aboutsummaryrefslogtreecommitdiffhomepage
path: root/experimental/Intersection/CubicReduceOrder.cpp
blob: fee179a5d422de8c55cf6ff91efedde38f783a9e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#include "CurveIntersection.h"
#include "Extrema.h"
#include "IntersectionUtilities.h"
#include "LineParameters.h"

static double interp_cubic_coords(const double* src, double t)
{
    double ab = interp(src[0], src[2], t);
    double bc = interp(src[2], src[4], t);
    double cd = interp(src[4], src[6], t);
    double abc = interp(ab, bc, t);
    double bcd = interp(bc, cd, t);
    return interp(abc, bcd, t);
}

static int coincident_line(const Cubic& cubic, Cubic& reduction) {
    reduction[0] = reduction[1] = cubic[0];
    return 1;
}

static int vertical_line(const Cubic& cubic, Cubic& reduction) {
    double tValues[2];
    reduction[0] = cubic[0];
    reduction[1] = cubic[3];
    int smaller = reduction[1].y > reduction[0].y;
    int larger = smaller ^ 1;
    int roots = SkFindCubicExtrema(cubic[0].y, cubic[1].y, cubic[2].y, cubic[3].y, tValues);
    for (int index = 0; index < roots; ++index) {
        double yExtrema = interp_cubic_coords(&cubic[0].y, tValues[index]);
        if (reduction[smaller].y > yExtrema) {
            reduction[smaller].y = yExtrema;
            continue;
        } 
        if (reduction[larger].y < yExtrema) {
            reduction[larger].y = yExtrema;
        }
    }
    return 2;
}

static int horizontal_line(const Cubic& cubic, Cubic& reduction) {
    double tValues[2];
    reduction[0] = cubic[0];
    reduction[1] = cubic[3];
    int smaller = reduction[1].x > reduction[0].x;
    int larger = smaller ^ 1;
    int roots = SkFindCubicExtrema(cubic[0].x, cubic[1].x, cubic[2].x, cubic[3].x, tValues);
    for (int index = 0; index < roots; ++index) {
        double xExtrema = interp_cubic_coords(&cubic[0].x, tValues[index]);
        if (reduction[smaller].x > xExtrema) {
            reduction[smaller].x = xExtrema;
            continue;
        } 
        if (reduction[larger].x < xExtrema) {
            reduction[larger].x = xExtrema;
        }
    }
    return 2;
}

// check to see if it is a quadratic or a line
static int check_quadratic(const Cubic& cubic, Cubic& reduction,
        int minX, int maxX, int minY, int maxY) {
    double dx10 = cubic[1].x - cubic[0].x;
    double dx23 = cubic[2].x - cubic[3].x;
    double midX = cubic[0].x + dx10 * 3 / 2;
    if (!approximately_equal(midX - cubic[3].x, dx23 * 3 / 2)) {
        return 0;
    }
    double dy10 = cubic[1].y - cubic[0].y;
    double dy23 = cubic[2].y - cubic[3].y;
    double midY = cubic[0].y + dy10 * 3 / 2;
    if (!approximately_equal(midY - cubic[3].y, dy23 * 3 / 2)) {
        return 0;
    }
    reduction[0] = cubic[0];
    reduction[1].x = midX;
    reduction[1].y = midY;
    reduction[2] = cubic[3];
    return 3;
}

