aboutsummaryrefslogtreecommitdiffhomepage
path: root/dm/DMSrcSink.cpp
blob: 0a90e03103dc23b087a3269f24434ec925f90d05 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
/*
 * Copyright 2015 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "DMSrcSink.h"
#include "SamplePipeControllers.h"
#include "SkCodec.h"
#include "SkCommonFlags.h"
#include "SkData.h"
#include "SkDeferredCanvas.h"
#include "SkDocument.h"
#include "SkError.h"
#include "SkFunction.h"
#include "SkImageGenerator.h"
#include "SkMultiPictureDraw.h"
#include "SkNullCanvas.h"
#include "SkOSFile.h"
#include "SkPictureData.h"
#include "SkPictureRecorder.h"
#include "SkRandom.h"
#include "SkRecordDraw.h"
#include "SkRecorder.h"
#include "SkSVGCanvas.h"
#include "SkScanlineDecoder.h"
#include "SkStream.h"
#include "SkXMLWriter.h"

DEFINE_bool(multiPage, false, "For document-type backends, render the source"
            " into multiple pages");

static bool lazy_decode_bitmap(const void* src, size_t size, SkBitmap* dst) {
    SkAutoTUnref<SkData> encoded(SkData::NewWithCopy(src, size));
    return encoded && SkInstallDiscardablePixelRef(encoded, dst);
}

namespace DM {

GMSrc::GMSrc(skiagm::GMRegistry::Factory factory) : fFactory(factory) {}

Error GMSrc::draw(SkCanvas* canvas) const {
    SkAutoTDelete<skiagm::GM> gm(fFactory(NULL));
    canvas->concat(gm->getInitialTransform());
    gm->draw(canvas);
    return "";
}

SkISize GMSrc::size() const {
    SkAutoTDelete<skiagm::GM> gm(fFactory(NULL));
    return gm->getISize();
}

Name GMSrc::name() const {
    SkAutoTDelete<skiagm::GM> gm(fFactory(NULL));
    return gm->getName();
}

void GMSrc::modifyGrContextOptions(GrContextOptions* options) const {
    SkAutoTDelete<skiagm::GM> gm(fFactory(NULL));
    gm->modifyGrContextOptions(options);
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

CodecSrc::CodecSrc(Path path, Mode mode, DstColorType dstColorType)
    : fPath(path)
    , fMode(mode)
    , fDstColorType(dstColorType)
{}

Error CodecSrc::draw(SkCanvas* canvas) const {
    SkImageInfo canvasInfo;
    if (NULL == canvas->peekPixels(&canvasInfo, NULL)) {
        // TODO: Once we implement GPU paths (e.g. JPEG YUV), we should use a deferred decode to
        // let the GPU handle it.
        return Error::Nonfatal("No need to test decoding to non-raster backend.");
    }

    SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str()));
    if (!encoded) {
        return SkStringPrintf("Couldn't read %s.", fPath.c_str());
    }
    SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(encoded));
    if (NULL == codec.get()) {
        return SkStringPrintf("Couldn't create codec for %s.", fPath.c_str());
    }

    // Choose the color type to decode to
    SkImageInfo decodeInfo = codec->getInfo();
    SkColorType canvasColorType = canvasInfo.colorType();
    switch (fDstColorType) {
        case kIndex8_Always_DstColorType:
            decodeInfo = codec->getInfo().makeColorType(kIndex_8_SkColorType);
            if (kRGB_565_SkColorType == canvasColorType) {
                return Error::Nonfatal("Testing non-565 to 565 is uninteresting.");
            }
            break;
        case kGrayscale_Always_DstColorType:
            decodeInfo = codec->getInfo().makeColorType(kGray_8_SkColorType);
            if (kRGB_565_SkColorType == canvasColorType) {
                return Error::Nonfatal("Testing non-565 to 565 is uninteresting.");
            }
            break;
        default:
            decodeInfo = decodeInfo.makeColorType(canvasColorType);
            break;
    }

    // Construct a color table for the decode if necessary
    SkAutoTUnref<SkColorTable> colorTable(NULL);
    SkPMColor* colorPtr = NULL;
    int* colorCountPtr = NULL;
    int maxColors = 256;
    if (kIndex_8_SkColorType == decodeInfo.colorType()) {
        SkPMColor colors[256];
        colorTable.reset(SkNEW_ARGS(SkColorTable, (colors, maxColors)));
        colorPtr = const_cast<SkPMColor*>(colorTable->readColors());
        colorCountPtr = &maxColors;
    }

