aboutsummaryrefslogtreecommitdiffhomepage
path: root/dm/DMSrcSink.cpp
blob: 2a0b59841cd86c405ed9ac2d6284aef8f6e536b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
/*
 * Copyright 2015 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "DMSrcSink.h"
#include "Resources.h"
#include "SkAndroidCodec.h"
#include "SkAutoMalloc.h"
#include "SkBase64.h"
#include "SkCodec.h"
#include "SkCodecImageGenerator.h"
#include "SkColorSpace.h"
#include "SkColorSpaceXform.h"
#include "SkColorSpaceXformCanvas.h"
#include "SkColorSpace_XYZ.h"
#include "SkCommonFlags.h"
#include "SkData.h"
#include "SkDebugCanvas.h"
#include "SkDeferredCanvas.h"
#include "SkDeferredDisplayListRecorder.h"
#include "SkDocument.h"
#include "SkExecutor.h"
#include "SkImageGenerator.h"
#include "SkImageGeneratorCG.h"
#include "SkImageGeneratorWIC.h"
#include "SkLiteDL.h"
#include "SkLiteRecorder.h"
#include "SkMallocPixelRef.h"
#include "SkMultiPictureDocumentPriv.h"
#include "SkMultiPictureDraw.h"
#include "SkNullCanvas.h"
#include "SkOSFile.h"
#include "SkOSPath.h"
#include "SkOpts.h"
#include "SkPictureData.h"
#include "SkPictureRecorder.h"
#include "SkPipe.h"
#include "SkPngEncoder.h"
#include "SkRandom.h"
#include "SkRecordDraw.h"
#include "SkRecorder.h"
#include "SkSurfaceCharacterization.h"
#include "SkSVGCanvas.h"
#include "SkStream.h"
#include "SkSwizzler.h"
#include "SkTaskGroup.h"
#include "SkTLogic.h"
#include <cmath>
#include <functional>
#include "../src/jumper/SkJumper.h"

#if defined(SK_BUILD_FOR_WIN)
    #include "SkAutoCoInitialize.h"
    #include "SkHRESULT.h"
    #include "SkTScopedComPtr.h"
    #include <XpsObjectModel.h>
#endif

#if defined(SK_XML)
    #include "SkSVGDOM.h"
    #include "SkXMLWriter.h"
#endif

DEFINE_bool(multiPage, false, "For document-type backends, render the source"
            " into multiple pages");
DEFINE_bool(RAW_threading, true, "Allow RAW decodes to run on multiple threads?");
DECLARE_int32(gpuThreads);

using sk_gpu_test::GrContextFactory;

namespace DM {

GMSrc::GMSrc(skiagm::GMRegistry::Factory factory) : fFactory(factory) {}

Error GMSrc::draw(SkCanvas* canvas) const {
    std::unique_ptr<skiagm::GM> gm(fFactory(nullptr));
    gm->draw(canvas);
    return "";
}

SkISize GMSrc::size() const {
    std::unique_ptr<skiagm::GM> gm(fFactory(nullptr));
    return gm->getISize();
}

Name GMSrc::name() const {
    std::unique_ptr<skiagm::GM> gm(fFactory(nullptr));
    return gm->getName();
}

void GMSrc::modifyGrContextOptions(GrContextOptions* options) const {
    std::unique_ptr<skiagm::GM> gm(fFactory(nullptr));
    gm->modifyGrContextOptions(options);
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

BRDSrc::BRDSrc(Path path, Mode mode, CodecSrc::DstColorType dstColorType, uint32_t sampleSize)
    : fPath(path)
    , fMode(mode)
    , fDstColorType(dstColorType)
    , fSampleSize(sampleSize)
{}

bool BRDSrc::veto(SinkFlags flags) const {
    // No need to test to non-raster or indirect backends.
    return flags.type != SinkFlags::kRaster
        || flags.approach != SinkFlags::kDirect;
}

static SkBitmapRegionDecoder* create_brd(Path path) {
    sk_sp<SkData> encoded(SkData::MakeFromFileName(path.c_str()));
    if (!encoded) {
        return nullptr;
    }
    return SkBitmapRegionDecoder::Create(encoded, SkBitmapRegionDecoder::kAndroidCodec_Strategy);
}

static inline void alpha8_to_gray8(SkBitmap* bitmap) {
    // Android requires kGray8 bitmaps to be tagged as kAlpha8.  Here we convert
    // them back to kGray8 so our test framework can draw them correctly.
    if (kAlpha_8_SkColorType == bitmap->info().colorType()) {
        SkImageInfo newInfo = bitmap->info().makeColorType(kGray_8_SkColorType)
                                            .makeAlphaType(kOpaque_SkAlphaType);
        *const_cast<SkImageInfo*>(&bitmap->info()) = newInfo;
    }
}

Error BRDSrc::draw(SkCanvas* canvas) const {
    if (canvas->imageInfo().colorSpace() &&
            kRGBA_F16_SkColorType != canvas->imageInfo().colorType()) {
        // SkAndroidCodec uses legacy premultiplication and blending.  Therefore, we only
        // run these tests on legacy canvases.
        // We allow an exception for F16, since Android uses F16.
        return Error::Nonfatal("Skip testing to color correct canvas.");
    }

    SkColorType colorType = canvas->imageInfo().colorType();
    if (kRGB_565_SkColorType == colorType &&
            CodecSrc::kGetFromCanvas_DstColorType != fDstColorType) {
        return Error::Nonfatal("Testing non-565 to 565 is uninteresting.");
    }
    switch (fDstColorType) {
        case CodecSrc::kGetFromCanvas_DstColorType:
            break;
        case CodecSrc::kGrayscale_Always_DstColorType:
            colorType = kGray_8_SkColorType;
            break;
        default:
            SkASSERT(false);
            break;
    }

    std::unique_ptr<SkBitmapRegionDecoder> brd(create_brd(fPath));
    if (nullptr == brd.get()) {
        return Error::Nonfatal(SkStringPrintf("Could not create brd for %s.", fPath.c_str()));
    }

    if (kRGB_565_SkColorType == colorType) {
        auto recommendedCT = brd->computeOutputColorType(colorType);
        if (recommendedCT != colorType) {
            return Error::Nonfatal("Skip decoding non-opaque to 565.");
        }
    }

    const uint32_t width = brd->width();
    const uint32_t height = brd->height();
    // Visually inspecting very small output images is not necessary.
    if ((width / fSampleSize <= 10 || height / fSampleSize <= 10) && 1 != fSampleSize) {
        return Error::Nonfatal("Scaling very small images is uninteresting.");
    }
    switch (fMode) {
        case kFullImage_Mode: {
            SkBitmap bitmap;
            if (!brd->decodeRegion(&bitmap, nullptr, SkIRect::MakeXYWH(0, 0, width, height),
                    fSampleSize, colorType, false, SkColorSpace::MakeSRGB())) {
                return "Cannot decode (full) region.";
            }
            alpha8_to_gray8(&bitmap);

            canvas->drawBitmap(bitmap, 0, 0);
            return "";
        }
        case kDivisor_Mode: {
            const uint32_t divisor = 2;
            if (width < divisor || height < divisor) {
                return Error::Nonfatal("Divisor is larger than image dimension.");
            }

