aboutsummaryrefslogtreecommitdiffhomepage
path: root/experimental/Intersection/CubicIntersection.cpp
blob: d92c8bfe14c36ed2c63abb41cc01fd308beebd40 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "CubicUtilities.h"
#include "CurveIntersection.h"
#include "Intersections.h"
#include "IntersectionUtilities.h"
#include "LineIntersection.h"
#include "LineUtilities.h"

#if ONE_OFF_DEBUG
static const double tLimits[2][2] = {{0.516980827, 0.516981209}, {0.647714088, 0.64771447}};
#endif

#define DEBUG_QUAD_PART 0
#define SWAP_TOP_DEBUG 0

static int quadPart(const Cubic& cubic, double tStart, double tEnd, Quadratic& simple) {
    Cubic part;
    sub_divide(cubic, tStart, tEnd, part);
    Quadratic quad;
    demote_cubic_to_quad(part, quad);
    // FIXME: should reduceOrder be looser in this use case if quartic is going to blow up on an
    // extremely shallow quadratic?
    int order = reduceOrder(quad, simple, kReduceOrder_TreatAsFill);
#if DEBUG_QUAD_PART
    SkDebugf("%s cubic=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g) t=(%1.17g,%1.17g)\n",
            __FUNCTION__, cubic[0].x, cubic[0].y, cubic[1].x, cubic[1].y, cubic[2].x, cubic[2].y,
            cubic[3].x, cubic[3].y, tStart, tEnd);
    SkDebugf("%s part=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g)"
            " quad=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g)\n", __FUNCTION__, part[0].x, part[0].y,
            part[1].x, part[1].y, part[2].x, part[2].y, part[3].x, part[3].y, quad[0].x, quad[0].y,
            quad[1].x, quad[1].y, quad[2].x, quad[2].y);
    SkDebugf("%s simple=(%1.17g,%1.17g", __FUNCTION__, simple[0].x, simple[0].y);
    if (order > 1) {
        SkDebugf(" %1.17g,%1.17g", simple[1].x, simple[1].y);
    }
    if (order > 2) {
        SkDebugf(" %1.17g,%1.17g", simple[2].x, simple[2].y);
    }
    SkDebugf(")\n");
    SkASSERT(order < 4 && order > 0);
#endif
    return order;
}

static void intersectWithOrder(const Quadratic& simple1, int order1, const Quadratic& simple2,
        int order2, Intersections& i) {
    if (order1 == 3 && order2 == 3) {
        intersect2(simple1, simple2, i);
    } else if (order1 <= 2 && order2 <= 2) {
        intersect((const _Line&) simple1, (const _Line&) simple2, i);
    } else if (order1 == 3 && order2 <= 2) {
        intersect(simple1, (const _Line&) simple2, i);
    } else {
        SkASSERT(order1 <= 2 && order2 == 3);
        intersect(simple2, (const _Line&) simple1, i);
        for (int s = 0; s < i.fUsed; ++s) {
            SkTSwap(i.fT[0][s], i.fT[1][s]);
        }
    }
}

static double distanceFromEnd(double t) {
    return t > 0.5 ? 1 - t : t;
}

// OPTIMIZATION: this used to try to guess the value for delta, and that may still be worthwhile
static void bumpForRetry(double t1, double t2, double& s1, double& e1, double& s2, double& e2) {
    double dt1 = distanceFromEnd(t1);
    double dt2 = distanceFromEnd(t2);
    double delta = 1.0 / precisionUnit;
    if (dt1 < dt2) {
        if (t1 == dt1) {
            s1 = SkTMax(s1 - delta, 0.);
        } else {
            e1 = SkTMin(e1 + delta, 1.);
        }
    } else {
        if (t2 == dt2) {
            s2 = SkTMax(s2 - delta, 0.);
        } else {
            e2 = SkTMin(e2 + delta, 1.);
        }
    }
}