    // FIXME: Currently we cannot draw unpremultiplied sources.
    if (decodeInfo.alphaType() == kUnpremul_SkAlphaType) {
        decodeInfo = decodeInfo.makeAlphaType(kPremul_SkAlphaType);
    }

    SkBitmap bitmap;
    if (!bitmap.tryAllocPixels(decodeInfo, NULL, colorTable.get())) {
        return SkStringPrintf("Image(%s) is too large (%d x %d)\n", fPath.c_str(),
                              decodeInfo.width(), decodeInfo.height());
    }

    switch (fMode) {
        case kNormal_Mode:
            switch (codec->getPixels(decodeInfo, bitmap.getPixels(), bitmap.rowBytes(), NULL,
                    colorPtr, colorCountPtr)) {
                case SkImageGenerator::kSuccess:
                    // We consider incomplete to be valid, since we should still decode what is
                    // available.
                case SkImageGenerator::kIncompleteInput:
                    break;
                case SkImageGenerator::kInvalidConversion:
                    return Error::Nonfatal("Incompatible colortype conversion");
                default:
                    // Everything else is considered a failure.
                    return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str());
            }
            canvas->drawBitmap(bitmap, 0, 0);
            break;
        case kScanline_Mode: {
            SkScanlineDecoder* scanlineDecoder = codec->getScanlineDecoder(decodeInfo, NULL,
                    colorPtr, colorCountPtr);
            if (NULL == scanlineDecoder) {
                return Error::Nonfatal("Cannot use scanline decoder for all images");
            }
            for (int y = 0; y < decodeInfo.height(); ++y) {
                const SkImageGenerator::Result result = scanlineDecoder->getScanlines(
                        bitmap.getAddr(0, y), 1, 0);
                switch (result) {
                    case SkImageGenerator::kSuccess:
                    case SkImageGenerator::kIncompleteInput:
                        break;
                    default:
                        return SkStringPrintf("%s failed after %d scanlines with error message %d",
                                              fPath.c_str(), y-1, (int) result);
                }
            }
            canvas->drawBitmap(bitmap, 0, 0);
            break;
        }
        case kScanline_Subset_Mode: {
            //this mode decodes the image in divisor*divisor subsets, using a scanline decoder
            const int divisor = 2;
            const int w = decodeInfo.width();
            const int h = decodeInfo.height();
            if (w*h == 1) {
                return Error::Nonfatal("Subset decoding not supported.");
            }
            if (divisor > w || divisor > h) {
                return SkStringPrintf("divisor %d is too big for %s with dimensions (%d x %d)",
                        divisor, fPath.c_str(), w, h);
            }
            const int subsetWidth = w/divisor;
            const int subsetHeight = h/divisor;
            // One of our subsets will be larger to contain any pixels that do not divide evenly.
            const int extraX = w % divisor;
            const int extraY = h % divisor;
            /*
            * if w or h are not evenly divided by divisor need to adjust width and height of end
            * subsets to cover entire image.
            * Add extraX and extraY to largestSubsetBm's width and height to adjust width
            * and height of end subsets.
            * subsetBm is extracted from largestSubsetBm.
            * subsetBm's size is determined based on the current subset and may be larger for end
            * subsets.
            */
            SkImageInfo largestSubsetDecodeInfo = 
                    decodeInfo.makeWH(subsetWidth + extraX, subsetHeight + extraY);
            SkBitmap largestSubsetBm;
