aboutsummaryrefslogtreecommitdiffhomepage
path: root/experimental/Intersection/CubicSubDivide.cpp
blob: ddf63cdc2afa42e5ed4be25e14cd60d50730d4b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "CubicUtilities.h"
#include "IntersectionUtilities.h"

/*
 Given a cubic c, t1, and t2, find a small cubic segment.

 The new cubic is defined as points A, B, C, and D, where
 s1 = 1 - t1
 s2 = 1 - t2
 A = c[0]*s1*s1*s1 + 3*c[1]*s1*s1*t1 + 3*c[2]*s1*t1*t1 + c[3]*t1*t1*t1
 D = c[0]*s2*s2*s2 + 3*c[1]*s2*s2*t2 + 3*c[2]*s2*t2*t2 + c[3]*t2*t2*t2

 We don't have B or C. So We define two equations to isolate them.
 First, compute two reference T values 1/3 and 2/3 from t1 to t2:

 c(at (2*t1 + t2)/3) == E
 c(at (t1 + 2*t2)/3) == F

 Next, compute where those values must be if we know the values of B and C:

 _12   =  A*2/3 + B*1/3
 12_   =  A*1/3 + B*2/3
 _23   =  B*2/3 + C*1/3
 23_   =  B*1/3 + C*2/3
 _34   =  C*2/3 + D*1/3
 34_   =  C*1/3 + D*2/3
 _123  = (A*2/3 + B*1/3)*2/3 + (B*2/3 + C*1/3)*1/3 = A*4/9 + B*4/9 + C*1/9
 123_  = (A*1/3 + B*2/3)*1/3 + (B*1/3 + C*2/3)*2/3 = A*1/9 + B*4/9 + C*4/9
 _234  = (B*2/3 + C*1/3)*2/3 + (C*2/3 + D*1/3)*1/3 = B*4/9 + C*4/9 + D*1/9
 234_  = (B*1/3 + C*2/3)*1/3 + (C*1/3 + D*2/3)*2/3 = B*1/9 + C*4/9 + D*4/9
 _1234 = (A*4/9 + B*4/9 + C*1/9)*2/3 + (B*4/9 + C*4/9 + D*1/9)*1/3
       =  A*8/27 + B*12/27 + C*6/27 + D*1/27
       =  E
 1234_ = (A*1/9 + B*4/9 + C*4/9)*1/3 + (B*1/9 + C*4/9 + D*4/9)*2/3
       =  A*1/27 + B*6/27 + C*12/27 + D*8/27
       =  F
 E*27  =  A*8    + B*12   + C*6     + D
 F*27  =  A      + B*6    + C*12    + D*8

Group the known values on one side:

 M       = E*27 - A*8 - D     = B*12 + C* 6
 N       = F*27 - A   - D*8   = B* 6 + C*12
 M*2 - N = B*18
 N*2 - M = C*18
 B       = (M*2 - N)/18
 C       = (N*2 - M)/18
 */

static double interp_cubic_coords(const double* src, double t)
{
    double ab = interp(src[0], src[2], t);
    double bc = interp(src[2], src[4], t);
    double cd = interp(src[4], src[6], t);
    double abc = interp(ab, bc, t);
    double bcd = interp(bc, cd, t);
    double abcd = interp(abc, bcd, t);
    return abcd;
}

