*b - 3*c + d
B += 3 * D - 2 * C; // B = 3*a - 6*b + 3*c
C -= 3 * D; // C = -3*a + 3*b
}
bool controls_contained_by_ends(const Cubic& c) {
_Vector startTan = c[1] - c[0];
if (startTan.x == 0 && startTan.y == 0) {
startTan = c[2] - c[0];
}
_Vector endTan = c[2] - c[3];
if (endTan.x == 0 && endTan.y == 0) {
endTan = c[1] - c[3];
}
if (startTan.dot(endTan) >= 0) {
return false;
}
_Line startEdge = {c[0], c[0]};
startEdge[1].x -= startTan.y;
startEdge[1].y += startTan.x;
_Line endEdge = {c[3], c[3]};
endEdge[1].x -= endTan.y;
endEdge[1].y += endTan.x;
double leftStart1 = is_left(startEdge, c[1]);
if (leftStart1 * is_left(startEdge, c[2]) < 0) {
return false;
}
double leftEnd1 = is_left(endEdge, c[1]);
if (leftEnd1 * is_left(endEdge, c[2]) < 0) {
return false;
}
return leftStart1 * leftEnd1 >= 0;
}
bool ends_are_extrema_in_x_or_y(const Cubic& c) {
return (between(c[0].x, c[1].x, c[3].x) && between(c[0].x, c[2].x, c[3].x))
|| (between(c[0].y, c[1].y, c[3].y) && between(c[0].y, c[2].y, c[3].y));
}
bool monotonic_in_y(const Cubic& c) {
return between(c[0].y, c[1].y, c[3].y) && between(c[0].y, c[2].y, c[3].y);
}
bool serpentine(const Cubic& c) {
if (!controls_contained_by_ends(c)) {
return false;
}
double wiggle = (c[0].x - c[2].x) * (c[0].y + c[2].y);
for (int idx = 0; idx < 2; ++idx){
wiggle += (c[idx + 1].x - c[idx].x) * (c[idx + 1].y + c[idx].y);
}
double waggle = (c[1].x - c[3].x) * (c[1].y + c[3].y);
for (int idx = 1; idx < 3; ++idx){
waggle += (c[idx + 1].x - c[idx].x) * (c[idx + 1].y + c[idx].y);
}
return wiggle * waggle < 0;
}
// cubic roots
const double PI = 4 * atan(1);
// from SkGeometry.cpp (and Numeric Solutions, 5.6)
int cubicRootsValidT(double A, double B, double C, double D, double t[3]) {
#if 0
if (approximately_zero(A)) { // we're just a quadratic
return quadraticRootsValidT(B, C, D, t);
}
double a, b, c;
{
double invA = 1 / A;
a = B * invA;
b = C * invA;
c = D * invA;
}
double a2 = a * a;
double Q = (a2 - b * 3) / 9;
double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
double Q3 = Q * Q * Q;
double R2MinusQ3 = R * R - Q3;
double adiv3 = a / 3;
double* roots = t;
double r;
if (R2MinusQ3 < 0) // we have 3 real roots
{
double theta = acos(R / sqrt(Q3));
double neg2RootQ = -2 * sqrt(Q);
r = neg2RootQ * cos(theta / 3) - adiv3;
if (is_unit_interval(r))
*roots++ = r;
r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3;
if (is_unit_interval(r))
*roots++ = r;
r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3;
if (is_unit_interval(r))
*roots++ = r;
}
else // we have 1 real root
{
double A = fabs(R) + sqrt(R2MinusQ3);
A = cube_root(A);
if (R > 0) {
A = -A;
}
if (A != 0) {
A += Q / A;
}
r = A - adiv3;
if (is_unit_interval(r))
*roots++ = r;
}
return (int)(roots - t);
#else
double s[3];
int realRoots = cubicRootsReal(A, B, C, D, s);
int foundRoots = add_valid_ts(s, realRoots, t);
return foundRoots;
#endif
}
int cubicRootsReal(double A, double B, double C, double D, double s[3]) {
#if SK_DEBUG
// create a string mathematica understands
// GDB set print repe 15 # if repeated digits is a bother
// set print elements 400 # if line doesn't fit
char str[1024];