            if (!largestSubsetBm.tryAllocPixels(largestSubsetDecodeInfo, NULL, colorTable.get())) {
                return SkStringPrintf("Image(%s) is too large (%d x %d)\n", fPath.c_str(),
                        largestSubsetDecodeInfo.width(), largestSubsetDecodeInfo.height());
            }
            char* line = SkNEW_ARRAY(char, decodeInfo.minRowBytes());
            SkAutoTDeleteArray<char> lineDeleter(line);
            for (int col = 0; col < divisor; col++) {
                //currentSubsetWidth may be larger than subsetWidth for rightmost subsets
                const int currentSubsetWidth = (col + 1 == divisor) ?
                        subsetWidth + extraX : subsetWidth;
                const int x = col * subsetWidth;
                for (int row = 0; row < divisor; row++) {
                    //currentSubsetHeight may be larger than subsetHeight for bottom subsets
                    const int currentSubsetHeight = (row + 1 == divisor) ?
                            subsetHeight + extraY : subsetHeight;
                    const int y = row * subsetHeight;
                    //create scanline decoder for each subset
                    SkScanlineDecoder* subsetScanlineDecoder = codec->getScanlineDecoder(decodeInfo,
                            NULL, colorPtr, colorCountPtr);
                    if (NULL == subsetScanlineDecoder) {
                        if (x == 0 && y == 0) {
                            //first try, image may not be compatible
                            return Error::Nonfatal("Cannot use scanline decoder for all images");
                        } else {
                            return "Error scanline decoder is NULL";
                        }
                    }
                    //skip to first line of subset
                    const SkImageGenerator::Result skipResult = 
                            subsetScanlineDecoder->skipScanlines(y);
                    switch (skipResult) {
                        case SkImageGenerator::kSuccess:
                        case SkImageGenerator::kIncompleteInput:
                            break;
                        default:
                            return SkStringPrintf("%s failed after attempting to skip %d scanlines"
                                    "with error message %d", fPath.c_str(), y, (int) skipResult);
                    }
                    //create and set size of subsetBm
                    SkBitmap subsetBm;
                    SkIRect bounds = SkIRect::MakeWH(subsetWidth, subsetHeight);
                    bounds.setXYWH(0, 0, currentSubsetWidth, currentSubsetHeight);
                    SkAssertResult(largestSubsetBm.extractSubset(&subsetBm, bounds));
                    SkAutoLockPixels autlockSubsetBm(subsetBm, true);
                    for (int subsetY = 0; subsetY < currentSubsetHeight; ++subsetY) {
                        const SkImageGenerator::Result subsetResult =
                                subsetScanlineDecoder->getScanlines(line, 1, 0);
                        const size_t bpp = decodeInfo.bytesPerPixel();
                        //copy section of line based on x value
                        memcpy(subsetBm.getAddr(0, subsetY), line + x*bpp, currentSubsetWidth*bpp);
                        switch (subsetResult) {
                            case SkImageGenerator::kSuccess:
                            case SkImageGenerator::kIncompleteInput:
                                break;
                            default:
                                return SkStringPrintf("%s failed after %d scanlines with error" 
                                        "message %d", fPath.c_str(), y-1, (int) subsetResult);
                        }
                    }
                    canvas->drawBitmap(subsetBm, SkIntToScalar(x), SkIntToScalar(y));
                }
            }
            break;
        }
    }
    return "";
}