            // Use a border to test subsets that extend outside the image.
            // We will not allow the border to be larger than the image dimensions.  Allowing
            // these large borders causes off by one errors that indicate a problem with the
            // test suite, not a problem with the implementation.
            const uint32_t maxBorder = SkTMin(width, height) / (fSampleSize * divisor);
            const uint32_t scaledBorder = SkTMin(5u, maxBorder);
            const uint32_t unscaledBorder = scaledBorder * fSampleSize;

            // We may need to clear the canvas to avoid uninitialized memory.
            // Assume we are scaling a 780x780 image with sampleSize = 8.
            // The output image should be 97x97.
            // Each subset will be 390x390.
            // Each scaled subset be 48x48.
            // Four scaled subsets will only fill a 96x96 image.
            // The bottom row and last column will not be touched.
            // This is an unfortunate result of our rounding rules when scaling.
            // Maybe we need to consider testing scaled subsets without trying to
            // combine them to match the full scaled image?  Or maybe this is the
            // best we can do?
            canvas->clear(0);

            for (uint32_t x = 0; x < divisor; x++) {
                for (uint32_t y = 0; y < divisor; y++) {
                    // Calculate the subset dimensions
                    uint32_t subsetWidth = width / divisor;
                    uint32_t subsetHeight = height / divisor;
                    const int left = x * subsetWidth;
                    const int top = y * subsetHeight;

                    // Increase the size of the last subset in each row or column, when the
                    // divisor does not divide evenly into the image dimensions
                    subsetWidth += (x + 1 == divisor) ? (width % divisor) : 0;
                    subsetHeight += (y + 1 == divisor) ? (height % divisor) : 0;

                    // Increase the size of the subset in order to have a border on each side
                    const int decodeLeft = left - unscaledBorder;
                    const int decodeTop = top - unscaledBorder;
                    const uint32_t decodeWidth = subsetWidth + unscaledBorder * 2;
                    const uint32_t decodeHeight = subsetHeight + unscaledBorder * 2;
                    SkBitmap bitmap;
                    if (!brd->decodeRegion(&bitmap, nullptr, SkIRect::MakeXYWH(decodeLeft,
                            decodeTop, decodeWidth, decodeHeight), fSampleSize, colorType, false,
                            SkColorSpace::MakeSRGB())) {
                        return "Cannot decode region.";
                    }

                    alpha8_to_gray8(&bitmap);
                    canvas->drawBitmapRect(bitmap,
                            SkRect::MakeXYWH((SkScalar) scaledBorder, (SkScalar) scaledBorder,
                                    (SkScalar) (subsetWidth / fSampleSize),
                                    (SkScalar) (subsetHeight / fSampleSize)),
                            SkRect::MakeXYWH((SkScalar) (left / fSampleSize),
                                    (SkScalar) (top / fSampleSize),
                                    (SkScalar) (subsetWidth / fSampleSize),
                                    (SkScalar) (subsetHeight / fSampleSize)),
                            nullptr);
                }
            }
            return "";
        }
        default:
            SkASSERT(false);
            return "Error: Should not be reached.";
    }
}

SkISize BRDSrc::size() const {
    std::unique_ptr<SkBitmapRegionDecoder> brd(create_brd(fPath));
    if (brd) {
        return {SkTMax(1, brd->width() / (int)fSampleSize),
                SkTMax(1, brd->height() / (int)fSampleSize)};
    }
    return {0, 0};
}

static SkString get_scaled_name(const Path& path, float scale) {
    return SkStringPrintf("%s_%.3f", SkOSPath::Basename(path.c_str()).c_str(), scale);
}

Name BRDSrc::name() const {
    // We will replicate the names used by CodecSrc so that images can
    // be compared in Gold.
    if (1 == fSampleSize) {
        return SkOSPath::Basename(fPath.c_str());
    }
    return get_scaled_name(fPath, 1.0f / (float) fSampleSize);
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

static bool serial_from_path_name(const SkString& path) {
    if (!FLAGS_RAW_threading) {
        static const char* const exts[] = {
            "arw", "cr2", "dng", "nef", "nrw", "orf", "raf", "rw2", "pef", "srw",
            "ARW", "CR2", "DNG", "NEF", "NRW", "ORF", "RAF", "RW2", "PEF", "SRW",
        };
        const char* actualExt = strrchr(path.c_str(), '.');
        if (actualExt) {
            actualExt++;
            for (auto* ext : exts) {
                if (0 == strcmp(ext, actualExt)) {
                    return true;
                }
            }
        }
    }
    return false;
}

CodecSrc::CodecSrc(Path path, Mode mode, DstColorType dstColorType, SkAlphaType dstAlphaType,
                   float scale)
    : fPath(path)
    , fMode(mode)
    , fDstColorType(dstColorType)
    , fDstAlphaType(dstAlphaType)
    , fScale(scale)
    , fRunSerially(serial_from_path_name(path))
{}

bool CodecSrc::veto(SinkFlags flags) const {
    // Test to direct raster backends (8888 and 565).
    return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect;
}

// Allows us to test decodes to non-native 8888.
static void swap_rb_if_necessary(SkBitmap& bitmap, CodecSrc::DstColorType dstColorType) {
    if (CodecSrc::kNonNative8888_Always_DstColorType != dstColorType) {
        return;
    }

    for (int y = 0; y < bitmap.height(); y++) {
        uint32_t* row = (uint32_t*) bitmap.getAddr(0, y);
        SkOpts::RGBA_to_BGRA(row, row, bitmap.width());
    }
}

// FIXME: Currently we cannot draw unpremultiplied sources. skbug.com/3338 and skbug.com/3339.
// This allows us to still test unpremultiplied decodes.
static void premultiply_if_necessary(SkBitmap& bitmap) {
    if (kUnpremul_SkAlphaType != bitmap.alphaType()) {
        return;
    }

    switch (bitmap.colorType()) {
        case kRGBA_F16_SkColorType: {
            SkJumper_MemoryCtx ctx = { bitmap.getAddr(0,0), bitmap.rowBytesAsPixels() };
            SkRasterPipeline_<256> p;
            p.append(SkRasterPipeline::load_f16, &ctx);
            p.append(SkRasterPipeline::premul);
            p.append(SkRasterPipeline::store_f16, &ctx);
            p.run(0,0, bitmap.width(), bitmap.height());
        }
            break;
        case kN32_SkColorType:
            for (int y = 0; y < bitmap.height(); y++) {
                uint32_t* row = (uint32_t*) bitmap.getAddr(0, y);
                SkOpts::RGBA_to_rgbA(row, row, bitmap.width());
            }
            break;
        default:
            // No need to premultiply kGray or k565 outputs.
            break;
    }

    // In the kIndex_8 case, the canvas won't even try to draw unless we mark the
    // bitmap as kPremul.
    bitmap.setAlphaType(kPremul_SkAlphaType);
}

static bool get_decode_info(SkImageInfo* decodeInfo, SkColorType canvasColorType,
                            CodecSrc::DstColorType dstColorType, SkAlphaType dstAlphaType) {
    switch (dstColorType) {
        case CodecSrc::kGrayscale_Always_DstColorType:
            if (kRGB_565_SkColorType == canvasColorType) {
                return false;
            }
            *decodeInfo = decodeInfo->makeColorType(kGray_8_SkColorType);
            break;
        case CodecSrc::kNonNative8888_Always_DstColorType:
            if (kRGB_565_SkColorType == canvasColorType
                    || kRGBA_F16_SkColorType == canvasColorType) {
                return false;
            }
#ifdef SK_PMCOLOR_IS_RGBA
            *decodeInfo = decodeInfo->makeColorType(kBGRA_8888_SkColorType);
#else
            *decodeInfo = decodeInfo->makeColorType(kRGBA_8888_SkColorType);
#endif
            break;
        default:
            if (kRGB_565_SkColorType == canvasColorType &&
                    kOpaque_SkAlphaType != decodeInfo->alphaType()) {
                return false;
            }

            if (kRGBA_F16_SkColorType == canvasColorType) {
                sk_sp<SkColorSpace> linearSpace =
                        as_CSB(decodeInfo->colorSpace())->makeLinearGamma();
                *decodeInfo = decodeInfo->makeColorSpace(std::move(linearSpace));
            }

