aboutsummaryrefslogtreecommitdiffhomepage
path: root/experimental/Intersection/CubicIntersection.cpp
blob: 4ae0d84e5faef28eaf1808b1aa33d58b1bddc29f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "CubicUtilities.h"
#include "CurveIntersection.h"
#include "Intersections.h"
#include "IntersectionUtilities.h"
#include "LineIntersection.h"

static const double tClipLimit = 0.8; // http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf see Multiple intersections

class CubicIntersections : public Intersections {
public:

CubicIntersections(const Cubic& c1, const Cubic& c2, Intersections& i)
    : cubic1(c1)
    , cubic2(c2)
    , intersections(i)
    , depth(0)
    , splits(0) {
}

bool intersect() {
    double minT1, minT2, maxT1, maxT2;
    if (!bezier_clip(cubic2, cubic1, minT1, maxT1)) {
        return false;
    }
    if (!bezier_clip(cubic1, cubic2, minT2, maxT2)) {
        return false;
    }
    int split;
    if (maxT1 - minT1 < maxT2 - minT2) {
        intersections.swap();
        minT2 = 0;
        maxT2 = 1;
        split = maxT1 - minT1 > tClipLimit;
    } else {
        minT1 = 0;
        maxT1 = 1;
        split = (maxT2 - minT2 > tClipLimit) << 1;
    }
    return chop(minT1, maxT1, minT2, maxT2, split);
}

protected:

bool intersect(double minT1, double maxT1, double minT2, double maxT2) {
    Cubic smaller, larger;
    // FIXME: carry last subdivide and reduceOrder result with cubic
    sub_divide(cubic1, minT1, maxT1, intersections.swapped() ? larger : smaller);
    sub_divide(cubic2, minT2, maxT2, intersections.swapped() ? smaller : larger);
    Cubic smallResult;
    if (reduceOrder(smaller, smallResult,
            kReduceOrder_NoQuadraticsAllowed) <= 2) {
        Cubic largeResult;
        if (reduceOrder(larger, largeResult,
                kReduceOrder_NoQuadraticsAllowed) <= 2) {
            const _Line& smallLine = (const _Line&) smallResult;
            const _Line& largeLine = (const _Line&) largeResult;
            double smallT[2];
            double largeT[2];
            // FIXME: this doesn't detect or deal with coincident lines
            if (!::intersect(smallLine, largeLine, smallT, largeT)) {
                return false;
            }
            if (intersections.swapped()) {
                smallT[0] = interp(minT2, maxT2, smallT[0]);
                largeT[0] = interp(minT1, maxT1, largeT[0]);
            } else {
                smallT[0] = interp(minT1, maxT1, smallT[0]);
                largeT[0] = interp(minT2, maxT2, largeT[0]);
            }
            intersections.add(smallT[0], largeT[0]);
            return true;
        }
    }
    double minT, maxT;
    if (!bezier_clip(smaller, larger, minT, maxT)) {
        if (minT == maxT) {
            if (intersections.swapped()) {
                minT1 = (minT1 + maxT1) / 2;
                minT2 = interp(minT2, maxT2, minT);
            } else {
                minT1 = interp(minT1, maxT1, minT);
                minT2 = (minT2 + maxT2) / 2;
            }
            intersections.add(minT1, minT2);
            return true;
        }
        return false;
    }

    int split;
    if (intersections.swapped()) {
        double newMinT1 = interp(minT1, maxT1, minT);
        double newMaxT1 = interp(minT1, maxT1, maxT);
        split = (newMaxT1 - newMinT1 > (maxT1 - minT1) * tClipLimit) << 1;
#define VERBOSE 0
#if VERBOSE
        printf("%s d=%d s=%d new1=(%g,%g) old1=(%g,%g) split=%d\n",
                __FUNCTION__, depth, splits, newMinT1, newMaxT1, minT1, maxT1,
                split);
#endif
        minT1 = newMinT1;
        maxT1 = newMaxT1;
    } else {
        double newMinT2 = interp(minT2, maxT2, minT);
        double newMaxT2 = interp(minT2, maxT2, maxT);
        split = newMaxT2 - newMinT2 > (maxT2 - minT2) * tClipLimit;
#if VERBOSE
        printf("%s d=%d s=%d new2=(%g,%g) old2=(%g,%g) split=%d\n",
                __FUNCTION__, depth, splits, newMinT2, newMaxT2, minT2, maxT2,
                split);
#endif
        minT2 = newMinT2;
        maxT2 = newMaxT2;
    }
    return chop(minT1, maxT1, minT2, maxT2, split);
}