SkISize CodecSrc::size() const {
    SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str()));
    SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(encoded));
    if (NULL != codec) {
        return codec->getInfo().dimensions();
    } else {
        return SkISize::Make(0, 0);
    }
}

Name CodecSrc::name() const {
    return SkOSPath::Basename(fPath.c_str());
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

ImageSrc::ImageSrc(Path path, int divisor) : fPath(path), fDivisor(divisor) {}

Error ImageSrc::draw(SkCanvas* canvas) const {
    SkImageInfo canvasInfo;
    if (NULL == canvas->peekPixels(&canvasInfo, NULL)) {
        // TODO: Instead, use lazy decoding to allow the GPU to handle cases like YUV.
        return Error::Nonfatal("No need to test decoding to non-raster backend.");
    }

    SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str()));
    if (!encoded) {
        return SkStringPrintf("Couldn't read %s.", fPath.c_str());
    }
    const SkColorType dstColorType = canvasInfo.colorType();
    if (fDivisor == 0) {
        // Decode the full image.
        SkBitmap bitmap;
        if (!SkImageDecoder::DecodeMemory(encoded->data(), encoded->size(), &bitmap,
                                          dstColorType, SkImageDecoder::kDecodePixels_Mode)) {
            return SkStringPrintf("Couldn't decode %s.", fPath.c_str());
        }
        if (kRGB_565_SkColorType == dstColorType && !bitmap.isOpaque()) {
            // Do not draw a bitmap with alpha to a destination without alpha.
            return Error::Nonfatal("Uninteresting to decode image with alpha into 565.");
        }
        encoded.reset((SkData*)NULL);  // Might as well drop this when we're done with it.
        canvas->drawBitmap(bitmap, 0,0);
        return "";
    }
    // Decode subsets.  This is a little involved.
    SkAutoTDelete<SkMemoryStream> stream(new SkMemoryStream(encoded));
    SkAutoTDelete<SkImageDecoder> decoder(SkImageDecoder::Factory(stream.get()));
    if (!decoder) {
        return SkStringPrintf("Can't find a good decoder for %s.", fPath.c_str());
    }
    stream->rewind();
    int w,h;
    if (!decoder->buildTileIndex(stream.detach(), &w, &h) || w*h == 1) {
        return Error::Nonfatal("Subset decoding not supported.");
    }

    // Divide the image into subsets that cover the entire image.
    if (fDivisor > w || fDivisor > h) {
        return SkStringPrintf("divisor %d is too big for %s with dimensions (%d x %d)",
                              fDivisor, fPath.c_str(), w, h);
    }
    const int subsetWidth  = w / fDivisor,
              subsetHeight = h / fDivisor;
    for (int y = 0; y < h; y += subsetHeight) {
        for (int x = 0; x < w; x += subsetWidth) {
            SkBitmap subset;
            SkIRect rect = SkIRect::MakeXYWH(x, y, subsetWidth, subsetHeight);
            if (!decoder->decodeSubset(&subset, rect, dstColorType)) {
                return SkStringPrintf("Could not decode subset (%d, %d, %d, %d).",
                                      x, y, x+subsetWidth, y+subsetHeight);
            }
            if (kRGB_565_SkColorType == dstColorType && !subset.isOpaque()) {
                // Do not draw a bitmap with alpha to a destination without alpha.
                // This is not an error, but there is nothing interesting to show.

                // This should only happen on the first iteration through the loop.
                SkASSERT(0 == x && 0 == y);

                return Error::Nonfatal("Uninteresting to decode image with alpha into 565.");
            }
            canvas->drawBitmap(subset, SkIntToScalar(x), SkIntToScalar(y));
        }
    }
    return "";
}

SkISize ImageSrc::size() const {
    SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str()));
    SkBitmap bitmap;
    if (!encoded || !SkImageDecoder::DecodeMemory(encoded->data(),
                                                  encoded->size(),
                                                  &bitmap,
                                                  kUnknown_SkColorType,
                                                  SkImageDecoder::kDecodeBounds_Mode)) {
        return SkISize::Make(0,0);
    }
    return bitmap.dimensions();
}

Name ImageSrc::name() const {
    return SkOSPath::Basename(fPath.c_str());
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

static const SkRect kSKPViewport = {0,0, 1000,1000};

SKPSrc::SKPSrc(Path path) : fPath(path) {}

Error SKPSrc::draw(SkCanvas* canvas) const {
    SkAutoTDelete<SkStream> stream(SkStream::NewFromFile(fPath.c_str()));
    if (!stream) {
        return SkStringPrintf("Couldn't read %s.", fPath.c_str());
    }
    SkAutoTUnref<SkPicture> pic(SkPicture::CreateFromStream(stream, &lazy_decode_bitmap));
    if (!pic) {
        return SkStringPrintf("Couldn't decode %s as a picture.", fPath.c_str());
    }
    stream.reset((SkStream*)NULL);  // Might as well drop this when we're done with it.

    canvas->clipRect(kSKPViewport);
    canvas->drawPicture(pic);
    return "";
}

SkISize SKPSrc::size() const {
    SkAutoTDelete<SkStream> stream(SkStream::NewFromFile(fPath.c_str()));
    if (!stream) {
        return SkISize::Make(0,0);
    }
    SkPictInfo info;
    if (!SkPicture::InternalOnly_StreamIsSKP(stream, &info)) {
        return SkISize::Make(0,0);
    }
    SkRect viewport = kSKPViewport;
    if (!viewport.intersect(info.fCullRect)) {
        return SkISize::Make(0,0);
    }
    return viewport.roundOut().size();
}

Name SKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); }

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

Error NullSink::draw(const Src& src, SkBitmap*, SkWStream*, SkString*) const {
    SkAutoTDelete<SkCanvas> canvas(SkCreateNullCanvas());
    return src.draw(canvas);
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