            *decodeInfo = decodeInfo->makeColorType(canvasColorType);
            break;
    }

    *decodeInfo = decodeInfo->makeAlphaType(dstAlphaType);
    return true;
}

static void draw_to_canvas(SkCanvas* canvas, const SkImageInfo& info, void* pixels, size_t rowBytes,
                           CodecSrc::DstColorType dstColorType,
                           SkScalar left = 0, SkScalar top = 0) {
    SkBitmap bitmap;
    bitmap.installPixels(info, pixels, rowBytes);
    premultiply_if_necessary(bitmap);
    swap_rb_if_necessary(bitmap, dstColorType);
    canvas->drawBitmap(bitmap, left, top);
}

// For codec srcs, we want the "draw" step to be a memcpy.  Any interesting color space or
// color format conversions should be performed by the codec.  Sometimes the output of the
// decode will be in an interesting color space.  On our srgb and f16 backends, we need to
// "pretend" that the color space is standard sRGB to avoid triggering color conversion
// at draw time.
static void set_bitmap_color_space(SkImageInfo* info) {
    if (kRGBA_F16_SkColorType == info->colorType()) {
        *info = info->makeColorSpace(SkColorSpace::MakeSRGBLinear());
    } else {
        *info = info->makeColorSpace(SkColorSpace::MakeSRGB());
    }
}

Error CodecSrc::draw(SkCanvas* canvas) const {
    sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
    if (!encoded) {
        return SkStringPrintf("Couldn't read %s.", fPath.c_str());
    }

    std::unique_ptr<SkCodec> codec(SkCodec::MakeFromData(encoded));
    if (nullptr == codec.get()) {
        return SkStringPrintf("Couldn't create codec for %s.", fPath.c_str());
    }

    SkImageInfo decodeInfo = codec->getInfo();
    if (!get_decode_info(&decodeInfo, canvas->imageInfo().colorType(), fDstColorType,
                         fDstAlphaType)) {
        return Error::Nonfatal("Skipping uninteresting test.");
    }

    // Try to scale the image if it is desired
    SkISize size = codec->getScaledDimensions(fScale);
    if (size == decodeInfo.dimensions() && 1.0f != fScale) {
        return Error::Nonfatal("Test without scaling is uninteresting.");
    }

    // Visually inspecting very small output images is not necessary.  We will
    // cover these cases in unit testing.
    if ((size.width() <= 10 || size.height() <= 10) && 1.0f != fScale) {
        return Error::Nonfatal("Scaling very small images is uninteresting.");
    }
    decodeInfo = decodeInfo.makeWH(size.width(), size.height());

    const int bpp = SkColorTypeBytesPerPixel(decodeInfo.colorType());
    const size_t rowBytes = size.width() * bpp;
    const size_t safeSize = decodeInfo.getSafeSize(rowBytes);
    SkAutoMalloc pixels(safeSize);

    SkCodec::Options options;
    options.fPremulBehavior = canvas->imageInfo().colorSpace() ?
            SkTransferFunctionBehavior::kRespect : SkTransferFunctionBehavior::kIgnore;
    if (kCodecZeroInit_Mode == fMode) {
        memset(pixels.get(), 0, size.height() * rowBytes);
        options.fZeroInitialized = SkCodec::kYes_ZeroInitialized;
    }

    SkImageInfo bitmapInfo = decodeInfo;
    set_bitmap_color_space(&bitmapInfo);
    if (kRGBA_8888_SkColorType == decodeInfo.colorType() ||
            kBGRA_8888_SkColorType == decodeInfo.colorType()) {
        bitmapInfo = bitmapInfo.makeColorType(kN32_SkColorType);
    }

    switch (fMode) {
        case kAnimated_Mode: {
            std::vector<SkCodec::FrameInfo> frameInfos = codec->getFrameInfo();
            if (frameInfos.size() <= 1) {
                return SkStringPrintf("%s is not an animated image.", fPath.c_str());
            }

            // As in CodecSrc::size(), compute a roughly square grid to draw the frames
            // into. "factor" is the number of frames to draw on one row. There will be
            // up to "factor" rows as well.
            const float root = sqrt((float) frameInfos.size());
            const int factor = sk_float_ceil2int(root);

            // Used to cache a frame that future frames will depend on.
            SkAutoMalloc priorFramePixels;
            int cachedFrame = SkCodec::kNone;
            for (int i = 0; static_cast<size_t>(i) < frameInfos.size(); i++) {
                options.fFrameIndex = i;
                // Check for a prior frame
                const int reqFrame = frameInfos[i].fRequiredFrame;
                if (reqFrame != SkCodec::kNone && reqFrame == cachedFrame
                        && priorFramePixels.get()) {
                    // Copy into pixels
                    memcpy(pixels.get(), priorFramePixels.get(), safeSize);
                    options.fPriorFrame = reqFrame;
                } else {
                    options.fPriorFrame = SkCodec::kNone;
                }
                SkCodec::Result result = codec->getPixels(decodeInfo, pixels.get(),
                                                          rowBytes, &options);
                if (SkCodec::kInvalidInput == result && i > 0) {
                    // Some of our test images have truncated later frames. Treat that
                    // the same as incomplete.
                    result = SkCodec::kIncompleteInput;
                }
                switch (result) {
                    case SkCodec::kSuccess:
                    case SkCodec::kErrorInInput:
                    case SkCodec::kIncompleteInput: {
                        // If the next frame depends on this one, store it in priorFrame.
                        // It is possible that we may discard a frame that future frames depend on,
                        // but the codec will simply redecode the discarded frame.
                        // Do this before calling draw_to_canvas, which premultiplies in place. If
                        // we're decoding to unpremul, we want to pass the unmodified frame to the
                        // codec for decoding the next frame.
                        if (static_cast<size_t>(i+1) < frameInfos.size()
                                && frameInfos[i+1].fRequiredFrame == i) {
                            memcpy(priorFramePixels.reset(safeSize), pixels.get(), safeSize);
                            cachedFrame = i;
                        }