static bool doIntersect(const Cubic& cubic1, double t1s, double t1m, double t1e,
        const Cubic& cubic2, double t2s, double t2m, double t2e, Intersections& i) {
    bool result = false;
    i.upDepth();
    // divide the quadratics at the new t value and try again
    double p1s = t1s;
    double p1e = t1m;
    for (int p1 = 0; p1 < 2; ++p1) {
        Quadratic s1a;
        int o1a = quadPart(cubic1, p1s, p1e, s1a);
        double p2s = t2s;
        double p2e = t2m;
        for (int p2 = 0; p2 < 2; ++p2) {
            Quadratic s2a;
            int o2a = quadPart(cubic2, p2s, p2e, s2a);
            Intersections locals;
        #if ONE_OFF_DEBUG
            if (tLimits[0][0] >= p1s && tLimits[0][1] <= p1e
                            && tLimits[1][0] >= p2s && tLimits[1][1] <= p2e) {
                SkDebugf("t1=(%1.9g,%1.9g) o1=%d t2=(%1.9g,%1.9g) o2=%d\n",
                    p1s, p1e, o1a, p2s, p2e, o2a);
                if (o1a == 2) {
                    SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
                            s1a[0].x, s1a[0].y, s1a[1].x, s1a[1].y);
                } else {
                    SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
                            s1a[0].x, s1a[0].y, s1a[1].x, s1a[1].y, s1a[2].x, s1a[2].y);
                }
                if (o2a == 2) {
                    SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
                            s2a[0].x, s2a[0].y, s2a[1].x, s2a[1].y);
                } else {
                    SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
                            s2a[0].x, s2a[0].y, s2a[1].x, s2a[1].y, s2a[2].x, s2a[2].y);
                }
                Intersections xlocals;
                intersectWithOrder(s1a, o1a, s2a, o2a, xlocals);
                SkDebugf("xlocals.fUsed=%d depth=%d\n", xlocals.used(), i.depth());
            }
        #endif
            intersectWithOrder(s1a, o1a, s2a, o2a, locals);
            for (int tIdx = 0; tIdx < locals.used(); ++tIdx) {
                double to1 = p1s + (p1e - p1s) * locals.fT[0][tIdx];
                double to2 = p2s + (p2e - p2s) * locals.fT[1][tIdx];
    // if the computed t is not sufficiently precise, iterate
                _Point p1, p2;
                xy_at_t(cubic1, to1, p1.x, p1.y);
                xy_at_t(cubic2, to2, p2.x, p2.y);
        #if ONE_OFF_DEBUG
                SkDebugf("to1=%1.9g p1=(%1.9g,%1.9g) to2=%1.9g p2=(%1.9g,%1.9g) d=%1.9g\n",
                    to1, p1.x, p1.y, to2, p2.x, p2.y, p1.distance(p2));

        #endif
                if (p1.approximatelyEqualHalf(p2)) {
                    i.insertSwap(to1, to2, p1);
                    result = true;
                } else {
                    result = doIntersect(cubic1, p1s, to1, p1e, cubic2, p2s, to2, p2e, i);
                    if (!result && p1.approximatelyEqual(p2)) {
                        i.insertSwap(to1, to2, p1);
        #if SWAP_TOP_DEBUG
                        SkDebugf("!!!\n");
        #endif
                        result = true;
                    } else
                    // if both cubics curve in the same direction, the quadratic intersection
                    // may mark a range that does not contain the cubic intersection. If no
                    // intersection is found, look again including the t distance of the
                    // of the quadratic intersection nearest a quadratic end (which in turn is
                    // nearest the actual cubic)
                    if (!result) {
                        double b1s = p1s;
                        double b1e = p1e;
                        double b2s = p2s;
                        double b2e = p2e;
                        bumpForRetry(locals.fT[0][tIdx], locals.fT[1][tIdx], b1s, b1e, b2s, b2e);
                        result = doIntersect(cubic1, b1s, to1, b1e, cubic2, b2s, to2, b2e, i);
                    }
                }
            }
            p2s = p2e;
            p2e = t2e;
        }
        p1s = p1e;
        p1e = t1e;
    }
    i.downDepth();
    return result;
}