bzero(str, sizeof(str));
sprintf(str, "Solve[%1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]", A, B, C, D);
mathematica_ize(str, sizeof(str));
#if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA
SkDebugf("%s\n", str);
#endif
#endif
if (approximately_zero(A)
&& approximately_zero_when_compared_to(A, B)
&& approximately_zero_when_compared_to(A, C)
&& approximately_zero_when_compared_to(A, D)) { // we're just a quadratic
return quadraticRootsReal(B, C, D, s);
}
if (approximately_zero_when_compared_to(D, A)
&& approximately_zero_when_compared_to(D, B)
&& approximately_zero_when_compared_to(D, C)) { // 0 is one root
int num = quadraticRootsReal(A, B, C, s);
for (int i = 0; i < num; ++i) {
if (approximately_zero(s[i])) {
return num;
}
}
s[num++] = 0;
return num;
}
if (approximately_zero(A + B + C + D)) { // 1 is one root
int num = quadraticRootsReal(A, A + B, -D, s);
for (int i = 0; i < num; ++i) {
if (AlmostEqualUlps(s[i], 1)) {
return num;
}
}
s[num++] = 1;
return num;
}
double a, b, c;
{
double invA = 1 / A;
a = B * invA;
b = C * invA;
c = D * invA;
}
double a2 = a * a;
double Q = (a2 - b * 3) / 9;
double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
double R2 = R * R;
double Q3 = Q * Q * Q;
double R2MinusQ3 = R2 - Q3;
double adiv3 = a / 3;
double r;
double* roots = s;
#if 0
if (approximately_zero_squared(R2MinusQ3) && AlmostEqualUlps(R2, Q3)) {
if (approximately_zero_squared(R)) {/* one triple solution */
*roots++ = -adiv3;
} else { /* one single and one double solution */
double u = cube_root(-R);
*roots++ = 2 * u - adiv3;
*roots++ = -u - adiv3;
}
}
else
#endif
if (R2MinusQ3 < 0) // we have 3 real roots
{
double theta = acos(R / sqrt(Q3));
double neg2RootQ = -2 * sqrt(Q);
r = neg2RootQ * cos(theta / 3) - adiv3;
*roots++ = r;
r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3;
if (!AlmostEqualUlps(s[0], r)) {
*roots++ = r;
}
r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3;
if (!AlmostEqualUlps(s[0], r) && (roots - s == 1 || !AlmostEqualUlps(s[1], r))) {
*roots++ = r;
}
}
else // we have 1 real root
{
double sqrtR2MinusQ3 = sqrt(R2MinusQ3);
double A = fabs(R) + sqrtR2MinusQ3;
A = cube_root(A);
if (R > 0) {
A = -A;
}
if (A != 0) {
A += Q / A;
}
r = A - adiv3;
*roots++ = r;
if (AlmostEqualUlps(R2, Q3)) {
r = -A / 2 - adiv3;
if (!AlmostEqualUlps(s[0], r)) {
*roots++ = r;
}
}
}
return (int)(roots - s);
}
// from http://www.cs.sunysb.edu/~qin/courses/geometry/4.pdf
// c(t) = a(1-t)^3 + 3bt(1-t)^2 + 3c(1-t)t^2 + dt^3
// c'(t) = -3a(1-t)^2 + 3b((1-t)^2 - 2t(1-t)) + 3c(2t(1-t) - t^2) + 3dt^2
// = 3(b-a)(1-t)^2 + 6(c-b)t(1-t) + 3(d-c)t^2
static double derivativeAtT(const double* cubic, double t) {
double one_t = 1 - t;
double a = cubic[0];
double b = cubic[2];
double c = cubic[4];
double d = cubic[6];
return 3 * ((b - a) * one_t * one_t + 2 * (c - b) * t * one_t + (d - c) * t * t);
}
double dx_at_t(const Cubic& cubic, double t) {
return derivativeAtT(&cubic[0].x, t);
}
double dy_at_t(const Cubic& cubic, double t) {
return derivativeAtT(&cubic[0].y, t);
}
// OPTIMIZE? compute t^2, t(1-t), and (1-t)^2 and pass them to another version of derivative at t?