bool chop(double minT1, double maxT1, double minT2, double maxT2, int split) {
    ++depth;
    intersections.swap();
    if (split) {
        ++splits;
        if (split & 2) {
            double middle1 = (maxT1 + minT1) / 2;
            intersect(minT1, middle1, minT2, maxT2);
            intersect(middle1, maxT1, minT2, maxT2);
        } else {
            double middle2 = (maxT2 + minT2) / 2;
            intersect(minT1, maxT1, minT2, middle2);
            intersect(minT1, maxT1, middle2, maxT2);
        }
        --splits;
        intersections.swap();
        --depth;
        return intersections.intersected();
    }
    bool result = intersect(minT1, maxT1, minT2, maxT2);
    intersections.swap();
    --depth;
    return result;
}

private:

const Cubic& cubic1;
const Cubic& cubic2;
Intersections& intersections;
int depth;
int splits;
};

bool intersect(const Cubic& c1, const Cubic& c2, Intersections& i) {
    CubicIntersections c(c1, c2, i);
    return c.intersect();
}

#include "CubicUtilities.h"

// FIXME: ? if needed, compute the error term from the tangent length
start here;
// need better delta computation -- assert fails
static double computeDelta(const Cubic& cubic, double t, double scale) {
    double attempt = scale / precisionUnit * 2;
#if SK_DEBUG
    double precision = calcPrecision(cubic, t, scale);
    _Point dxy;
    dxdy_at_t(cubic, t, dxy);
    _Point p1, p2;
    xy_at_t(cubic, std::max(t - attempt, 0.), p1.x, p1.y);
    xy_at_t(cubic, std::min(t + attempt, 1.), p2.x, p2.y);
    double dx = p1.x - p2.x;
    double dy = p1.y - p2.y;
    double distSq = dx * dx + dy * dy;
    double dist = sqrt(distSq);
    assert(dist > precision);
#endif
    return attempt;
}