DEFINE_bool(gpuStats, false, "Append GPU stats to the log for each GPU task?");

GPUSink::GPUSink(GrContextFactory::GLContextType ct,
                 GrGLStandard api,
                 int samples,
                 bool dfText,
                 bool threaded)
    : fContextType(ct)
    , fGpuAPI(api)
    , fSampleCount(samples)
    , fUseDFText(dfText)
    , fThreaded(threaded) {}

int GPUSink::enclave() const {
    return fThreaded ? kAnyThread_Enclave : kGPU_Enclave;
}

void PreAbandonGpuContextErrorHandler(SkError, void*) {}

Error GPUSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString* log) const {
    GrContextOptions options;
    src.modifyGrContextOptions(&options);

    GrContextFactory factory(options);
    const SkISize size = src.size();
    const SkImageInfo info =
        SkImageInfo::Make(size.width(), size.height(), kN32_SkColorType, kPremul_SkAlphaType);
    SkAutoTUnref<SkSurface> surface(
            NewGpuSurface(&factory, fContextType, fGpuAPI, info, fSampleCount, fUseDFText));
    if (!surface) {
        return "Could not create a surface.";
    }
    if (FLAGS_preAbandonGpuContext) {
        SkSetErrorCallback(&PreAbandonGpuContextErrorHandler, NULL);
        factory.abandonContexts();
    }
    SkCanvas* canvas = surface->getCanvas();
    Error err = src.draw(canvas);
    if (!err.isEmpty()) {
        return err;
    }
    canvas->flush();
    if (FLAGS_gpuStats) {
        canvas->getGrContext()->dumpCacheStats(log);
        canvas->getGrContext()->dumpGpuStats(log);
    }
    dst->allocPixels(info);
    canvas->readPixels(dst, 0, 0);
    if (FLAGS_abandonGpuContext) {
        factory.abandonContexts();
    }
    return "";
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

static Error draw_skdocument(const Src& src, SkDocument* doc, SkWStream* dst) {
    // Print the given DM:Src to a document, breaking on 8.5x11 pages.
    SkASSERT(doc);
    int width  = src.size().width(),
        height = src.size().height();

    if (FLAGS_multiPage) {
        const int kLetterWidth = 612,  // 8.5 * 72
                kLetterHeight = 792;   // 11 * 72
        const SkRect letter = SkRect::MakeWH(SkIntToScalar(kLetterWidth),
                                             SkIntToScalar(kLetterHeight));

        int xPages = ((width - 1) / kLetterWidth) + 1;
        int yPages = ((height - 1) / kLetterHeight) + 1;

        for (int y = 0; y < yPages; ++y) {
            for (int x = 0; x < xPages; ++x) {
                int w = SkTMin(kLetterWidth, width - (x * kLetterWidth));
                int h = SkTMin(kLetterHeight, height - (y * kLetterHeight));
                SkCanvas* canvas =
                        doc->beginPage(SkIntToScalar(w), SkIntToScalar(h));
                if (!canvas) {
                    return "SkDocument::beginPage(w,h) returned NULL";
                }
                canvas->clipRect(letter);
                canvas->translate(-letter.width() * x, -letter.height() * y);
                Error err = src.draw(canvas);
                if (!err.isEmpty()) {
                    return err;
                }
                doc->endPage();
            }
        }
    } else {
        SkCanvas* canvas =
                doc->beginPage(SkIntToScalar(width), SkIntToScalar(height));
        if (!canvas) {
            return "SkDocument::beginPage(w,h) returned NULL";
        }
        Error err = src.draw(canvas);
        if (!err.isEmpty()) {
            return err;
        }
        doc->endPage();
    }
    if (!doc->close()) {
        return "SkDocument::close() returned false";
    }
    dst->flush();
    return "";
}

PDFSink::PDFSink() {}

Error PDFSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
    SkAutoTUnref<SkDocument> doc(SkDocument::CreatePDF(dst));
    if (!doc) {
        return "SkDocument::CreatePDF() returned NULL";
    }
    return draw_skdocument(src, doc.get(), dst);
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

XPSSink::XPSSink() {}

Error XPSSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
    SkAutoTUnref<SkDocument> doc(SkDocument::CreateXPS(dst));
    if (!doc) {
        return "SkDocument::CreateXPS() returned NULL";
    }
    return draw_skdocument(src, doc.get(), dst);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