// this flavor approximates the cubics with quads to find the intersecting ts
// OPTIMIZE: if this strategy proves successful, the quad approximations, or the ts used
// to create the approximations, could be stored in the cubic segment
// FIXME: this strategy needs to intersect the convex hull on either end with the opposite to
// account for inset quadratics that cause the endpoint intersection to avoid detection
// the segments can be very short -- the length of the maximum quadratic error (precision)
static bool intersect2(const Cubic& cubic1, double t1s, double t1e, const Cubic& cubic2,
        double t2s, double t2e, double precisionScale, Intersections& i) {
    Cubic c1, c2;
    sub_divide(cubic1, t1s, t1e, c1);
    sub_divide(cubic2, t2s, t2e, c2);
    SkTDArray<double> ts1;
    cubic_to_quadratics(c1, calcPrecision(c1) * precisionScale, ts1);
    SkTDArray<double> ts2;
    cubic_to_quadratics(c2, calcPrecision(c2) * precisionScale, ts2);
    double t1Start = t1s;
    int ts1Count = ts1.count();
    for (int i1 = 0; i1 <= ts1Count; ++i1) {
        const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1;
        const double t1 = t1s + (t1e - t1s) * tEnd1;
        Quadratic s1;
        int o1 = quadPart(cubic1, t1Start, t1, s1);
        double t2Start = t2s;
        int ts2Count = ts2.count();
        for (int i2 = 0; i2 <= ts2Count; ++i2) {
            const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1;
            const double t2 = t2s + (t2e - t2s) * tEnd2;
            Quadratic s2;
            int o2 = quadPart(cubic2, t2Start, t2, s2);
        #if ONE_OFF_DEBUG
                if (tLimits[0][0] >= t1Start && tLimits[0][1] <= t1
                        && tLimits[1][0] >= t2Start && tLimits[1][1] <= t2) {
                Cubic cSub1, cSub2;
                sub_divide(cubic1, t1Start, tEnd1, cSub1);
                sub_divide(cubic2, t2Start, tEnd2, cSub2);
                SkDebugf("t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)\n",
                        t1Start, t1, t2Start, t2);
                Intersections xlocals;
                intersectWithOrder(s1, o1, s2, o2, xlocals);
                SkDebugf("xlocals.fUsed=%d\n", xlocals.used());
            }
        #endif
            Intersections locals;
            intersectWithOrder(s1, o1, s2, o2, locals);

            for (int tIdx = 0; tIdx < locals.used(); ++tIdx) {
                double to1 = t1Start + (t1 - t1Start) * locals.fT[0][tIdx];
                double to2 = t2Start + (t2 - t2Start) * locals.fT[1][tIdx];
    // if the computed t is not sufficiently precise, iterate
                _Point p1, p2;
                xy_at_t(cubic1, to1, p1.x, p1.y);
                xy_at_t(cubic2, to2, p2.x, p2.y);
                if (p1.approximatelyEqual(p2)) {
                    i.insert(to1, to2, p1);
                } else {
                #if ONE_OFF_DEBUG
                    if (tLimits[0][0] >= t1Start && tLimits[0][1] <= t1
                            && tLimits[1][0] >= t2Start && tLimits[1][1] <= t2) {
                        SkDebugf("t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)\n",
                                t1Start, t1, t2Start, t2);
                    }
                #endif
                    bool found = doIntersect(cubic1, t1Start, to1, t1, cubic2, t2Start, to2, t2, i);
                    if (!found) {
                        double b1s = t1Start;
                        double b1e = t1;
                        double b2s = t2Start;
                        double b2e = t2;
                        bumpForRetry(locals.fT[0][tIdx], locals.fT[1][tIdx], b1s, b1e, b2s, b2e);
                        doIntersect(cubic1, b1s, to1, b1e, cubic2, b2s, to2, b2e, i);
                    }
                }
            }
            int coincidentCount = locals.coincidentUsed();
            if (coincidentCount) {
                // FIXME: one day, we'll probably need to allow coincident + non-coincident pts
                SkASSERT(coincidentCount == locals.used());
                SkASSERT(coincidentCount == 2);
                double coTs[2][2];
                for (int tIdx = 0; tIdx < coincidentCount; ++tIdx) {
                    if (locals.fIsCoincident[0] & (1 << tIdx)) {
                        coTs[0][tIdx] = t1Start + (t1 - t1Start) * locals.fT[0][tIdx];
                    }
                    if (locals.fIsCoincident[1] & (1 << tIdx)) {
                        coTs[1][tIdx] = t2Start + (t2 - t2Start) * locals.fT[1][tIdx];
                    }
                }
                i.insertCoincidentPair(coTs[0][0], coTs[0][1], coTs[1][0], coTs[1][1],
                        locals.fPt[0], locals.fPt[1]);
            }
            t2Start = t2;
        }
        t1Start = t1;
    }
    return i.intersected();
}