// this flavor approximates the cubics with quads to find the intersecting ts
// OPTIMIZE: if this strategy proves successful, the quad approximations, or the ts used
// to create the approximations, could be stored in the cubic segment
// FIXME: this strategy needs to intersect the convex hull on either end with the opposite to
// account for inset quadratics that cause the endpoint intersection to avoid detection
// the segments can be very short -- the length of the maximum quadratic error (precision)
// FIXME: this needs to recurse on itself, taking a range of T values and computing the new
// t range ala is linear inner. The range can be figured by taking the dx/dy and determining
// the fraction that matches the precision. That fraction is the change in t for the smaller cubic.
static bool intersect2(const Cubic& cubic1, double t1s, double t1e, const Cubic& cubic2,
        double t2s, double t2e, Intersections& i) {
    Cubic c1, c2;
    sub_divide(cubic1, t1s, t1e, c1);
    sub_divide(cubic2, t2s, t2e, c2);
    SkTDArray<double> ts1;
    cubic_to_quadratics(c1, calcPrecision(c1), ts1);
    SkTDArray<double> ts2;
    cubic_to_quadratics(c2, calcPrecision(c2), ts2);
    double t1Start = t1s;
    int ts1Count = ts1.count();
    for (int i1 = 0; i1 <= ts1Count; ++i1) {
        const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1;
        const double t1 = t1s + (t1e - t1s) * tEnd1;
        Cubic part1;
        sub_divide(cubic1, t1Start, t1, part1);
        Quadratic q1;
        demote_cubic_to_quad(part1, q1);
  //      start here;
        // should reduceOrder be looser in this use case if quartic is going to blow up on an
        // extremely shallow quadratic?
        Quadratic s1;
        int o1 = reduceOrder(q1, s1);
        double t2Start = t2s;
        int ts2Count = ts2.count();
        for (int i2 = 0; i2 <= ts2Count; ++i2) {
            const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1;
            const double t2 = t2s + (t2e - t2s) * tEnd2;
            Cubic part2;
            sub_divide(cubic2, t2Start, t2, part2);
            Quadratic q2;
            demote_cubic_to_quad(part2, q2);
            Quadratic s2;
            double o2 = reduceOrder(q2, s2);
            Intersections locals;
            if (o1 == 3 && o2 == 3) {
                intersect2(q1, q2, locals);
            } else if (o1 <= 2 && o2 <= 2) {
                locals.fUsed = intersect((const _Line&) s1, (const _Line&) s2, locals.fT[0],
                        locals.fT[1]);
            } else if (o1 == 3 && o2 <= 2) {
                intersect(q1, (const _Line&) s2, locals);
            } else {
                SkASSERT(o1 <= 2 && o2 == 3);
                intersect(q2, (const _Line&) s1, locals);
                for (int s = 0; s < locals.fUsed; ++s) {
                    SkTSwap(locals.fT[0][s], locals.fT[1][s]);
                }
            }
            for (int tIdx = 0; tIdx < locals.used(); ++tIdx) {
                double to1 = t1Start + (t1 - t1Start) * locals.fT[0][tIdx];
                double to2 = t2Start + (t2 - t2Start) * locals.fT[1][tIdx];
    // if the computed t is not sufficiently precise, iterate
                _Point p1, p2;
                xy_at_t(cubic1, to1, p1.x, p1.y);
                xy_at_t(cubic2, to2, p2.x, p2.y);
                if (p1.approximatelyEqual(p2)) {
                    i.insert(i.swapped() ? to2 : to1, i.swapped() ? to1 : to2);
                } else {
                    double dt1 = computeDelta(cubic1, to1, t1e - t1s);
                    double dt2 = computeDelta(cubic2, to2, t2e - t2s);
                    i.swap();
                    intersect2(cubic2, std::max(to2 - dt2, 0.), std::min(to2 + dt2, 1.),
                            cubic1, std::max(to1 - dt1, 0.), std::min(to1 + dt1, 1.), i);
                    i.swap();
                }
            }
            t2Start = t2;
        }
        t1Start = t1;
    }
    return i.intersected();
}

static bool intersectEnd(const Cubic& cubic1, bool start, const Cubic& cubic2, const _Rect& bounds2,
        Intersections& i) {
    _Line line1;
    line1[0] = line1[1] = cubic1[start ? 0 : 3];
    _Point dxy1 = line1[0] - cubic1[start ? 1 : 2];
    dxy1 /= precisionUnit;
    line1[1] += dxy1;
    _Rect line1Bounds;
    line1Bounds.setBounds(line1);
    if (!bounds2.intersects(line1Bounds)) {
        return false;
    }
    _Line line2;
    line2[0] = line2[1] = line1[0];
    _Point dxy2 = line2[0] - cubic1[start ? 3 : 0];
    dxy2 /= precisionUnit;
    line2[1] += dxy2;
#if 0 // this is so close to the first bounds test it isn't worth the short circuit test
    _Rect line2Bounds;
    line2Bounds.setBounds(line2);
    if (!bounds2.intersects(line2Bounds)) {
        return false;
    }
#endif
    Intersections local1;
    if (!intersect(cubic2, line1, local1)) {
        return false;
    }
    Intersections local2;
    if (!intersect(cubic2, line2, local2)) {
        return false;
    }
    double tMin, tMax;
    tMin = tMax = local1.fT[0][0];
    for (int index = 1; index < local1.fUsed; ++index) {
        tMin = std::min(tMin, local1.fT[0][index]);
        tMax = std::max(tMax, local1.fT[0][index]);
    }
    for (int index = 1; index < local2.fUsed; ++index) {
        tMin = std::min(tMin, local2.fT[0][index]);
        tMax = std::max(tMax, local2.fT[0][index]);
    }
    return intersect2(cubic1, start ? 0 : 1, start ? 1.0 / precisionUnit : 1 - 1.0 / precisionUnit,
            cubic2, tMin, tMax, i);
}