void sub_divide(const Cubic& src, double t1, double t2, Cubic& dst) {
    if (t1 == 0 && t2 == 1) {
        dst[0] = src[0];
        dst[1] = src[1];
        dst[2] = src[2];
        dst[3] = src[3];
        return;
    }
    double ax = dst[0].x = interp_cubic_coords(&src[0].x, t1);
    double ay = dst[0].y = interp_cubic_coords(&src[0].y, t1);
    double ex = interp_cubic_coords(&src[0].x, (t1*2+t2)/3);
    double ey = interp_cubic_coords(&src[0].y, (t1*2+t2)/3);
    double fx = interp_cubic_coords(&src[0].x, (t1+t2*2)/3);
    double fy = interp_cubic_coords(&src[0].y, (t1+t2*2)/3);
    double dx = dst[3].x = interp_cubic_coords(&src[0].x, t2);
    double dy = dst[3].y = interp_cubic_coords(&src[0].y, t2);
    double mx = ex * 27 - ax * 8 - dx;
    double my = ey * 27 - ay * 8 - dy;
    double nx = fx * 27 - ax - dx * 8;
    double ny = fy * 27 - ay - dy * 8;
    /* bx = */ dst[1].x = (mx * 2 - nx) / 18;
    /* by = */ dst[1].y = (my * 2 - ny) / 18;
    /* cx = */ dst[2].x = (nx * 2 - mx) / 18;
    /* cy = */ dst[2].y = (ny * 2 - my) / 18;
}

void sub_divide(const Cubic& src, const _Point& a, const _Point& d,
        double t1, double t2, _Point dst[2]) {
    double ex = interp_cubic_coords(&src[0].x, (t1 * 2 + t2) / 3);
    double ey = interp_cubic_coords(&src[0].y, (t1 * 2 + t2) / 3);
    double fx = interp_cubic_coords(&src[0].x, (t1 + t2 * 2) / 3);
    double fy = interp_cubic_coords(&src[0].y, (t1 + t2 * 2) / 3);
    double mx = ex * 27 - a.x * 8 - d.x;
    double my = ey * 27 - a.y * 8 - d.y;
    double nx = fx * 27 - a.x - d.x * 8;
    double ny = fy * 27 - a.y - d.y * 8;
    /* bx = */ dst[0].x = (mx * 2 - nx) / 18;
    /* by = */ dst[0].y = (my * 2 - ny) / 18;
    /* cx = */ dst[1].x = (nx * 2 - mx) / 18;
    /* cy = */ dst[1].y = (ny * 2 - my) / 18;
}

/* classic one t subdivision */
static void interp_cubic_coords(const double* src, double* dst, double t)
{
    double ab = interp(src[0], src[2], t);
    double bc = interp(src[2], src[4], t);
    double cd = interp(src[4], src[6], t);
    double abc = interp(ab, bc, t);
    double bcd = interp(bc, cd, t);
    double abcd = interp(abc, bcd, t);

    dst[0] = src[0];
    dst[2] = ab;
    dst[4] = abc;
    dst[6] = abcd;
    dst[8] = bcd;
    dst[10] = cd;
    dst[12] = src[6];
}

void chop_at(const Cubic& src, CubicPair& dst, double t)
{
    if (t == 0.5) {
        dst.pts[0] = src[0];
        dst.pts[1].x = (src[0].x + src[1].x) / 2;
        dst.pts[1].y = (src[0].y + src[1].y) / 2;
        dst.pts[2].x = (src[0].x + 2 * src[1].x + src[2].x) / 4;
        dst.pts[2].y = (src[0].y + 2 * src[1].y + src[2].y) / 4;
        dst.pts[3].x = (src[0].x + 3 * (src[1].x + src[2].x) + src[3].x) / 8;
        dst.pts[3].y = (src[0].y + 3 * (src[1].y + src[2].y) + src[3].y) / 8;
        dst.pts[4].x = (src[1].x + 2 * src[2].x + src[3].x) / 4;
        dst.pts[4].y = (src[1].y + 2 * src[2].y + src[3].y) / 4;
        dst.pts[5].x = (src[2].x + src[3].x) / 2;
        dst.pts[5].y = (src[2].y + src[3].y) / 2;
        dst.pts[6] = src[3];
        return;
    }
    interp_cubic_coords(&src[0].x, &dst.pts[0].x, t);
    interp_cubic_coords(&src[0].y, &dst.pts[0].y, t);
}