aboutsummaryrefslogtreecommitdiffhomepage
path: root/experimental/Intersection/CubicUtilities.cpp
blob: 19f16c6aaafa49e420b7fcb7375ca8a1ca2ab47e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "CubicUtilities.h"
#include "QuadraticUtilities.h"

const int precisionUnit = 256; // FIXME: arbitrary -- should try different values in test framework

// FIXME: cache keep the bounds and/or precision with the caller?
double calcPrecision(const Cubic& cubic) {
    _Rect dRect;
    dRect.setBounds(cubic); // OPTIMIZATION: just use setRawBounds ?
    double width = dRect.right - dRect.left;
    double height = dRect.bottom - dRect.top;
    return (width > height ? width : height) / precisionUnit;
}

#if SK_DEBUG
double calcPrecision(const Cubic& cubic, double t, double scale) {
    Cubic part;
    sub_divide(cubic, SkMax32(0, t - scale), SkMin32(1, t + scale), part);
    return calcPrecision(part);
}
#endif


void coefficients(const double* cubic, double& A, double& B, double& C, double& D) {
    A = cubic[6]; // d
    B = cubic[4] * 3; // 3*c
    C = cubic[2] * 3; // 3*b
    D = cubic[0]; // a
    A -= D - C + B;     // A =   -a + 3*b - 3*c + d
    B += 3 * D - 2 * C; // B =  3*a - 6*b + 3*c
    C -= 3 * D;         // C = -3*a + 3*b
}

// cubic roots

const double PI = 4 * atan(1);

static bool is_unit_interval(double x) {
    return x > 0 && x < 1;
}

// from SkGeometry.cpp (and Numeric Solutions, 5.6)
int cubicRoots(double A, double B, double C, double D, double t[3]) {
    if (approximately_zero(A)) {  // we're just a quadratic
        return quadraticRoots(B, C, D, t);
    }
    double a, b, c;
    {
        double invA = 1 / A;
        a = B * invA;
        b = C * invA;
        c = D * invA;
    }
    double a2 = a * a;
    double Q = (a2 - b * 3) / 9;
    double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
    double Q3 = Q * Q * Q;
    double R2MinusQ3 = R * R - Q3;
    double adiv3 = a / 3;
    double* roots = t;
    double r;

    if (R2MinusQ3 < 0)   // we have 3 real roots
    {
        double theta = acos(R / sqrt(Q3));
        double neg2RootQ = -2 * sqrt(Q);

        r = neg2RootQ * cos(theta / 3) - adiv3;
        if (is_unit_interval(r))
            *roots++ = r;

        r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3;
        if (is_unit_interval(r))
            *roots++ = r;

        r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3;
        if (is_unit_interval(r))
            *roots++ = r;
    }
    else                // we have 1 real root
    {
        double A = fabs(R) + sqrt(R2MinusQ3);
        A = cube_root(A);
        if (R > 0) {
            A = -A;
        }
        if (A != 0) {
            A += Q / A;
        }
        r = A - adiv3;
        if (is_unit_interval(r))
            *roots++ = r;
    }
    return (int)(roots - t);
}

// from http://www.cs.sunysb.edu/~qin/courses/geometry/4.pdf
// c(t)  = a(1-t)^3 + 3bt(1-t)^2 + 3c(1-t)t^2 + dt^3
// c'(t) = -3a(1-t)^2 + 3b((1-t)^2 - 2t(1-t)) + 3c(2t(1-t) - t^2) + 3dt^2
//       = 3(b-a)(1-t)^2 + 6(c-b)t(1-t) + 3(d-c)t^2
static double derivativeAtT(const double* cubic, double t) {
    double one_t = 1 - t;
    double a = cubic[0];
    double b = cubic[2];
    double c = cubic[4];
    double d = cubic[6];
    return 3 * ((b - a) * one_t * one_t + 2 * (c - b) * t * one_t + (d - c) * t * t);
}

double dx_at_t(const Cubic& cubic, double t) {
    return derivativeAtT(&cubic[0].x, t);
}

double dy_at_t(const Cubic& cubic, double t) {
    return derivativeAtT(&cubic[0].y, t);
}

// OPTIMIZE? compute t^2, t(1-t), and (1-t)^2 and pass them to another version of derivative at t?
void dxdy_at_t(const Cubic& cubic, double t, _Point& dxdy) {
    dxdy.x = derivativeAtT(&cubic[0].x, t);
    dxdy.y = derivativeAtT(&cubic[0].y, t);
}


int find_cubic_inflections(const Cubic& src, double tValues[])
{
    double Ax = src[1].x - src[0].x;
    double Ay = src[1].y - src[0].y;
    double Bx = src[2].x - 2 * src[1].x + src[0].x;
    double By = src[2].y - 2 * src[1].y + src[0].y;
    double Cx = src[3].x + 3 * (src[1].x - src[2].x) - src[0].x;
    double Cy = src[3].y + 3 * (src[1].y - src[2].y) - src[0].y;
    return quadraticRoots(Bx * Cy - By * Cx, (Ax * Cy - Ay * Cx) / 2, Ax * By - Ay * Bx, tValues);
}

bool rotate(const Cubic& cubic, int zero, int index, Cubic& rotPath) {
    double dy = cubic[index].y - cubic[zero].y;
    double dx = cubic[index].x - cubic[zero].x;
    if (approximately_equal(dy, 0)) {
        if (approximately_equal(dx, 0)) {
            return false;
        }
        memcpy(rotPath, cubic, sizeof(Cubic));
        return true;
    }
    for (int index = 0; index < 4; ++index) {
        rotPath[index].x = cubic[index].x * dx + cubic[index].y * dy;
        rotPath[index].y = cubic[index].y * dx - cubic[index].x * dy;
    }
    return true;
}

#if 0 // unused for now
double secondDerivativeAtT(const double* cubic, double t) {
    double a = cubic[0];
    double b = cubic[2];
    double c = cubic[4];
    double d = cubic[6];
    return (c - 2 * b + a) * (1 - t) + (d - 2 * c + b) * t;
}
#endif

void xy_at_t(const Cubic& cubic, double t, double& x, double& y) {
    double one_t = 1 - t;
    double one_t2 = one_t * one_t;
    double a = one_t2 * one_t;
    double b = 3 * one_t2 * t;
    double t2 = t * t;
    double c = 3 * one_t * t2;
    double d = t2 * t;
    if (&x) {
        x = a * cubic[0].x + b * cubic[1].x + c * cubic[2].x + d * cubic[3].x;
    }
    if (&y) {
        y = a * cubic[0].y + b * cubic[1].y + c * cubic[2].y + d * cubic[3].y;
    }
}