// FIXME: add intersection of convex null on cubics' ends with the opposite cubic. The hull line
// segments can be constructed to be only as long as the calculated precision suggests. If the hull
// line segments intersect the cubic, then use the intersections to construct a subdivision for
// quadratic curve fitting.
bool intersect2(const Cubic& c1, const Cubic& c2, Intersections& i) {
    bool result = intersect2(c1, 0, 1, c2, 0, 1, i);
    // FIXME: pass in cached bounds from caller
    _Rect c1Bounds, c2Bounds;
    c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ?
    c2Bounds.setBounds(c2);
    result |= intersectEnd(c1, false, c2, c2Bounds, i);
    result |= intersectEnd(c1, true, c2, c2Bounds, i);
    result |= intersectEnd(c2, false, c1, c1Bounds, i);
    result |= intersectEnd(c2, true, c1, c1Bounds, i);
    return result;
}

int intersect(const Cubic& cubic, const Quadratic& quad, Intersections& i) {
    SkTDArray<double> ts;
    double precision = calcPrecision(cubic);
    cubic_to_quadratics(cubic, precision, ts);
    double tStart = 0;
    Cubic part;
    int tsCount = ts.count();
    for (int idx = 0; idx <= tsCount; ++idx) {
        double t = idx < tsCount ? ts[idx] : 1;
        Quadratic q1;
        sub_divide(cubic, tStart, t, part);
        demote_cubic_to_quad(part, q1);
        Intersections locals;
        intersect2(q1, quad, locals);
        for (int tIdx = 0; tIdx < locals.used(); ++tIdx) {
            double globalT = tStart + (t - tStart) * locals.fT[0][tIdx];
            i.insertOne(globalT, 0);
            globalT = locals.fT[1][tIdx];
            i.insertOne(globalT, 1);
        }
        tStart = t;
    }
    return i.used();
}

bool intersect(const Cubic& cubic, Intersections& i) {
    SkTDArray<double> ts;
    double precision = calcPrecision(cubic);
    cubic_to_quadratics(cubic, precision, ts);
    int tsCount = ts.count();
    if (tsCount == 1) {
        return false;
    }
    double t1Start = 0;
    Cubic part;
    for (int idx = 0; idx < tsCount; ++idx) {
        double t1 = ts[idx];
        Quadratic q1;
        sub_divide(cubic, t1Start, t1, part);
        demote_cubic_to_quad(part, q1);
        double t2Start = t1;
        for (int i2 = idx + 1; i2 <= tsCount; ++i2) {
            const double t2 = i2 < tsCount ? ts[i2] : 1;
            Quadratic q2;
            sub_divide(cubic, t2Start, t2, part);
            demote_cubic_to_quad(part, q2);
            Intersections locals;
            intersect2(q1, q2, locals);
            for (int tIdx = 0; tIdx < locals.used(); ++tIdx) {
            // discard intersections at cusp? (maximum curvature)
                double t1sect = locals.fT[0][tIdx];
                double t2sect = locals.fT[1][tIdx];
                if (idx + 1 == i2 && t1sect == 1 && t2sect == 0) {
                    continue;
                }
                double to1 = t1Start + (t1 - t1Start) * t1sect;
                double to2 = t2Start + (t2 - t2Start) * t2sect;
                i.insert(to1, to2);
            }
            t2Start = t2;
        }
        t1Start = t1;
    }
    return i.intersected();
}