                        SkAutoCanvasRestore acr(canvas, true);
                        const int xTranslate = (i % factor) * decodeInfo.width();
                        const int yTranslate = (i / factor) * decodeInfo.height();
                        canvas->translate(SkIntToScalar(xTranslate), SkIntToScalar(yTranslate));
                        draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, fDstColorType);
                        if (result != SkCodec::kSuccess) {
                            return "";
                        }
                        break;
                    }
                    case SkCodec::kInvalidConversion:
                        if (i > 0 && (decodeInfo.colorType() == kRGB_565_SkColorType)) {
                            return Error::Nonfatal(SkStringPrintf(
                                "Cannot decode frame %i to 565 (%s).", i, fPath.c_str()));
                        }
                        // Fall through.
                    default:
                        return SkStringPrintf("Couldn't getPixels for frame %i in %s.",
                                              i, fPath.c_str());
                }
            }
            break;
        }
        case kCodecZeroInit_Mode:
        case kCodec_Mode: {
            switch (codec->getPixels(decodeInfo, pixels.get(), rowBytes, &options)) {
                case SkCodec::kSuccess:
                    // We consider these to be valid, since we should still decode what is
                    // available.
                case SkCodec::kErrorInInput:
                case SkCodec::kIncompleteInput:
                    break;
                default:
                    // Everything else is considered a failure.
                    return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str());
            }

            draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, fDstColorType);
            break;
        }
        case kScanline_Mode: {
            void* dst = pixels.get();
            uint32_t height = decodeInfo.height();
            const bool useIncremental = [this]() {
                auto exts = { "png", "PNG", "gif", "GIF" };
                for (auto ext : exts) {
                    if (fPath.endsWith(ext)) {
                        return true;
                    }
                }
                return false;
            }();
            // ico may use the old scanline method or the new one, depending on whether it
            // internally holds a bmp or a png.
            const bool ico = fPath.endsWith("ico");
            bool useOldScanlineMethod = !useIncremental && !ico;
            if (useIncremental || ico) {
                if (SkCodec::kSuccess == codec->startIncrementalDecode(decodeInfo, dst,
                        rowBytes, &options)) {
                    int rowsDecoded;
                    auto result = codec->incrementalDecode(&rowsDecoded);
                    if (SkCodec::kIncompleteInput == result || SkCodec::kErrorInInput == result) {
                        codec->fillIncompleteImage(decodeInfo, dst, rowBytes,
                                                   SkCodec::kNo_ZeroInitialized, height,
                                                   rowsDecoded);
                    }
                } else {
                    if (useIncremental) {
                        // Error: These should support incremental decode.
                        return "Could not start incremental decode";
                    }
                    // Otherwise, this is an ICO. Since incremental failed, it must contain a BMP,
                    // which should work via startScanlineDecode
                    useOldScanlineMethod = true;
                }
            }

            if (useOldScanlineMethod) {
                if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo)) {
                    return "Could not start scanline decoder";
                }

                switch (codec->getScanlineOrder()) {
                    case SkCodec::kTopDown_SkScanlineOrder:
                    case SkCodec::kBottomUp_SkScanlineOrder:
                        // We do not need to check the return value.  On an incomplete
                        // image, memory will be filled with a default value.
                        codec->getScanlines(dst, height, rowBytes);
                        break;
                }
            }

            draw_to_canvas(canvas, bitmapInfo, dst, rowBytes, fDstColorType);
            break;
        }
        case kStripe_Mode: {
            const int height = decodeInfo.height();
            // This value is chosen arbitrarily.  We exercise more cases by choosing a value that
            // does not align with image blocks.
            const int stripeHeight = 37;
            const int numStripes = (height + stripeHeight - 1) / stripeHeight;
            void* dst = pixels.get();

            // Decode odd stripes
            if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, &options)) {
                return "Could not start scanline decoder";
            }

            // This mode was designed to test the new skip scanlines API in libjpeg-turbo.
            // Jpegs have kTopDown_SkScanlineOrder, and at this time, it is not interesting
            // to run this test for image types that do not have this scanline ordering.
            // We only run this on Jpeg, which is always kTopDown.
            SkASSERT(SkCodec::kTopDown_SkScanlineOrder == codec->getScanlineOrder());

            for (int i = 0; i < numStripes; i += 2) {
                // Skip a stripe
                const int linesToSkip = SkTMin(stripeHeight, height - i * stripeHeight);
                codec->skipScanlines(linesToSkip);

                // Read a stripe
                const int startY = (i + 1) * stripeHeight;
                const int linesToRead = SkTMin(stripeHeight, height - startY);
                if (linesToRead > 0) {
                    codec->getScanlines(SkTAddOffset<void>(dst, rowBytes * startY), linesToRead,
                                        rowBytes);
                }
            }

            // Decode even stripes
            const SkCodec::Result startResult = codec->startScanlineDecode(decodeInfo);
            if (SkCodec::kSuccess != startResult) {
                return "Failed to restart scanline decoder with same parameters.";
            }
            for (int i = 0; i < numStripes; i += 2) {
                // Read a stripe
                const int startY = i * stripeHeight;
                const int linesToRead = SkTMin(stripeHeight, height - startY);
                codec->getScanlines(SkTAddOffset<void>(dst, rowBytes * startY), linesToRead,
                                    rowBytes);

                // Skip a stripe
                const int linesToSkip = SkTMin(stripeHeight, height - (i + 1) * stripeHeight);
                if (linesToSkip > 0) {
                    codec->skipScanlines(linesToSkip);
                }
            }

            draw_to_canvas(canvas, bitmapInfo, dst, rowBytes, fDstColorType);
            break;
        }
        case kCroppedScanline_Mode: {
            const int width = decodeInfo.width();
            const int height = decodeInfo.height();
            // This value is chosen because, as we move across the image, it will sometimes
            // align with the jpeg block sizes and it will sometimes not.  This allows us
            // to test interestingly different code paths in the implementation.
            const int tileSize = 36;
            SkIRect subset;
            for (int x = 0; x < width; x += tileSize) {
                subset = SkIRect::MakeXYWH(x, 0, SkTMin(tileSize, width - x), height);
                options.fSubset = &subset;
                if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, &options)) {
                    return "Could not start scanline decoder.";
                }

                codec->getScanlines(SkTAddOffset<void>(pixels.get(), x * bpp), height, rowBytes);
            }

            draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, fDstColorType);
            break;
        }
        case kSubset_Mode: {
            // Arbitrarily choose a divisor.
            int divisor = 2;
            // Total width/height of the image.
            const int W = codec->getInfo().width();
            const int H = codec->getInfo().height();
            if (divisor > W || divisor > H) {
                return Error::Nonfatal(SkStringPrintf("Cannot codec subset: divisor %d is too big "
                                                      "for %s with dimensions (%d x %d)", divisor,
                                                      fPath.c_str(), W, H));
            }
            // subset dimensions
            // SkWebpCodec, the only one that supports subsets, requires even top/left boundaries.
            const int w = SkAlign2(W / divisor);
            const int h = SkAlign2(H / divisor);
            SkIRect subset;
            options.fSubset = &subset;
            SkBitmap subsetBm;
            // We will reuse pixel memory from bitmap.
            void* dst = pixels.get();
            // Keep track of left and top (for drawing subsetBm into canvas). We could use
            // fScale * x and fScale * y, but we want integers such that the next subset will start
            // where the last one ended. So we'll add decodeInfo.width() and height().
            int left = 0;
            for (int x = 0; x < W; x += w) {
                int top = 0;
                for (int y = 0; y < H; y+= h) {
                    // Do not make the subset go off the edge of the image.
                    const int preScaleW = SkTMin(w, W - x);
                    const int preScaleH = SkTMin(h, H - y);
                    subset.setXYWH(x, y, preScaleW, preScaleH);
                    // And scale
                    // FIXME: Should we have a version of getScaledDimensions that takes a subset
                    // into account?
                    const int scaledW = SkTMax(1, SkScalarRoundToInt(preScaleW * fScale));
                    const int scaledH = SkTMax(1, SkScalarRoundToInt(preScaleH * fScale));
                    decodeInfo = decodeInfo.makeWH(scaledW, scaledH);
                    SkImageInfo subsetBitmapInfo = bitmapInfo.makeWH(scaledW, scaledH);
                    size_t subsetRowBytes = subsetBitmapInfo.minRowBytes();
                    const SkCodec::Result result = codec->getPixels(decodeInfo, dst, subsetRowBytes,
                            &options);
                    switch (result) {
                        case SkCodec::kSuccess:
                        case SkCodec::kErrorInInput:
                        case SkCodec::kIncompleteInput:
                            break;
                        default:
                            return SkStringPrintf("subset codec failed to decode (%d, %d, %d, %d) "
                                                  "from %s with dimensions (%d x %d)\t error %d",
                                                  x, y, decodeInfo.width(), decodeInfo.height(),
                                                  fPath.c_str(), W, H, result);
                    }
                    draw_to_canvas(canvas, subsetBitmapInfo, dst, subsetRowBytes, fDstColorType,
                                   SkIntToScalar(left), SkIntToScalar(top));