SKPSink::SKPSink() {}

Error SKPSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
    SkSize size;
    size = src.size();
    SkPictureRecorder recorder;
    Error err = src.draw(recorder.beginRecording(size.width(), size.height()));
    if (!err.isEmpty()) {
        return err;
    }
    SkAutoTUnref<SkPicture> pic(recorder.endRecording());
    pic->serialize(dst);
    return "";
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

SVGSink::SVGSink() {}

Error SVGSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
    SkAutoTDelete<SkXMLWriter> xmlWriter(SkNEW_ARGS(SkXMLStreamWriter, (dst)));
    SkAutoTUnref<SkCanvas> canvas(SkSVGCanvas::Create(
        SkRect::MakeWH(SkIntToScalar(src.size().width()), SkIntToScalar(src.size().height())),
        xmlWriter));
    return src.draw(canvas);
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

RasterSink::RasterSink(SkColorType colorType) : fColorType(colorType) {}

Error RasterSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString*) const {
    const SkISize size = src.size();
    // If there's an appropriate alpha type for this color type, use it, otherwise use premul.
    SkAlphaType alphaType = kPremul_SkAlphaType;
    (void)SkColorTypeValidateAlphaType(fColorType, alphaType, &alphaType);

    dst->allocPixels(SkImageInfo::Make(size.width(), size.height(), fColorType, alphaType));
    dst->eraseColor(SK_ColorTRANSPARENT);
    SkCanvas canvas(*dst);
    return src.draw(&canvas);
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

// Handy for front-patching a Src.  Do whatever up-front work you need, then call draw_to_canvas(),
// passing the Sink draw() arguments, a size, and a function draws into an SkCanvas.
// Several examples below.

static Error draw_to_canvas(Sink* sink, SkBitmap* bitmap, SkWStream* stream, SkString* log,
                            SkISize size, SkFunction<Error(SkCanvas*)> draw) {
    class ProxySrc : public Src {
    public:
        ProxySrc(SkISize size, SkFunction<Error(SkCanvas*)> draw) : fSize(size), fDraw(draw) {}
        Error   draw(SkCanvas* canvas) const override { return fDraw(canvas); }
        Name                    name() const override { sk_throw(); return ""; } // Won't be called.
        SkISize                 size() const override { return fSize; }
    private:
        SkISize                      fSize;
        SkFunction<Error(SkCanvas*)> fDraw;
    };
    return sink->draw(ProxySrc(size, draw), bitmap, stream, log);
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

static SkISize auto_compute_translate(SkMatrix* matrix, int srcW, int srcH) {
    SkRect bounds = SkRect::MakeIWH(srcW, srcH);
    matrix->mapRect(&bounds);
    matrix->postTranslate(-bounds.x(), -bounds.y());
    return SkISize::Make(SkScalarRoundToInt(bounds.width()), SkScalarRoundToInt(bounds.height()));
}

ViaMatrix::ViaMatrix(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {}

Error ViaMatrix::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
    SkMatrix matrix = fMatrix;
    SkISize size = auto_compute_translate(&matrix, src.size().width(), src.size().height());
    return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) {
        canvas->concat(matrix);
        return src.draw(canvas);
    });
}

// Undoes any flip or 90 degree rotate without changing the scale of the bitmap.
// This should be pixel-preserving.
ViaUpright::ViaUpright(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {}

Error ViaUpright::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
    Error err = fSink->draw(src, bitmap, stream, log);
    if (!err.isEmpty()) {
        return err;
    }

    SkMatrix inverse;
    if (!fMatrix.rectStaysRect() || !fMatrix.invert(&inverse)) {
        return "Cannot upright --matrix.";
    }
    SkMatrix upright = SkMatrix::I();
    upright.setScaleX(SkScalarSignAsScalar(inverse.getScaleX()));
    upright.setScaleY(SkScalarSignAsScalar(inverse.getScaleY()));
    upright.setSkewX(SkScalarSignAsScalar(inverse.getSkewX()));
    upright.setSkewY(SkScalarSignAsScalar(inverse.getSkewY()));

