1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "CubicUtilities.h"
#include "CurveIntersection.h"
#include "Intersections.h"
#include "IntersectionUtilities.h"
#include "LineIntersection.h"
#include "LineUtilities.h"
#include "QuadraticUtilities.h"
#include "TSearch.h"
#if 0
#undef ONE_OFF_DEBUG
#define ONE_OFF_DEBUG 0
#endif
#if ONE_OFF_DEBUG
static const double tLimits1[2][2] = {{0.36, 0.37}, {0.63, 0.64}};
static const double tLimits2[2][2] = {{-0.865211397, -0.865215212}, {-0.865207696, -0.865208078}};
#endif
#define DEBUG_QUAD_PART 0
#define SWAP_TOP_DEBUG 0
static int quadPart(const Cubic& cubic, double tStart, double tEnd, Quadratic& simple) {
Cubic part;
sub_divide(cubic, tStart, tEnd, part);
Quadratic quad;
demote_cubic_to_quad(part, quad);
// FIXME: should reduceOrder be looser in this use case if quartic is going to blow up on an
// extremely shallow quadratic?
int order = reduceOrder(quad, simple, kReduceOrder_TreatAsFill);
#if DEBUG_QUAD_PART
SkDebugf("%s cubic=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g) t=(%1.17g,%1.17g)\n",
__FUNCTION__, cubic[0].x, cubic[0].y, cubic[1].x, cubic[1].y, cubic[2].x, cubic[2].y,
cubic[3].x, cubic[3].y, tStart, tEnd);
SkDebugf("%s part=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g)"
" quad=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g)\n", __FUNCTION__, part[0].x, part[0].y,
part[1].x, part[1].y, part[2].x, part[2].y, part[3].x, part[3].y, quad[0].x, quad[0].y,
quad[1].x, quad[1].y, quad[2].x, quad[2].y);
SkDebugf("%s simple=(%1.17g,%1.17g", __FUNCTION__, simple[0].x, simple[0].y);
if (order > 1) {
SkDebugf(" %1.17g,%1.17g", simple[1].x, simple[1].y);
}
if (order > 2) {
SkDebugf(" %1.17g,%1.17g", simple[2].x, simple[2].y);
}
SkDebugf(")\n");
SkASSERT(order < 4 && order > 0);
#endif
return order;
}
static void intersectWithOrder(const Quadratic& simple1, int order1, const Quadratic& simple2,
int order2, Intersections& i) {
if (order1 == 3 && order2 == 3) {
intersect2(simple1, simple2, i);
} else if (order1 <= 2 && order2 <= 2) {
intersect((const _Line&) simple1, (const _Line&) simple2, i);
} else if (order1 == 3 && order2 <= 2) {
intersect(simple1, (const _Line&) simple2, i);
} else {
SkASSERT(order1 <= 2 && order2 == 3);
intersect(simple2, (const _Line&) simple1, i);
for (int s = 0; s < i.fUsed; ++s) {
SkTSwap(i.fT[0][s], i.fT[1][s]);
}
}
}
// this flavor centers potential intersections recursively. In contrast, '2' may inadvertently
// chase intersections near quadratic ends, requiring odd hacks to find them.
