aboutsummaryrefslogtreecommitdiffhomepage
path: root/experimental/Intersection/CubicUtilities.cpp
blob: 3e2f474d7c448b1593e306f030b8d9e69054807c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "CubicUtilities.h"
#include "QuadraticUtilities.h"

const int precisionUnit = 256; // FIXME: arbitrary -- should try different values in test framework

// FIXME: cache keep the bounds and/or precision with the caller?
double calcPrecision(const Cubic& cubic) {
    _Rect dRect;
    dRect.setBounds(cubic); // OPTIMIZATION: just use setRawBounds ?
    double width = dRect.right - dRect.left;
    double height = dRect.bottom - dRect.top;
    return (width > height ? width : height) / precisionUnit;
}

#if SK_DEBUG
double calcPrecision(const Cubic& cubic, double t, double scale) {
    Cubic part;
    sub_divide(cubic, SkTMax(0., t - scale), SkTMin(1., t + scale), part);
    return calcPrecision(part);
}
#endif


void coefficients(const double* cubic, double& A, double& B, double& C, double& D) {
    A = cubic[6]; // d
    B = cubic[4] * 3; // 3*c
    C = cubic[2] * 3; // 3*b
    D = cubic[0]; // a
    A -= D - C + B;     // A =   -a + 3*b - 3*c + d
    B += 3 * D - 2 * C; // B =  3*a - 6*b + 3*c
    C -= 3 * D;         // C = -3*a + 3*b
}

// cubic roots

const double PI = 4 * atan(1);

// from SkGeometry.cpp (and Numeric Solutions, 5.6)
int cubicRootsValidT(double A, double B, double C, double D, double t[3]) {
#if 0
    if (approximately_zero(A)) {  // we're just a quadratic
        return quadraticRootsValidT(B, C, D, t);
    }
    double a, b, c;
    {
        double invA = 1 / A;
        a = B * invA;
        b = C * invA;
        c = D * invA;
    }
    double a2 = a * a;
    double Q = (a2 - b * 3) / 9;
    double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
    double Q3 = Q * Q * Q;
    double R2MinusQ3 = R * R - Q3;
    double adiv3 = a / 3;
    double* roots = t;
    double r;

    if (R2MinusQ3 < 0)   // we have 3 real roots
    {
        double theta = acos(R / sqrt(Q3));
        double neg2RootQ = -2 * sqrt(Q);

        r = neg2RootQ * cos(theta / 3) - adiv3;
        if (is_unit_interval(r))
            *roots++ = r;

        r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3;
        if (is_unit_interval(r))
            *roots++ = r;

        r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3;
        if (is_unit_interval(r))
            *roots++ = r;
    }
    else                // we have 1 real root
    {
        double A = fabs(R) + sqrt(R2MinusQ3);
        A = cube_root(A);
        if (R > 0) {
            A = -A;
        }
        if (A != 0) {
            A += Q / A;
        }
        r = A - adiv3;
        if (is_unit_interval(r))
            *roots++ = r;
    }
    return (int)(roots - t);
#else
    double s[3];
    int realRoots = cubicRootsReal(A, B, C, D, s);
    int foundRoots = add_valid_ts(s, realRoots, t);
    return foundRoots;
#endif
}

int cubicRootsReal(double A, double B, double C, double D, double s[3]) {
#if SK_DEBUG
    // create a string mathematica understands
    // GDB set print repe 15 # if repeated digits is a bother
    //     set print elements 400 # if line doesn't fit
    char str[1024];
    bzero(str, sizeof(str));
    sprintf(str, "Solve[%1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]", A, B, C, D);
#endif
    if (approximately_zero(A)) {  // we're just a quadratic
        return quadraticRootsReal(B, C, D, s);
    }
    if (approximately_zero(D)) { // 0 is one root
        int num = quadraticRootsReal(A, B, C, s);
        for (int i = 0; i < num; ++i) {
            if (approximately_zero(s[i])) {
                return num;
            }
        }
        s[num++] = 0;
        return num;
    }
    if (approximately_zero(A + B + C + D)) { // 1 is one root
        int num = quadraticRootsReal(A, A + B, -D, s);
        for (int i = 0; i < num; ++i) {
            if (AlmostEqualUlps(s[i], 1)) {
                return num;
            }
        }
        s[num++] = 1;
        return num;
    }
    double a, b, c;
    {
        double invA = 1 / A;
        a = B * invA;
        b = C * invA;
        c = D * invA;
    }
    double a2 = a * a;
    double Q = (a2 - b * 3) / 9;
    double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
    double R2 = R * R;
    double Q3 = Q * Q * Q;
    double R2MinusQ3 = R2 - Q3;
    double adiv3 = a / 3;
    double r;
    double* roots = s;
#if 0
    if (approximately_zero_squared(R2MinusQ3) && AlmostEqualUlps(R2, Q3)) {
        if (approximately_zero_squared(R)) {/* one triple solution */
            *roots++ = -adiv3;
        } else { /* one single and one double solution */