    SkBitmap uprighted;
    SkISize size = auto_compute_translate(&upright, bitmap->width(), bitmap->height());
    uprighted.allocPixels(bitmap->info().makeWH(size.width(), size.height()));

    SkCanvas canvas(uprighted);
    canvas.concat(upright);
    SkPaint paint;
    paint.setXfermodeMode(SkXfermode::kSrc_Mode);
    canvas.drawBitmap(*bitmap, 0, 0, &paint);

    *bitmap = uprighted;
    bitmap->lockPixels();
    return "";
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

Error ViaPipe::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
    auto size = src.size();
    return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) {
        PipeController controller(canvas, &SkImageDecoder::DecodeMemory);
        SkGPipeWriter pipe;
        const uint32_t kFlags = 0; // We mirror SkDeferredCanvas, which doesn't use any flags.
        return src.draw(pipe.startRecording(&controller, kFlags, size.width(), size.height()));
    });
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

Error ViaDeferred::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
    // We draw via a deferred canvas into a surface that's compatible with the original canvas,
    // then snap that surface as an image and draw it into the original canvas.
    return draw_to_canvas(fSink, bitmap, stream, log, src.size(), [&](SkCanvas* canvas) -> Error {
        SkAutoTUnref<SkSurface> surface(canvas->newSurface(canvas->imageInfo()));
        if (!surface.get()) {
            return "can't make surface for deferred canvas";
        }
        SkAutoTDelete<SkDeferredCanvas> defcan(SkDeferredCanvas::Create(surface));
        Error err = src.draw(defcan);
        if (!err.isEmpty()) {
            return err;
        }
        SkAutoTUnref<SkImage> image(defcan->newImageSnapshot());
        if (!image) {
            return "failed to create deferred image snapshot";
        }
        canvas->drawImage(image, 0, 0, NULL);
        return "";
    });
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

Error ViaSerialization::draw(
        const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
    // Record our Src into a picture.
    auto size = src.size();
    SkPictureRecorder recorder;
    Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()),
                                                 SkIntToScalar(size.height())));
    if (!err.isEmpty()) {
        return err;
    }
    SkAutoTUnref<SkPicture> pic(recorder.endRecording());

    // Serialize it and then deserialize it.
    SkDynamicMemoryWStream wStream;
    pic->serialize(&wStream);
    SkAutoTDelete<SkStream> rStream(wStream.detachAsStream());
    SkAutoTUnref<SkPicture> deserialized(SkPicture::CreateFromStream(rStream, &lazy_decode_bitmap));

    return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) {
        canvas->drawPicture(deserialized);
        return "";
    });
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

ViaTiles::ViaTiles(int w, int h, SkBBHFactory* factory, Sink* sink)
    : Via(sink)
    , fW(w)
    , fH(h)
    , fFactory(factory) {}

Error ViaTiles::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
    auto size = src.size();
    SkPictureRecorder recorder;
    Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()),
                                                 SkIntToScalar(size.height()),
                                                 fFactory.get()));
    if (!err.isEmpty()) {
        return err;
    }
    SkAutoTUnref<SkPicture> pic(recorder.endRecordingAsPicture());

    return draw_to_canvas(fSink, bitmap, stream, log, src.size(), [&](SkCanvas* canvas) {
        const int xTiles = (size.width()  + fW - 1) / fW,
                  yTiles = (size.height() + fH - 1) / fH;
        SkMultiPictureDraw mpd(xTiles*yTiles);
        SkTDArray<SkSurface*> surfaces;
        surfaces.setReserve(xTiles*yTiles);

        SkImageInfo info = canvas->imageInfo().makeWH(fW, fH);
        for (int j = 0; j < yTiles; j++) {
            for (int i = 0; i < xTiles; i++) {
                // This lets our ultimate Sink determine the best kind of surface.
                // E.g., if it's a GpuSink, the surfaces and images are textures.
                SkSurface* s = canvas->newSurface(info);
                if (!s) {
                    s = SkSurface::NewRaster(info);  // Some canvases can't create surfaces.
                }
                surfaces.push(s);
                SkCanvas* c = s->getCanvas();
                c->translate(SkIntToScalar(-i * fW),
                             SkIntToScalar(-j * fH));  // Line up the canvas with this tile.
                mpd.add(c, pic);
            }
        }
        mpd.draw();
        for (int j = 0; j < yTiles; j++) {
            for (int i = 0; i < xTiles; i++) {
                SkAutoTUnref<SkImage> image(surfaces[i+xTiles*j]->newImageSnapshot());
                canvas->drawImage(image, SkIntToScalar(i*fW), SkIntToScalar(j*fH));
            }
        }
        surfaces.unrefAll();
        return "";
    });
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