                    // translate by the scaled height.
                    top += decodeInfo.height();
                }
                // translate by the scaled width.
                left += decodeInfo.width();
            }
            return "";
        }
        default:
            SkASSERT(false);
            return "Invalid fMode";
    }
    return "";
}

SkISize CodecSrc::size() const {
    sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
    std::unique_ptr<SkCodec> codec(SkCodec::MakeFromData(encoded));
    if (nullptr == codec) {
        return {0, 0};
    }

    auto imageSize = codec->getScaledDimensions(fScale);
    if (fMode == kAnimated_Mode) {
        // We'll draw one of each frame, so make it big enough to hold them all
        // in a grid. The grid will be roughly square, with "factor" frames per
        // row and up to "factor" rows.
        const size_t count = codec->getFrameInfo().size();
        const float root = sqrt((float) count);
        const int factor = sk_float_ceil2int(root);
        imageSize.fWidth  = imageSize.fWidth  * factor;
        imageSize.fHeight = imageSize.fHeight * sk_float_ceil2int((float) count / (float) factor);
    }
    return imageSize;
}

Name CodecSrc::name() const {
    if (1.0f == fScale) {
        Name name = SkOSPath::Basename(fPath.c_str());
        if (fMode == kAnimated_Mode) {
            name.append("_animated");
        }
        return name;
    }
    SkASSERT(fMode != kAnimated_Mode);
    return get_scaled_name(fPath, fScale);
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

AndroidCodecSrc::AndroidCodecSrc(Path path, CodecSrc::DstColorType dstColorType,
        SkAlphaType dstAlphaType, int sampleSize)
    : fPath(path)
    , fDstColorType(dstColorType)
    , fDstAlphaType(dstAlphaType)
    , fSampleSize(sampleSize)
    , fRunSerially(serial_from_path_name(path))
{}

bool AndroidCodecSrc::veto(SinkFlags flags) const {
    // No need to test decoding to non-raster or indirect backend.
    return flags.type != SinkFlags::kRaster
        || flags.approach != SinkFlags::kDirect;
}

Error AndroidCodecSrc::draw(SkCanvas* canvas) const {
    if (canvas->imageInfo().colorSpace() &&
            kRGBA_F16_SkColorType != canvas->imageInfo().colorType()) {
        // SkAndroidCodec uses legacy premultiplication and blending.  Therefore, we only
        // run these tests on legacy canvases.
        // We allow an exception for F16, since Android uses F16.
        return Error::Nonfatal("Skip testing to color correct canvas.");
    }

    sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
    if (!encoded) {
        return SkStringPrintf("Couldn't read %s.", fPath.c_str());
    }
    std::unique_ptr<SkAndroidCodec> codec(SkAndroidCodec::MakeFromData(encoded));
    if (nullptr == codec) {
        return SkStringPrintf("Couldn't create android codec for %s.", fPath.c_str());
    }

    SkImageInfo decodeInfo = codec->getInfo();
    if (!get_decode_info(&decodeInfo, canvas->imageInfo().colorType(), fDstColorType,
                         fDstAlphaType)) {
        return Error::Nonfatal("Skipping uninteresting test.");
    }

    // Scale the image if it is desired.
    SkISize size = codec->getSampledDimensions(fSampleSize);

    // Visually inspecting very small output images is not necessary.  We will
    // cover these cases in unit testing.
    if ((size.width() <= 10 || size.height() <= 10) && 1 != fSampleSize) {
        return Error::Nonfatal("Scaling very small images is uninteresting.");
    }
    decodeInfo = decodeInfo.makeWH(size.width(), size.height());

    int bpp = SkColorTypeBytesPerPixel(decodeInfo.colorType());
    size_t rowBytes = size.width() * bpp;
    SkAutoMalloc pixels(size.height() * rowBytes);

    SkBitmap bitmap;
    SkImageInfo bitmapInfo = decodeInfo;
    set_bitmap_color_space(&bitmapInfo);
    if (kRGBA_8888_SkColorType == decodeInfo.colorType() ||
            kBGRA_8888_SkColorType == decodeInfo.colorType()) {
        bitmapInfo = bitmapInfo.makeColorType(kN32_SkColorType);
    }

    // Create options for the codec.
    SkAndroidCodec::AndroidOptions options;
    options.fSampleSize = fSampleSize;

    switch (codec->getAndroidPixels(decodeInfo, pixels.get(), rowBytes, &options)) {
        case SkCodec::kSuccess:
        case SkCodec::kErrorInInput:
        case SkCodec::kIncompleteInput:
            break;
        default:
            return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str());
    }
    draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, fDstColorType);
    return "";
}

SkISize AndroidCodecSrc::size() const {
    sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
    std::unique_ptr<SkAndroidCodec> codec(SkAndroidCodec::MakeFromData(encoded));
    if (nullptr == codec) {
        return {0, 0};
    }
    return codec->getSampledDimensions(fSampleSize);
}

Name AndroidCodecSrc::name() const {
    // We will replicate the names used by CodecSrc so that images can
    // be compared in Gold.
    if (1 == fSampleSize) {
        return SkOSPath::Basename(fPath.c_str());
    }
    return get_scaled_name(fPath, 1.0f / (float) fSampleSize);
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

ImageGenSrc::ImageGenSrc(Path path, Mode mode, SkAlphaType alphaType, bool isGpu)
    : fPath(path)
    , fMode(mode)
    , fDstAlphaType(alphaType)
    , fIsGpu(isGpu)
    , fRunSerially(serial_from_path_name(path))
{}

bool ImageGenSrc::veto(SinkFlags flags) const {
    if (fIsGpu) {
        // MSAA runs tend to run out of memory and tests the same code paths as regular gpu configs.
        return flags.type != SinkFlags::kGPU || flags.approach != SinkFlags::kDirect ||
               flags.multisampled == SinkFlags::kMultisampled;
    }

    return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect;
}

Error ImageGenSrc::draw(SkCanvas* canvas) const {
    if (kRGB_565_SkColorType == canvas->imageInfo().colorType()) {
        return Error::Nonfatal("Uninteresting to test image generator to 565.");
    }

    sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
    if (!encoded) {
        return SkStringPrintf("Couldn't read %s.", fPath.c_str());
    }