static bool intersect3(const Cubic& cubic1, double t1s, double t1e, const Cubic& cubic2,
double t2s, double t2e, double precisionScale, Intersections& i) {
i.upDepth();
bool result = false;
Cubic c1, c2;
sub_divide(cubic1, t1s, t1e, c1);
sub_divide(cubic2, t2s, t2e, c2);
SkTDArray<double> ts1;
// OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection)
cubic_to_quadratics(c1, calcPrecision(c1) * precisionScale, ts1);
SkTDArray<double> ts2;
cubic_to_quadratics(c2, calcPrecision(c2) * precisionScale, ts2);
double t1Start = t1s;
int ts1Count = ts1.count();
for (int i1 = 0; i1 <= ts1Count; ++i1) {
const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1;
const double t1 = t1s + (t1e - t1s) * tEnd1;
Quadratic s1;
int o1 = quadPart(cubic1, t1Start, t1, s1);
double t2Start = t2s;
int ts2Count = ts2.count();
for (int i2 = 0; i2 <= ts2Count; ++i2) {
const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1;
const double t2 = t2s + (t2e - t2s) * tEnd2;
if (cubic1 == cubic2 && t1Start >= t2Start) {
t2Start = t2;
continue;
}
Quadratic s2;
int o2 = quadPart(cubic2, t2Start, t2, s2);
#if ONE_OFF_DEBUG
char tab[] = " ";
if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1
&& tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) {
Cubic cSub1, cSub2;
sub_divide(cubic1, t1Start, t1, cSub1);
sub_divide(cubic2, t2Start, t2, cSub2);
SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab, __FUNCTION__,
t1Start, t1, t2Start, t2);
Intersections xlocals;
intersectWithOrder(s1, o1, s2, o2, xlocals);
SkDebugf(" xlocals.fUsed=%d\n", xlocals.used());
}
#endif
Intersections locals;
intersectWithOrder(s1, o1, s2, o2, locals);
double coStart[2] = { -1 };
_Point coPoint;
int tCount = locals.used();
for (int tIdx = 0; tIdx < tCount; ++tIdx) {
double to1 = t1Start + (t1 - t1Start) * locals.fT[0][tIdx];
double to2 = t2Start + (t2 - t2Start) * locals.fT[1][tIdx];
// if the computed t is not sufficiently precise, iterate
_Point p1 = xy_at_t(cubic1, to1);
_Point p2 = xy_at_t(cubic2, to2);
if (p1.approximatelyEqual(p2)) {
if (locals.fIsCoincident[0] & 1 << tIdx) {
if (coStart[0] < 0) {
coStart[0] = to1;
coStart[1] = to2;
coPoint = p1;
} else {
i.insertCoincidentPair(coStart[0], to1, coStart[1], to2, coPoint, p1);
coStart[0] = -1;
}
result = true;
} else if (cubic1 != cubic2 || !approximately_equal(to1, to2)) {
if (i.swapped()) { // FIXME: insert should respect swap
i.insert(to2, to1, p1);
} else {
i.insert(to1, to2, p1);
}
result = true;
}
} else {
double offset = precisionScale / 16; // FIME: const is arbitrary -- test & refine
#if 1
double c1Bottom = tIdx == 0 ? 0 :
(t1Start + (t1 - t1Start) * locals.fT[0][tIdx - 1] + to1) / 2;
double c1Min = SkTMax(c1Bottom, to1 - offset);
double c1Top = tIdx == tCount - 1 ? 1 :
(t1Start + (t1 - t1Start) * locals.fT[0][tIdx + 1] + to1) / 2;
double c1Max = SkTMin(c1Top, to1 + offset);
double c2Min = SkTMax(0., to2 - offset);
double c2Max = SkTMin(1., to2 + offset);
#if ONE_OFF_DEBUG
SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, __FUNCTION__,
c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
&& c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
&& to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
&& c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
&& to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
" 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1.,
to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
" c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max);
#endif
intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
#if ONE_OFF_DEBUG
SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, i.used(),
i.used() > 0 ? i.fT[0][i.used() - 1] : -1);
#endif
if (tCount > 1) {
c1Min = SkTMax(0., to1 - offset);
c1Max = SkTMin(1., to1 + offset);
double c2Bottom = tIdx == 0 ? to2 :
(t2Start + (t2 - t2Start) * locals.fT[1][tIdx - 1] + to2) / 2;
double c2Top = tIdx == tCount - 1 ? to2 :
(t2Start + (t2 - t2Start) * locals.fT[1][tIdx + 1] + to2) / 2;
if (c2Bottom > c2Top) {
SkTSwap(c2Bottom, c2Top);
}
if (c2Bottom == to2) {
c2Bottom = 0;
}
if (c2Top == to2) {
c2Top = 1;
}
c2Min = SkTMax(c2Bottom, to2 - offset);
c2Max = SkTMin(c2Top, to2 + offset);
#if ONE_OFF_DEBUG
SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, __FUNCTION__,