static int check_linear(const Cubic& cubic, Cubic& reduction,
        int minX, int maxX, int minY, int maxY) {
    int startIndex = 0;
    int endIndex = 3;
    while (cubic[startIndex].approximatelyEqual(cubic[endIndex])) {
        --endIndex;
        if (endIndex == 0) {
            printf("%s shouldn't get here if all four points are about equal", __FUNCTION__);
            assert(0);
        }
    }
    LineParameters lineParameters;
    lineParameters.cubicEndPoints(cubic, startIndex, endIndex);
    double normalSquared = lineParameters.normalSquared();
    double distance[2]; // distance is not normalized
    int mask = other_two(startIndex, endIndex);
    int inner1 = startIndex ^ mask;
    int inner2 = endIndex ^ mask;
    lineParameters.controlPtDistance(cubic, inner1, inner2, distance);
    double limit = normalSquared * SquaredEpsilon;
    int index;
    for (index = 0; index < 2; ++index) {
        double distSq = distance[index];
        distSq *= distSq;
        if (distSq > limit) {
            return 0;
        }
    }
    // four are colinear: return line formed by outside
    reduction[0] = cubic[0];
    reduction[1] = cubic[3];
    int sameSide1;
    int sameSide2;
    bool useX = cubic[maxX].x - cubic[minX].x >= cubic[maxY].y - cubic[minY].y;
    if (useX) {
        sameSide1 = sign(cubic[0].x - cubic[1].x) + sign(cubic[3].x - cubic[1].x);
        sameSide2 = sign(cubic[0].x - cubic[2].x) + sign(cubic[3].x - cubic[2].x);
    } else {
        sameSide1 = sign(cubic[0].y - cubic[1].y) + sign(cubic[3].y - cubic[1].y);
        sameSide2 = sign(cubic[0].y - cubic[2].y) + sign(cubic[3].y - cubic[2].y);
    }
    if (sameSide1 == sameSide2 && (sameSide1 & 3) != 2) {
        return 2;
    }
    double tValues[2];
    int roots;
    if (useX) {
        roots = SkFindCubicExtrema(cubic[0].x, cubic[1].x, cubic[2].x, cubic[3].x, tValues);
    } else {
        roots = SkFindCubicExtrema(cubic[0].y, cubic[1].y, cubic[2].y, cubic[3].y, tValues);
    }
    for (index = 0; index < roots; ++index) {
        _Point extrema;
        extrema.x = interp_cubic_coords(&cubic[0].x, tValues[index]);
        extrema.y = interp_cubic_coords(&cubic[0].y, tValues[index]);
        // sameSide > 0 means mid is smaller than either [0] or [3], so replace smaller
        int replace;
        if (useX) {
            if (extrema.x < cubic[0].x ^ extrema.x < cubic[3].x) {
                continue;
            }
            replace = (extrema.x < cubic[0].x | extrema.x < cubic[3].x)
                    ^ cubic[0].x < cubic[3].x;
        } else {
            if (extrema.y < cubic[0].y ^ extrema.y < cubic[3].y) {
                continue;
            }
            replace = (extrema.y < cubic[0].y | extrema.y < cubic[3].y)
                    ^ cubic[0].y < cubic[3].y;
        }
        reduction[replace] = extrema;
    }
    return 2;
}

/* food for thought:
http://objectmix.com/graphics/132906-fast-precision-driven-cubic-quadratic-piecewise-degree-reduction-algos-2-a.html

Given points c1, c2, c3 and c4 of a cubic Bezier, the points of the
corresponding quadratic Bezier are (given in convex combinations of
points):

q1 = (11/13)c1 + (3/13)c2 -(3/13)c3 + (2/13)c4
q2 = -c1 + (3/2)c2 + (3/2)c3 - c4
q3 = (2/13)c1 - (3/13)c2 + (3/13)c3 + (11/13)c4

Of course, this curve does not interpolate the end-points, but it would
be interesting to see the behaviour of such a curve in an applet.

--
Kalle Rutanen
http://kaba.hilvi.org

*/

// reduce to a quadratic or smaller
// look for identical points
// look for all four points in a line 
    // note that three points in a line doesn't simplify a cubic
// look for approximation with single quadratic
    // save approximation with multiple quadratics for later
int reduceOrder(const Cubic& cubic, Cubic& reduction, ReduceOrder_Flags allowQuadratics) {
    int index, minX, maxX, minY, maxY;
    int minXSet, minYSet;
    minX = maxX = minY = maxY = 0;
    minXSet = minYSet = 0;
    for (index = 1; index < 4; ++index) {
        if (cubic[minX].x > cubic[index].x) {
            minX = index;
        }
        if (cubic[minY].y > cubic[index].y) {
            minY = index;
        }
        if (cubic[maxX].x < cubic[index].x) {
            maxX = index;
        }
        if (cubic[maxY].y < cubic[index].y) {
            maxY = index;
        }
    }
    for (index = 0; index < 4; ++index) {
        if (approximately_equal(cubic[index].x, cubic[minX].x)) {
            minXSet |= 1 << index;
        }
        if (approximately_equal(cubic[index].y, cubic[minY].y)) {
            minYSet |= 1 << index;
        }
    }
    if (minXSet == 0xF) { // test for vertical line
        if (minYSet == 0xF) { // return 1 if all four are coincident
            return coincident_line(cubic, reduction);
        }
        return vertical_line(cubic, reduction);
    }
    if (minYSet == 0xF) { // test for horizontal line
        return horizontal_line(cubic, reduction);
    }
    int result = check_linear(cubic, reduction, minX, maxX, minY, maxY);
    if (result) {
        return result;
    }
    if (allowQuadratics && (result = check_quadratic(cubic, reduction, minX, maxX, minY, maxY))) {
        return result;
    }
    memcpy(reduction, cubic, sizeof(Cubic));
    return 4;
}