static bool intersectEnd(const Cubic& cubic1, bool start, const Cubic& cubic2, const _Rect& bounds2,
        Intersections& i) {
    _Line line1;
    line1[1] = cubic1[start ? 0 : 3];
    if (line1[1].approximatelyEqual(cubic2[0]) || line1[1].approximatelyEqual(cubic2[3])) {
        return false;
    }
    line1[0] = line1[1];
    _Point dxy1 = line1[0] - cubic1[start ? 1 : 2];
    if (dxy1.approximatelyZero()) {
        dxy1 = line1[0] - cubic1[start ? 2 : 1];
    }
    dxy1 /= precisionUnit;
    line1[1] += dxy1;
    _Rect line1Bounds;
    line1Bounds.setBounds(line1);
    if (!bounds2.intersects(line1Bounds)) {
        return false;
    }
    _Line line2;
    line2[0] = line2[1] = line1[0];
    _Point dxy2 = line2[0] - cubic1[start ? 3 : 0];
    SkASSERT(!dxy2.approximatelyZero());
    dxy2 /= precisionUnit;
    line2[1] += dxy2;
#if 0 // this is so close to the first bounds test it isn't worth the short circuit test
    _Rect line2Bounds;
    line2Bounds.setBounds(line2);
    if (!bounds2.intersects(line2Bounds)) {
        return false;
    }
#endif
    Intersections local1;
    if (!intersect(cubic2, line1, local1)) {
        return false;
    }
    Intersections local2;
    if (!intersect(cubic2, line2, local2)) {
        return false;
    }
    double tMin, tMax;
    tMin = tMax = local1.fT[0][0];
    for (int index = 1; index < local1.fUsed; ++index) {
        tMin = SkTMin(tMin, local1.fT[0][index]);
        tMax = SkTMax(tMax, local1.fT[0][index]);
    }
    for (int index = 1; index < local2.fUsed; ++index) {
        tMin = SkTMin(tMin, local2.fT[0][index]);
        tMax = SkTMax(tMax, local2.fT[0][index]);
    }
    return intersect2(cubic1, start ? 0 : 1, start ? 1.0 / precisionUnit : 1 - 1.0 / precisionUnit,
            cubic2, tMin, tMax, 1, i);
}