_Vector dxdy_at_t(const Cubic& cubic, double t) {
_Vector result = { derivativeAtT(&cubic[0].x, t), derivativeAtT(&cubic[0].y, t) };
return result;
}
// OPTIMIZE? share code with formulate_F1DotF2
int find_cubic_inflections(const Cubic& src, double tValues[])
{
double Ax = src[1].x - src[0].x;
double Ay = src[1].y - src[0].y;
double Bx = src[2].x - 2 * src[1].x + src[0].x;
double By = src[2].y - 2 * src[1].y + src[0].y;
double Cx = src[3].x + 3 * (src[1].x - src[2].x) - src[0].x;
double Cy = src[3].y + 3 * (src[1].y - src[2].y) - src[0].y;
return quadraticRootsValidT(Bx * Cy - By * Cx, Ax * Cy - Ay * Cx, Ax * By - Ay * Bx, tValues);
}
static void formulate_F1DotF2(const double src[], double coeff[4])
{
double a = src[2] - src[0];
double b = src[4] - 2 * src[2] + src[0];
double c = src[6] + 3 * (src[2] - src[4]) - src[0];
coeff[0] = c * c;
coeff[1] = 3 * b * c;
coeff[2] = 2 * b * b + c * a;
coeff[3] = a * b;
}
/* from SkGeometry.cpp
Looking for F' dot F'' == 0
A = b - a
B = c - 2b + a
C = d - 3c + 3b - a
F' = 3Ct^2 + 6Bt + 3A
F'' = 6Ct + 6B
F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
*/
int find_cubic_max_curvature(const Cubic& src, double tValues[])
{
double coeffX[4], coeffY[4];
int i;
formulate_F1DotF2(&src[0].x, coeffX);
formulate_F1DotF2(&src[0].y, coeffY);
for (i = 0; i < 4; i++) {
coeffX[i] = coeffX[i] + coeffY[i];
}
return cubicRootsValidT(coeffX[0], coeffX[1], coeffX[2], coeffX[3], tValues);
}
bool rotate(const Cubic& cubic, int zero, int index, Cubic& rotPath) {
double dy = cubic[index].y - cubic[zero].y;
double dx = cubic[index].x - cubic[zero].x;
if (approximately_zero(dy)) {
if (approximately_zero(dx)) {
return false;
}
memcpy(rotPath, cubic, sizeof(Cubic));
return true;
}
for (int index = 0; index < 4; ++index) {
rotPath[index].x = cubic[index].x * dx + cubic[index].y * dy;
rotPath[index].y = cubic[index].y * dx - cubic[index].x * dy;
}
return true;
}
#if 0 // unused for now
double secondDerivativeAtT(const double* cubic, double t) {
double a = cubic[0];
double b = cubic[2];
double c = cubic[4];
double d = cubic[6];
return (c - 2 * b + a) * (1 - t) + (d - 2 * c + b) * t;
}
#endif
_Point top(const Cubic& cubic, double startT, double endT) {
Cubic sub;
sub_divide(cubic, startT, endT, sub);
_Point topPt = sub[0];
if (topPt.y > sub[3].y || (topPt.y == sub[3].y && topPt.x > sub[3].x)) {
topPt = sub[3];
}
double extremeTs[2];
if (!monotonic_in_y(sub)) {
int roots = findExtrema(sub[0].y, sub[1].y, sub[2].y, sub[3].y, extremeTs);
for (int index = 0; index < roots; ++index) {
_Point mid;
double t = startT + (endT - startT) * extremeTs[index];
xy_at_t(cubic, t, mid.x, mid.y);
if (topPt.y > mid.y || (topPt.y == mid.y && topPt.x > mid.x)) {
topPt = mid;
}
}
}
return topPt;
}
// OPTIMIZE: avoid computing the unused half
void xy_at_t(const Cubic& cubic, double t, double& x, double& y) {
_Point xy = xy_at_t(cubic, t);
if (&x) {
x = xy.x;
}
if (&y) {
y = xy.y;
}
}
_Point xy_at_t(const Cubic& cubic, double t) {
double one_t = 1 - t;
double one_t2 = one_t * one_t;
double a = one_t2 * one_t;
double b = 3 * one_t2 * t;
double t2 = t * t;
double c = 3 * one_t * t2;
double d = t2 * t;
_Point result = {a * cubic[0].x + b * cubic[1].x + c * cubic[2].x + d * cubic[3].x,
a * cubic[0].y + b * cubic[1].y + c * cubic[2].y + d * cubic[3].y};
return result;
}
|