c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
&& c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
&& to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
&& c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
&& to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
" 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
" c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max);
#endif
intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
#if ONE_OFF_DEBUG
SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, i.used(),
i.used() > 0 ? i.fT[0][i.used() - 1] : -1);
#endif
c1Min = SkTMax(c1Bottom, to1 - offset);
c1Max = SkTMin(c1Top, to1 + offset);
#if ONE_OFF_DEBUG
SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, __FUNCTION__,
c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
&& c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
&& to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
&& c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
&& to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
" 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
" c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max);
#endif
intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
#if ONE_OFF_DEBUG
SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, i.used(),
i.used() > 0 ? i.fT[0][i.used() - 1] : -1);
#endif
}
#else
double c1Bottom = tIdx == 0 ? 0 :
(t1Start + (t1 - t1Start) * locals.fT[0][tIdx - 1] + to1) / 2;
double c1Min = SkTMax(c1Bottom, to1 - offset);
double c1Top = tIdx == tCount - 1 ? 1 :
(t1Start + (t1 - t1Start) * locals.fT[0][tIdx + 1] + to1) / 2;
double c1Max = SkTMin(c1Top, to1 + offset);
double c2Bottom = tIdx == 0 ? to2 :
(t2Start + (t2 - t2Start) * locals.fT[1][tIdx - 1] + to2) / 2;
double c2Top = tIdx == tCount - 1 ? to2 :
(t2Start + (t2 - t2Start) * locals.fT[1][tIdx + 1] + to2) / 2;
if (c2Bottom > c2Top) {
SkTSwap(c2Bottom, c2Top);
}
if (c2Bottom == to2) {
c2Bottom = 0;
}
if (c2Top == to2) {
c2Top = 1;
}
double c2Min = SkTMax(c2Bottom, to2 - offset);
double c2Max = SkTMin(c2Top, to2 + offset);
#if ONE_OFF_DEBUG
SkDebugf("%s contains1=%d/%d contains2=%d/%d\n", __FUNCTION__,
c1Min <= 0.210357794 && 0.210357794 <= c1Max
&& c2Min <= 0.223476406 && 0.223476406 <= c2Max,
to1 - offset <= 0.210357794 && 0.210357794 <= to1 + offset
&& to2 - offset <= 0.223476406 && 0.223476406 <= to2 + offset,
c1Min <= 0.211324707 && 0.211324707 <= c1Max
&& c2Min <= 0.211327209 && 0.211327209 <= c2Max,
to1 - offset <= 0.211324707 && 0.211324707 <= to1 + offset
&& to2 - offset <= 0.211327209 && 0.211327209 <= to2 + offset);
SkDebugf("%s c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
" 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
__FUNCTION__, c1Bottom, c1Top, c2Bottom, c2Top,
to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
SkDebugf("%s to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
" c2Max=%1.9g\n", __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max);
#endif
#endif
intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
// TODO: if no intersection is found, either quadratics intersected where
// cubics did not, or the intersection was missed. In the former case, expect
// the quadratics to be nearly parallel at the point of intersection, and check
// for that.
}
}
SkASSERT(coStart[0] == -1);
t2Start = t2;
}
t1Start = t1;
}
i.downDepth();
return result;
}
#if 0
#define LINE_FRACTION (1.0 / gPrecisionUnit)
#else
#define LINE_FRACTION 0.1
#endif
// intersect the end of the cubic with the other. Try lines from the end to control and opposite
// end to determine range of t on opposite cubic.
static bool intersectEnd(const Cubic& cubic1, bool start, const Cubic& cubic2, const _Rect& bounds2,
Intersections& i) {
// bool selfIntersect = cubic1 == cubic2;
_Line line;
int t1Index = start ? 0 : 3;
line[0] = cubic1[t1Index];
// don't bother if the two cubics are connnected
#if 0
if (!selfIntersect && (line[0].approximatelyEqual(cubic2[0])
|| line[0].approximatelyEqual(cubic2[3]))) {
return false;
}
#endif
bool result = false;
SkTDArray<double> tVals; // OPTIMIZE: replace with hard-sized array
for (int index = 0; index < 4; ++index) {
if (index == t1Index) {
continue;
}
_Vector dxy1 = cubic1[index] - line[0];
dxy1 /= gPrecisionUnit;
line[1] = line[0] + dxy1;