// this flavor centers potential intersections recursively. In contrast, '2' may inadvertently
// chase intersections near quadratic ends, requiring odd hacks to find them.
static bool intersect3(const Cubic& cubic1, double t1s, double t1e, const Cubic& cubic2,
        double t2s, double t2e, double precisionScale, Intersections& i) {
    i.upDepth();
    bool result = false;
    Cubic c1, c2;
    sub_divide(cubic1, t1s, t1e, c1);
    sub_divide(cubic2, t2s, t2e, c2);
    SkTDArray<double> ts1;
    cubic_to_quadratics(c1, calcPrecision(c1) * precisionScale, ts1);
    SkTDArray<double> ts2;
    cubic_to_quadratics(c2, calcPrecision(c2) * precisionScale, ts2);
    double t1Start = t1s;
    int ts1Count = ts1.count();
    for (int i1 = 0; i1 <= ts1Count; ++i1) {
        const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1;
        const double t1 = t1s + (t1e - t1s) * tEnd1;
        Quadratic s1;
        int o1 = quadPart(cubic1, t1Start, t1, s1);
        double t2Start = t2s;
        int ts2Count = ts2.count();
        for (int i2 = 0; i2 <= ts2Count; ++i2) {
            const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1;
            const double t2 = t2s + (t2e - t2s) * tEnd2;
            Quadratic s2;
            int o2 = quadPart(cubic2, t2Start, t2, s2);
            Intersections locals;
            intersectWithOrder(s1, o1, s2, o2, locals);
            double coStart[2] = { -1 };
            _Point coPoint;
            for (int tIdx = 0; tIdx < locals.used(); ++tIdx) {
                double to1 = t1Start + (t1 - t1Start) * locals.fT[0][tIdx];
                double to2 = t2Start + (t2 - t2Start) * locals.fT[1][tIdx];
    // if the computed t is not sufficiently precise, iterate
                _Point p1, p2;
                xy_at_t(cubic1, to1, p1.x, p1.y);
                xy_at_t(cubic2, to2, p2.x, p2.y);
                if (p1.approximatelyEqual(p2)) {
                    if (locals.fIsCoincident[0] & 1 << tIdx) {
                        if (coStart[0] < 0) {
                            coStart[0] = to1;
                            coStart[1] = to2;
                            coPoint = p1;
                        } else {
                            i.insertCoincidentPair(coStart[0], to1, coStart[1], to2, coPoint, p1);
                            coStart[0] = -1;
                        }
                    } else {
                        i.insert(to1, to2, p1);
                    }
                    result = true;
                } else {
                    double offset = precisionScale / 16; // FIME: const is arbitrary -- test & refine
                    double c1Min = SkTMax(0., to1 - offset);
                    double c1Max = SkTMin(1., to1 + offset);
                    double c2Min = SkTMax(0., to2 - offset);
                    double c2Max = SkTMin(1., to2 + offset);
                    bool found = intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
                    if (false && !found) {
                        // either offset was overagressive or cubics didn't really intersect
                        // if they didn't intersect, then quad tangents ought to be nearly parallel
                        offset = precisionScale / 2; // try much less agressive offset
                        c1Min = SkTMax(0., to1 - offset);
                        c1Max = SkTMin(1., to1 + offset);
                        c2Min = SkTMax(0., to2 - offset);
                        c2Max = SkTMin(1., to2 + offset);
                        found = intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
                        if (found) {
                            SkDebugf("%s *** over-aggressive? offset=%1.9g depth=%d\n", __FUNCTION__,
                                    offset, i.depth());
                        }
                        // try parallel measure
                        _Point d1 = dxdy_at_t(cubic1, to1);
                        _Point d2 = dxdy_at_t(cubic2, to2);
                        double shallow = d1.cross(d2);
                    #if 1 || ONE_OFF_DEBUG // not sure this is worth debugging
                        if (!approximately_zero(shallow)) {
                            SkDebugf("%s *** near-miss? shallow=%1.9g depth=%d\n", __FUNCTION__,
                                    offset, i.depth());
                        }
                    #endif
                        if (i.depth() == 1 && shallow < 0.6) {
                            SkDebugf("%s !!! near-miss? shallow=%1.9g depth=%d\n", __FUNCTION__,
                                    offset, i.depth());
                        }
                    }
                }
            }
            SkASSERT(coStart[0] == -1);
            t2Start = t2;
        }
        t1Start = t1;
    }
    i.downDepth();
    return result;
}

// FIXME: add intersection of convex hull on cubics' ends with the opposite cubic. The hull line
// segments can be constructed to be only as long as the calculated precision suggests. If the hull
// line segments intersect the cubic, then use the intersections to construct a subdivision for
// quadratic curve fitting.
bool intersect2(const Cubic& c1, const Cubic& c2, Intersections& i) {
    bool result = intersect2(c1, 0, 1, c2, 0, 1, 1, i);
    // FIXME: pass in cached bounds from caller
    _Rect c1Bounds, c2Bounds;
    c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ?
    c2Bounds.setBounds(c2);
    result |= intersectEnd(c1, false, c2, c2Bounds, i);
    result |= intersectEnd(c1, true, c2, c2Bounds, i);
    i.swap();
    result |= intersectEnd(c2, false, c1, c1Bounds, i);
    result |= intersectEnd(c2, true, c1, c1Bounds, i);
    i.swap();
    return result;
}

const double CLOSE_ENOUGH = 0.001;

static bool closeStart(const Cubic& cubic, int cubicIndex, Intersections& i, _Point& pt) {
    if (i.fT[cubicIndex][0] != 0 || i.fT[cubicIndex][1] > CLOSE_ENOUGH) {
        return false;
    }
    pt = xy_at_t(cubic, (i.fT[cubicIndex][0] + i.fT[cubicIndex][1]) / 2);
    return true;
}