#if defined(SK_BUILD_FOR_WIN)
    // Initialize COM in order to test with WIC.
    SkAutoCoInitialize com;
    if (!com.succeeded()) {
        return "Could not initialize COM.";
    }
#endif

    std::unique_ptr<SkImageGenerator> gen(nullptr);
    switch (fMode) {
        case kCodec_Mode:
            gen = SkCodecImageGenerator::MakeFromEncodedCodec(encoded);
            if (!gen) {
                return "Could not create codec image generator.";
            }
            break;
        case kPlatform_Mode: {
#if defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_IOS)
            gen.reset(SkImageGeneratorCG::NewFromEncodedCG(encoded.get()));
#elif defined(SK_BUILD_FOR_WIN)
            gen.reset(SkImageGeneratorWIC::NewFromEncodedWIC(encoded.get()));
#endif

            if (!gen) {
                return "Could not create platform image generator.";
            }
            break;
        }
        default:
            SkASSERT(false);
            return "Invalid image generator mode";
    }

    // Test deferred decoding path on GPU
    if (fIsGpu) {
        sk_sp<SkImage> image(SkImage::MakeFromGenerator(std::move(gen), nullptr));
        if (!image) {
            return "Could not create image from codec image generator.";
        }
        canvas->drawImage(image, 0, 0);
        return "";
    }

    // Test various color and alpha types on CPU
    SkImageInfo decodeInfo = gen->getInfo().makeAlphaType(fDstAlphaType);

    SkImageGenerator::Options options;
    options.fBehavior = canvas->imageInfo().colorSpace() ?
            SkTransferFunctionBehavior::kRespect : SkTransferFunctionBehavior::kIgnore;

    int bpp = SkColorTypeBytesPerPixel(decodeInfo.colorType());
    size_t rowBytes = decodeInfo.width() * bpp;
    SkAutoMalloc pixels(decodeInfo.height() * rowBytes);
    if (!gen->getPixels(decodeInfo, pixels.get(), rowBytes, &options)) {
        SkString err =
                SkStringPrintf("Image generator could not getPixels() for %s\n", fPath.c_str());

#if defined(SK_BUILD_FOR_WIN)
        if (kPlatform_Mode == fMode) {
            // Do not issue a fatal error for WIC flakiness.
            return Error::Nonfatal(err);
        }
#endif

        return err;
    }

    set_bitmap_color_space(&decodeInfo);
    draw_to_canvas(canvas, decodeInfo, pixels.get(), rowBytes,
                   CodecSrc::kGetFromCanvas_DstColorType);
    return "";
}

SkISize ImageGenSrc::size() const {
    sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
    std::unique_ptr<SkCodec> codec(SkCodec::MakeFromData(encoded));
    if (nullptr == codec) {
        return {0, 0};
    }
    return codec->getInfo().dimensions();
}

Name ImageGenSrc::name() const {
    return SkOSPath::Basename(fPath.c_str());
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

ColorCodecSrc::ColorCodecSrc(Path path, Mode mode, SkColorType colorType)
    : fPath(path)
    , fMode(mode)
    , fColorType(colorType)
{}

bool ColorCodecSrc::veto(SinkFlags flags) const {
    // Test to direct raster backends (8888 and 565).
    return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect;
}

void clamp_if_necessary(const SkBitmap& bitmap, SkColorType dstCT) {
    if (kRGBA_F16_SkColorType != bitmap.colorType() || kRGBA_F16_SkColorType == dstCT) {
        // No need to clamp if the dst is F16.  We will clamp when we encode to PNG.
        return;
    }

    SkJumper_MemoryCtx ptr = { bitmap.getAddr(0,0), bitmap.rowBytesAsPixels() };

    SkRasterPipeline_<256> p;
    p.append(SkRasterPipeline::load_f16, &ptr);
    p.append(SkRasterPipeline::clamp_0);
    if (kPremul_SkAlphaType == bitmap.alphaType()) {
        p.append(SkRasterPipeline::clamp_a);
    } else {
        p.append(SkRasterPipeline::clamp_1);
    }
    p.append(SkRasterPipeline::store_f16, &ptr);

    p.run(0,0, bitmap.width(), bitmap.height());
}

Error ColorCodecSrc::draw(SkCanvas* canvas) const {
    if (kRGB_565_SkColorType == canvas->imageInfo().colorType()) {
        return Error::Nonfatal("No need to test color correction to 565 backend.");
    }

    bool runInLegacyMode = kBaseline_Mode == fMode;
    if (runInLegacyMode && canvas->imageInfo().colorSpace()) {
        return Error::Nonfatal("Skipping tests that are only interesting in legacy mode.");
    } else if (!runInLegacyMode && !canvas->imageInfo().colorSpace()) {
        return Error::Nonfatal("Skipping tests that are only interesting in srgb mode.");
    }

    sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
    if (!encoded) {
        return SkStringPrintf("Couldn't read %s.", fPath.c_str());
    }

    std::unique_ptr<SkCodec> codec(SkCodec::MakeFromData(encoded));
    if (nullptr == codec) {
        return SkStringPrintf("Couldn't create codec for %s.", fPath.c_str());
    }

    // Load the dst ICC profile.  This particular dst is fairly similar to Adobe RGB.
    sk_sp<SkData> dstData = SkData::MakeFromFileName(
            GetResourcePath("icc_profiles/HP_ZR30w.icc").c_str());
    if (!dstData) {
        return "Cannot read monitor profile.  Is the resource path set correctly?";
    }

    sk_sp<SkColorSpace> dstSpace = nullptr;
    if (kDst_sRGB_Mode == fMode) {
        dstSpace = SkColorSpace::MakeSRGB();
    } else if (kDst_HPZR30w_Mode == fMode) {
        dstSpace = SkColorSpace::MakeICC(dstData->data(), dstData->size());
    }

    SkImageInfo decodeInfo = codec->getInfo().makeColorType(fColorType).makeColorSpace(dstSpace);
    if (kUnpremul_SkAlphaType == decodeInfo.alphaType()) {
        decodeInfo = decodeInfo.makeAlphaType(kPremul_SkAlphaType);
    }
    if (kRGBA_F16_SkColorType == fColorType) {
        SkASSERT(SkColorSpace_Base::Type::kXYZ == as_CSB(decodeInfo.colorSpace())->type());
        SkColorSpace_XYZ* csXYZ = static_cast<SkColorSpace_XYZ*>(decodeInfo.colorSpace());
        decodeInfo = decodeInfo.makeColorSpace(csXYZ->makeLinearGamma());
    }

    SkImageInfo bitmapInfo = decodeInfo;
    set_bitmap_color_space(&bitmapInfo);
    if (kRGBA_8888_SkColorType == decodeInfo.colorType() ||
        kBGRA_8888_SkColorType == decodeInfo.colorType())
    {
        bitmapInfo = bitmapInfo.makeColorType(kN32_SkColorType);
    }