_Rect lineBounds;
lineBounds.setBounds(line);
if (!bounds2.intersects(lineBounds)) {
continue;
}
Intersections local;
if (!intersect(cubic2, line, local)) {
continue;
}
for (int idx2 = 0; idx2 < local.used(); ++idx2) {
double foundT = local.fT[0][idx2];
if (approximately_less_than_zero(foundT)
|| approximately_greater_than_one(foundT)) {
continue;
}
if (local.fPt[idx2].approximatelyEqual(line[0])) {
if (i.swapped()) { // FIXME: insert should respect swap
i.insert(foundT, start ? 0 : 1, line[0]);
} else {
i.insert(start ? 0 : 1, foundT, line[0]);
}
result = true;
} else {
*tVals.append() = local.fT[0][idx2];
}
}
}
if (tVals.count() == 0) {
return result;
}
QSort<double>(tVals.begin(), tVals.end() - 1);
double tMin1 = start ? 0 : 1 - LINE_FRACTION;
double tMax1 = start ? LINE_FRACTION : 1;
int tIdx = 0;
do {
int tLast = tIdx;
while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVals[tIdx])) {
++tLast;
}
double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0);
double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0);
int lastUsed = i.used();
result |= intersect3(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i);
if (lastUsed == i.used()) {
tMin2 = SkTMax(tVals[tIdx] - (1.0 / gPrecisionUnit), 0.0);
tMax2 = SkTMin(tVals[tLast] + (1.0 / gPrecisionUnit), 1.0);
result |= intersect3(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i);
}
tIdx = tLast + 1;
} while (tIdx < tVals.count());
return result;
}
const double CLOSE_ENOUGH = 0.001;
static bool closeStart(const Cubic& cubic, int cubicIndex, Intersections& i, _Point& pt) {
if (i.fT[cubicIndex][0] != 0 || i.fT[cubicIndex][1] > CLOSE_ENOUGH) {
return false;
}
pt = xy_at_t(cubic, (i.fT[cubicIndex][0] + i.fT[cubicIndex][1]) / 2);
return true;
}
static bool closeEnd(const Cubic& cubic, int cubicIndex, Intersections& i, _Point& pt) {
int last = i.used() - 1;
if (i.fT[cubicIndex][last] != 1 || i.fT[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) {
return false;
}
pt = xy_at_t(cubic, (i.fT[cubicIndex][last] + i.fT[cubicIndex][last - 1]) / 2);
return true;
}
bool intersect3(const Cubic& c1, const Cubic& c2, Intersections& i) {
bool result = intersect3(c1, 0, 1, c2, 0, 1, 1, i);
// FIXME: pass in cached bounds from caller
_Rect c1Bounds, c2Bounds;
c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ?
c2Bounds.setBounds(c2);
result |= intersectEnd(c1, false, c2, c2Bounds, i);
result |= intersectEnd(c1, true, c2, c2Bounds, i);
bool selfIntersect = c1 == c2;
if (!selfIntersect) {
i.swap();
result |= intersectEnd(c2, false, c1, c1Bounds, i);
result |= intersectEnd(c2, true, c1, c1Bounds, i);
i.swap();
}
// If an end point and a second point very close to the end is returned, the second
// point may have been detected because the approximate quads
// intersected at the end and close to it. Verify that the second point is valid.
if (i.used() <= 1 || i.coincidentUsed()) {
return result;
}
_Point pt[2];
if (closeStart(c1, 0, i, pt[0]) && closeStart(c2, 1, i, pt[1])
&& pt[0].approximatelyEqual(pt[1])) {
i.removeOne(1);
}
if (closeEnd(c1, 0, i, pt[0]) && closeEnd(c2, 1, i, pt[1])
&& pt[0].approximatelyEqual(pt[1])) {
i.removeOne(i.used() - 2);
}
return result;
}
// Up promote the quad to a cubic.
// OPTIMIZATION If this is a common use case, optimize by duplicating
// the intersect 3 loop to avoid the promotion / demotion code
int intersect(const Cubic& cubic, const Quadratic& quad, Intersections& i) {
Cubic up;
toCubic(quad, up);
(void) intersect3(cubic, up, i);
return i.used();
}
/* http://www.ag.jku.at/compass/compasssample.pdf
( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen
Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no janbth@math.uio.no
SINTEF Applied Mathematics http://www.sintef.no )
describes a method to find the self intersection of a cubic by taking the gradient of the implicit
form dotted with the normal, and solving for the roots. My math foo is too poor to implement this.*/
int intersect(const Cubic& c, Intersections& i) {
// check to see if x or y end points are the extrema. Are other quick rejects possible?
if (ends_are_extrema_in_x_or_y(c)) {
return false;
}
(void) intersect3(c, c, i);
if (i.used() > 0) {
SkASSERT(i.used() == 1);
if (i.fT[0][0] > i.fT[1][0]) {
SkTSwap(i.fT[0][0], i.fT[1][0]);
}
}
return i.used();
}
|