static bool closeEnd(const Cubic& cubic, int cubicIndex, Intersections& i, _Point& pt) {
    int last = i.used() - 1;
    if (i.fT[cubicIndex][last] != 1 || i.fT[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) {
        return false;
    }
    pt = xy_at_t(cubic, (i.fT[cubicIndex][last] + i.fT[cubicIndex][last - 1]) / 2);
    return true;
}

bool intersect3(const Cubic& c1, const Cubic& c2, Intersections& i) {
    bool result = intersect3(c1, 0, 1, c2, 0, 1, 1, i);
    // FIXME: pass in cached bounds from caller
    _Rect c1Bounds, c2Bounds;
    c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ?
    c2Bounds.setBounds(c2);
    result |= intersectEnd(c1, false, c2, c2Bounds, i);
    result |= intersectEnd(c1, true, c2, c2Bounds, i);
    i.swap();
    result |= intersectEnd(c2, false, c1, c1Bounds, i);
    result |= intersectEnd(c2, true, c1, c1Bounds, i);
    i.swap();
    // If an end point and a second point very close to the end is returned, the second
    // point may have been detected because the approximate quads
    // intersected at the end and close to it. Verify that the second point is valid.
    if (i.used() <= 1 || i.coincidentUsed()) {
        return result;
    }
    _Point pt[2];
    if (closeStart(c1, 0, i, pt[0]) && closeStart(c2, 1, i, pt[1])
            && pt[0].approximatelyEqual(pt[1])) {
        i.removeOne(1);
    }
    if (closeEnd(c1, 0, i, pt[0]) && closeEnd(c2, 1, i, pt[1])
            && pt[0].approximatelyEqual(pt[1])) {
        i.removeOne(i.used() - 2);
    }
    return result;
}

int intersect(const Cubic& cubic, const Quadratic& quad, Intersections& i) {
    SkTDArray<double> ts;
    double precision = calcPrecision(cubic);
    cubic_to_quadratics(cubic, precision, ts);
    double tStart = 0;
    Cubic part;
    int tsCount = ts.count();
    for (int idx = 0; idx <= tsCount; ++idx) {
        double t = idx < tsCount ? ts[idx] : 1;
        Quadratic q1;
        sub_divide(cubic, tStart, t, part);
        demote_cubic_to_quad(part, q1);
        Intersections locals;
        intersect2(q1, quad, locals);
        for (int tIdx = 0; tIdx < locals.used(); ++tIdx) {
            double globalT = tStart + (t - tStart) * locals.fT[0][tIdx];
            i.insert(globalT, locals.fT[1][tIdx], locals.fPt[tIdx]);
        }
        tStart = t;
    }
    return i.used();
}

bool intersect(const Cubic& cubic, Intersections& i) {
    SkTDArray<double> ts;
    double precision = calcPrecision(cubic);
    cubic_to_quadratics(cubic, precision, ts);
    int tsCount = ts.count();
    if (tsCount == 1) {
        return false;
    }
    double t1Start = 0;
    Cubic part;
    for (int idx = 0; idx < tsCount; ++idx) {
        double t1 = ts[idx];
        Quadratic q1;
        sub_divide(cubic, t1Start, t1, part);
        demote_cubic_to_quad(part, q1);
        double t2Start = t1;
        for (int i2 = idx + 1; i2 <= tsCount; ++i2) {
            const double t2 = i2 < tsCount ? ts[i2] : 1;
            Quadratic q2;
            sub_divide(cubic, t2Start, t2, part);
            demote_cubic_to_quad(part, q2);
            Intersections locals;
            intersect2(q1, q2, locals);
            for (int tIdx = 0; tIdx < locals.used(); ++tIdx) {
            // discard intersections at cusp? (maximum curvature)
                double t1sect = locals.fT[0][tIdx];
                double t2sect = locals.fT[1][tIdx];
                if (idx + 1 == i2 && t1sect == 1 && t2sect == 0) {
                    continue;
                }
                double to1 = t1Start + (t1 - t1Start) * t1sect;
                double to2 = t2Start + (t2 - t2Start) * t2sect;
                i.insert(to1, to2, locals.fPt[tIdx]);
            }
            t2Start = t2;
        }
        t1Start = t1;
    }
    return i.intersected();
}