            double u = cube_root(-R);
            *roots++ = 2 * u - adiv3;
            *roots++ = -u - adiv3;
        }
    }
    else 
#endif
    if (R2MinusQ3 < 0)   // we have 3 real roots
    {
        double theta = acos(R / sqrt(Q3));
        double neg2RootQ = -2 * sqrt(Q);

        r = neg2RootQ * cos(theta / 3) - adiv3;
        *roots++ = r;

        r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3;
        if (!AlmostEqualUlps(s[0], r)) {
            *roots++ = r;
        }
        r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3;
        if (!AlmostEqualUlps(s[0], r) && (roots - s == 1 || !AlmostEqualUlps(s[1], r))) {
            *roots++ = r;
        }
    }
    else                // we have 1 real root
    {
        double sqrtR2MinusQ3 = sqrt(R2MinusQ3);
        double A = fabs(R) + sqrtR2MinusQ3;
        A = cube_root(A);
        if (R > 0) {
            A = -A;
        }
        if (A != 0) {
            A += Q / A;
        }
        r = A - adiv3;
        *roots++ = r;
        if (AlmostEqualUlps(R2, Q3)) {
            r = -A / 2 - adiv3;
            if (!AlmostEqualUlps(s[0], r)) {
                *roots++ = r;
            }
        }
    }
    return (int)(roots - s);
}

// from http://www.cs.sunysb.edu/~qin/courses/geometry/4.pdf
// c(t)  = a(1-t)^3 + 3bt(1-t)^2 + 3c(1-t)t^2 + dt^3
// c'(t) = -3a(1-t)^2 + 3b((1-t)^2 - 2t(1-t)) + 3c(2t(1-t) - t^2) + 3dt^2
//       = 3(b-a)(1-t)^2 + 6(c-b)t(1-t) + 3(d-c)t^2
static double derivativeAtT(const double* cubic, double t) {
    double one_t = 1 - t;
    double a = cubic[0];
    double b = cubic[2];
    double c = cubic[4];
    double d = cubic[6];
    return 3 * ((b - a) * one_t * one_t + 2 * (c - b) * t * one_t + (d - c) * t * t);
}

double dx_at_t(const Cubic& cubic, double t) {
    return derivativeAtT(&cubic[0].x, t);
}

double dy_at_t(const Cubic& cubic, double t) {
    return derivativeAtT(&cubic[0].y, t);
}

// OPTIMIZE? compute t^2, t(1-t), and (1-t)^2 and pass them to another version of derivative at t?
void dxdy_at_t(const Cubic& cubic, double t, _Point& dxdy) {
    dxdy.x = derivativeAtT(&cubic[0].x, t);
    dxdy.y = derivativeAtT(&cubic[0].y, t);
}


int find_cubic_inflections(const Cubic& src, double tValues[])
{
    double Ax = src[1].x - src[0].x;
    double Ay = src[1].y - src[0].y;
    double Bx = src[2].x - 2 * src[1].x + src[0].x;
    double By = src[2].y - 2 * src[1].y + src[0].y;
    double Cx = src[3].x + 3 * (src[1].x - src[2].x) - src[0].x;
    double Cy = src[3].y + 3 * (src[1].y - src[2].y) - src[0].y;
    return quadraticRootsValidT(Bx * Cy - By * Cx, (Ax * Cy - Ay * Cx), Ax * By - Ay * Bx, tValues);
}

bool rotate(const Cubic& cubic, int zero, int index, Cubic& rotPath) {
    double dy = cubic[index].y - cubic[zero].y;
    double dx = cubic[index].x - cubic[zero].x;
    if (approximately_zero(dy)) {
        if (approximately_zero(dx)) {
            return false;
        }
        memcpy(rotPath, cubic, sizeof(Cubic));
        return true;
    }
    for (int index = 0; index < 4; ++index) {
        rotPath[index].x = cubic[index].x * dx + cubic[index].y * dy;
        rotPath[index].y = cubic[index].y * dx - cubic[index].x * dy;
    }
    return true;
}

#if 0 // unused for now
double secondDerivativeAtT(const double* cubic, double t) {
    double a = cubic[0];
    double b = cubic[2];
    double c = cubic[4];
    double d = cubic[6];
    return (c - 2 * b + a) * (1 - t) + (d - 2 * c + b) * t;
}
#endif

void xy_at_t(const Cubic& cubic, double t, double& x, double& y) {
    double one_t = 1 - t;
    double one_t2 = one_t * one_t;
    double a = one_t2 * one_t;
    double b = 3 * one_t2 * t;
    double t2 = t * t;
    double c = 3 * one_t * t2;
    double d = t2 * t;
    if (&x) {
        x = a * cubic[0].x + b * cubic[1].x + c * cubic[2].x + d * cubic[3].x;
    }
    if (&y) {
        y = a * cubic[0].y + b * cubic[1].y + c * cubic[2].y + d * cubic[3].y;
    }
}