    SkBitmap bitmap;
    if (!bitmap.tryAllocPixels(bitmapInfo)) {
        return SkStringPrintf("Image(%s) is too large (%d x %d)", fPath.c_str(),
                              bitmapInfo.width(), bitmapInfo.height());
    }

    size_t rowBytes = bitmap.rowBytes();
    SkCodec::Result r = codec->getPixels(decodeInfo, bitmap.getPixels(), rowBytes);
    switch (r) {
        case SkCodec::kSuccess:
        case SkCodec::kErrorInInput:
        case SkCodec::kIncompleteInput:
            break;
        default:
            return SkStringPrintf("Couldn't getPixels %s. Error code %d", fPath.c_str(), r);
    }

    switch (fMode) {
        case kBaseline_Mode:
        case kDst_sRGB_Mode:
        case kDst_HPZR30w_Mode:
            // We do not support drawing unclamped F16.
            clamp_if_necessary(bitmap, canvas->imageInfo().colorType());
            canvas->drawBitmap(bitmap, 0, 0);
            break;
        default:
            SkASSERT(false);
            return "Invalid fMode";
    }
    return "";
}

SkISize ColorCodecSrc::size() const {
    sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
    std::unique_ptr<SkCodec> codec(SkCodec::MakeFromData(encoded));
    if (nullptr == codec) {
        return {0, 0};
    }
    return {codec->getInfo().width(), codec->getInfo().height()};
}

Name ColorCodecSrc::name() const {
    return SkOSPath::Basename(fPath.c_str());
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

static const SkRect kSKPViewport = {0, 0, 1000, 1000};

SKPSrc::SKPSrc(Path path) : fPath(path) { }

static sk_sp<SkPicture> read_skp(const char* path) {
    std::unique_ptr<SkStream> stream = SkStream::MakeFromFile(path);
    if (!stream) {
        return nullptr;
    }
    sk_sp<SkPicture> pic(SkPicture::MakeFromStream(stream.get()));
    if (!pic) {
        return nullptr;
    }
    stream = nullptr;  // Might as well drop this when we're done with it.

    return pic;
}

Error SKPSrc::draw(SkCanvas* canvas) const {
    sk_sp<SkPicture> pic = read_skp(fPath.c_str());
    if (!pic) {
        return SkStringPrintf("Couldn't read %s.", fPath.c_str());
    }

    canvas->clipRect(kSKPViewport);
    canvas->drawPicture(pic);
    return "";
}

static SkRect get_cull_rect_for_skp(const char* path) {
    std::unique_ptr<SkStream> stream = SkStream::MakeFromFile(path);
    if (!stream) {
        return SkRect::MakeEmpty();
    }
    SkPictInfo info;
    if (!SkPicture::InternalOnly_StreamIsSKP(stream.get(), &info)) {
        return SkRect::MakeEmpty();
    }

    return info.fCullRect;
}

SkISize SKPSrc::size() const {
    SkRect viewport = get_cull_rect_for_skp(fPath.c_str());
    if (!viewport.intersect(kSKPViewport)) {
        return {0, 0};
    }
    return viewport.roundOut().size();
}

Name SKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); }

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

static const int kNumDDLXTiles = 4;
static const int kNumDDLYTiles = 4;
static const int kDDLTileSize = 1024;
static const SkRect kDDLSKPViewport = { 0, 0,
                                        kNumDDLXTiles * kDDLTileSize,
                                        kNumDDLYTiles * kDDLTileSize };

DDLSKPSrc::DDLSKPSrc(Path path) : fPath(path) { }

Error DDLSKPSrc::draw(SkCanvas* canvas) const {
    class TileData {
    public:
        // Note: we could just pass in surface characterization
        TileData(sk_sp<SkSurface> surf, const SkIRect& clip)
                : fSurface(std::move(surf))
                , fClip(clip) {
            SkAssertResult(fSurface->characterize(&fCharacterization));
        }

        // This method operates in parallel
        void preprocess(SkPicture* pic) {
            SkDeferredDisplayListRecorder recorder(fCharacterization);

            SkCanvas* subCanvas = recorder.getCanvas();

            subCanvas->clipRect(SkRect::MakeWH(fClip.width(), fClip.height()));
            subCanvas->translate(-fClip.fLeft, -fClip.fTop);

            // Note: in this use case we only render a picture to the deferred canvas
            // but, more generally, clients will use arbitrary draw calls.
            subCanvas->drawPicture(pic);

            fDisplayList = recorder.detach();
        }

        // This method operates serially
        void draw() {
            fSurface->draw(fDisplayList.get());
        }

        // This method also operates serially
        void compose(SkCanvas* dst) {
            sk_sp<SkImage> img = fSurface->makeImageSnapshot();
            dst->save();
            dst->clipRect(SkRect::Make(fClip));
            dst->drawImage(std::move(img), fClip.fLeft, fClip.fTop);
            dst->restore();
        }

    private:
        sk_sp<SkSurface> fSurface;
        SkIRect          fClip;    // in the device space of the destination canvas
        std::unique_ptr<SkDeferredDisplayList> fDisplayList;
        SkSurfaceCharacterization              fCharacterization;
    };

    SkTArray<TileData> tileData;
    tileData.reserve(16);

    sk_sp<SkPicture> pic = read_skp(fPath.c_str());
    if (!pic) {
        return SkStringPrintf("Couldn't read %s.", fPath.c_str());
    }

    const SkRect cullRect = pic->cullRect();

    // All the destination tiles are the same size
    const SkImageInfo tileII = SkImageInfo::MakeN32Premul(kDDLTileSize, kDDLTileSize);

    // First, create the destination tiles
    for (int y = 0; y < kNumDDLYTiles; ++y) {
        for (int x = 0; x < kNumDDLXTiles; ++x) {
            SkRect clip = SkRect::MakeXYWH(x * kDDLTileSize, y * kDDLTileSize,
                                           kDDLTileSize, kDDLTileSize);

            if (!clip.intersect(cullRect)) {
                continue;
            }

            tileData.push_back(TileData(canvas->makeSurface(tileII), clip.roundOut()));
        }
    }

    // Second, run the cpu pre-processing in threads
    SkTaskGroup().batch(tileData.count(), [&](int i) {
        tileData[i].preprocess(pic.get());
    });

    // Third, synchronously render the display lists into the dest tiles
    // TODO: it would be cool to not wait until all the tiles are drawn to begin
    // drawing to the GPU
    for (int i = 0; i < tileData.count(); ++i) {
        tileData[i].draw();
    }

    // Finally, compose the drawn tiles into the result
    // Note: the separation between the tiles and the final composition better
    // matches Chrome but costs us a copy
    for (int i = 0; i < tileData.count(); ++i) {
        tileData[i].compose(canvas);
    }

    return "";
}

SkISize DDLSKPSrc::size() const {
    SkRect viewport = get_cull_rect_for_skp(fPath.c_str());
    if (!viewport.intersect(kDDLSKPViewport)) {
        return {0, 0};
    }
    return viewport.roundOut().size();
}

Name DDLSKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); }

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
#if defined(SK_XML)
// Used when the image doesn't have an intrinsic size.
static const SkSize kDefaultSVGSize = {1000, 1000};

// Used to force-scale tiny fixed-size images.
static const SkSize kMinimumSVGSize = {128, 128};

SVGSrc::SVGSrc(Path path)
    : fName(SkOSPath::Basename(path.c_str()))
    , fScale(1) {

  SkFILEStream stream(path.c_str());
  if (!stream.isValid()) {
      return;
  }
  fDom = SkSVGDOM::MakeFromStream(stream);
  if (!fDom) {
      return;
  }

  const SkSize& sz = fDom->containerSize();
  if (sz.isEmpty()) {
      // no intrinsic size
      fDom->setContainerSize(kDefaultSVGSize);
  } else {
      fScale = SkTMax(1.f, SkTMax(kMinimumSVGSize.width()  / sz.width(),
                                  kMinimumSVGSize.height() / sz.height()));
  }
}