// Draw the Src into two pictures, then draw the second picture into the wrapped Sink.
// This tests that any shortcuts we may take while recording that second picture are legal.
Error ViaSecondPicture::draw(
        const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
    auto size = src.size();
    return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error {
        SkPictureRecorder recorder;
        SkAutoTUnref<SkPicture> pic;
        for (int i = 0; i < 2; i++) {
            Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()),
                                                         SkIntToScalar(size.height())));
            if (!err.isEmpty()) {
                return err;
            }
            pic.reset(recorder.endRecordingAsPicture());
        }
        canvas->drawPicture(pic);
        return "";
    });
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

// Draw the Src twice.  This can help exercise caching.
Error ViaTwice::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
    return draw_to_canvas(fSink, bitmap, stream, log, src.size(), [&](SkCanvas* canvas) -> Error {
        for (int i = 0; i < 2; i++) {
            SkAutoCanvasRestore acr(canvas, true/*save now*/);
            canvas->clear(SK_ColorTRANSPARENT);
            Error err = src.draw(canvas);
            if (err.isEmpty()) {
                return err;
            }
        }
        return "";
    });
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

// This is like SkRecords::Draw, in that it plays back SkRecords ops into a Canvas.
// Unlike SkRecords::Draw, it builds a single-op sub-picture out of each Draw-type op.
// This is an only-slightly-exaggerated simluation of Blink's Slimming Paint pictures.
struct DrawsAsSingletonPictures {
    SkCanvas* fCanvas;

    SK_CREATE_MEMBER_DETECTOR(paint);

    template <typename T>
    void draw(const T& op, SkCanvas* canvas) {
        // We must pass SkMatrix::I() as our initial matrix.
        // By default SkRecords::Draw() uses the canvas' matrix as its initial matrix,
        // which would have the funky effect of applying transforms over and over.
        SkRecords::Draw(canvas, nullptr, nullptr, 0, &SkMatrix::I())(op);
    }

    // Most things that have paints are Draw-type ops.  Create sub-pictures for each.
    template <typename T>
    SK_WHEN(HasMember_paint<T>, void) operator()(const T& op) {
        SkPictureRecorder rec;
        this->draw(op, rec.beginRecording(SkRect::MakeLargest()));
        SkAutoTUnref<SkPicture> pic(rec.endRecordingAsPicture());
        fCanvas->drawPicture(pic);
    }

    // If you don't have a paint or are a SaveLayer, you're not a Draw-type op.
    // We cannot make subpictures out of these because they affect state.  Draw them directly.
    template <typename T>
    SK_WHEN(!HasMember_paint<T>, void) operator()(const T& op) { this->draw(op, fCanvas); }
    void operator()(const SkRecords::SaveLayer& op)            { this->draw(op, fCanvas); }
};

// Record Src into a picture, then record it into a macro picture with a sub-picture for each draw.
// Then play back that macro picture into our wrapped sink.
Error ViaSingletonPictures::draw(
        const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
    auto size = src.size();
    return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error {
        // Use low-level (Skia-private) recording APIs so we can read the SkRecord.
        SkRecord skr;
        SkRecorder recorder(&skr, size.width(), size.height());
        Error err = src.draw(&recorder);
        if (!err.isEmpty()) {
            return err;
        }

        // Record our macro-picture, with each draw op as its own sub-picture.
        SkPictureRecorder macroRec;
        SkCanvas* macroCanvas = macroRec.beginRecording(SkIntToScalar(size.width()),
                                                        SkIntToScalar(size.height()));
        DrawsAsSingletonPictures drawsAsSingletonPictures = { macroCanvas };
        for (unsigned i = 0; i < skr.count(); i++) {
            skr.visit<void>(i, drawsAsSingletonPictures);
        }
        SkAutoTUnref<SkPicture> macroPic(macroRec.endRecordingAsPicture());

        canvas->drawPicture(macroPic);
        return "";
    });
}

}  // namespace DM