Error SVGSrc::draw(SkCanvas* canvas) const {
    if (!fDom) {
        return SkStringPrintf("Unable to parse file: %s", fName.c_str());
    }

    SkAutoCanvasRestore acr(canvas, true);
    canvas->scale(fScale, fScale);
    fDom->render(canvas);

    return "";
}

SkISize SVGSrc::size() const {
    if (!fDom) {
        return {0, 0};
    }

    return SkSize{fDom->containerSize().width() * fScale, fDom->containerSize().height() * fScale}
            .toRound();
}

Name SVGSrc::name() const { return fName; }

bool SVGSrc::veto(SinkFlags flags) const {
    // No need to test to non-(raster||gpu||vector) or indirect backends.
    bool type_ok = flags.type == SinkFlags::kRaster
                || flags.type == SinkFlags::kGPU
                || flags.type == SinkFlags::kVector;

    return !type_ok || flags.approach != SinkFlags::kDirect;
}

#endif // defined(SK_XML)
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

MSKPSrc::MSKPSrc(Path path) : fPath(path) {
    std::unique_ptr<SkStreamAsset> stream = SkStream::MakeFromFile(fPath.c_str());
    int count = SkMultiPictureDocumentReadPageCount(stream.get());
    if (count > 0) {
        fPages.reset(count);
        (void)SkMultiPictureDocumentReadPageSizes(stream.get(), &fPages[0], fPages.count());
    }
}

int MSKPSrc::pageCount() const { return fPages.count(); }

SkISize MSKPSrc::size() const { return this->size(0); }
SkISize MSKPSrc::size(int i) const {
    return i >= 0 && i < fPages.count() ? fPages[i].fSize.toCeil() : SkISize{0, 0};
}

Error MSKPSrc::draw(SkCanvas* c) const { return this->draw(0, c); }
Error MSKPSrc::draw(int i, SkCanvas* canvas) const {
    if (this->pageCount() == 0) {
        return SkStringPrintf("Unable to parse MultiPictureDocument file: %s", fPath.c_str());
    }
    if (i >= fPages.count() || i < 0) {
        return SkStringPrintf("MultiPictureDocument page number out of range: %d", i);
    }
    SkPicture* page = fPages[i].fPicture.get();
    if (!page) {
        std::unique_ptr<SkStreamAsset> stream = SkStream::MakeFromFile(fPath.c_str());
        if (!stream) {
            return SkStringPrintf("Unable to open file: %s", fPath.c_str());
        }
        if (!SkMultiPictureDocumentRead(stream.get(), &fPages[0], fPages.count())) {
            return SkStringPrintf("SkMultiPictureDocument reader failed on page %d: %s", i,
                                  fPath.c_str());
        }
        page = fPages[i].fPicture.get();
    }
    canvas->drawPicture(page);
    return "";
}

Name MSKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); }

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

Error NullSink::draw(const Src& src, SkBitmap*, SkWStream*, SkString*) const {
    return src.draw(SkMakeNullCanvas().get());
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

static bool encode_png_base64(const SkBitmap& bitmap, SkString* dst) {
    SkPixmap pm;
    if (!bitmap.peekPixels(&pm)) {
        dst->set("peekPixels failed");
        return false;
    }

    // We're going to embed this PNG in a data URI, so make it as small as possible
    SkPngEncoder::Options options;
    options.fFilterFlags = SkPngEncoder::FilterFlag::kAll;
    options.fZLibLevel = 9;
    options.fUnpremulBehavior = pm.colorSpace() ? SkTransferFunctionBehavior::kRespect
                                                : SkTransferFunctionBehavior::kIgnore;

    SkDynamicMemoryWStream wStream;
    if (!SkPngEncoder::Encode(&wStream, pm, options)) {
        dst->set("SkPngEncoder::Encode failed");
        return false;
    }

    sk_sp<SkData> pngData = wStream.detachAsData();
    size_t len = SkBase64::Encode(pngData->data(), pngData->size(), nullptr);

    // The PNG can be almost arbitrarily large. We don't want to fill our logs with enormous URLs.
    // Infra says these can be pretty big, as long as we're only outputting them on failure.
    static const size_t kMaxBase64Length = 1024 * 1024;
    if (len > kMaxBase64Length) {
        dst->printf("Encoded image too large (%u bytes)", static_cast<uint32_t>(len));
        return false;
    }

    dst->resize(len);
    SkBase64::Encode(pngData->data(), pngData->size(), dst->writable_str());
    return true;
}

static Error compare_bitmaps(const SkBitmap& reference, const SkBitmap& bitmap) {
    // The dimensions are a property of the Src only, and so should be identical.
    SkASSERT(reference.getSize() == bitmap.getSize());
    if (reference.getSize() != bitmap.getSize()) {
        return "Dimensions don't match reference";
    }
    // All SkBitmaps in DM are tight, so this comparison is easy.
    if (0 != memcmp(reference.getPixels(), bitmap.getPixels(), reference.getSize())) {
        SkString encoded;
        SkString errString("Pixels don't match reference");
        if (encode_png_base64(reference, &encoded)) {
            errString.append("\nExpected: data:image/png;base64,");
            errString.append(encoded);
        } else {
            errString.append("\nExpected image failed to encode: ");
            errString.append(encoded);
        }
        if (encode_png_base64(bitmap, &encoded)) {
            errString.append("\nActual: data:image/png;base64,");
            errString.append(encoded);
        } else {
            errString.append("\nActual image failed to encode: ");
            errString.append(encoded);
        }
        return errString;
    }
    return "";
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

DEFINE_bool(gpuStats, false, "Append GPU stats to the log for each GPU task?");

GPUSink::GPUSink(GrContextFactory::ContextType ct,
                 GrContextFactory::ContextOverrides overrides,
                 int samples,
                 bool diText,
                 SkColorType colorType,
                 SkAlphaType alphaType,
                 sk_sp<SkColorSpace> colorSpace,
                 bool threaded,
                 const GrContextOptions& grCtxOptions)
        : fContextType(ct)
        , fContextOverrides(overrides)
        , fSampleCount(samples)
        , fUseDIText(diText)
        , fColorType(colorType)
        , fAlphaType(alphaType)
        , fColorSpace(std::move(colorSpace))
        , fThreaded(threaded)
        , fBaseContextOptions(grCtxOptions) {}

DEFINE_bool(drawOpClip, false, "Clip each GrDrawOp to its device bounds for testing.");

Error GPUSink::draw(const Src& src, SkBitmap* dst, SkWStream* dstStream, SkString* log) const {
    return this->onDraw(src, dst, dstStream, log, fBaseContextOptions);
}

Error GPUSink::onDraw(const Src& src, SkBitmap* dst, SkWStream*, SkString* log,
                      const GrContextOptions& baseOptions) const {
    GrContextOptions grOptions = baseOptions;

    src.modifyGrContextOptions(&grOptions);

    GrContextFactory factory(grOptions);
    const SkISize size = src.size();
    SkImageInfo info =
            SkImageInfo::Make(size.width(), size.height(), fColorType, fAlphaType, fColorSpace);
#if SK_SUPPORT_GPU
    GrContext* context = factory.getContextInfo(fContextType, fContextOverrides).grContext();
    const int maxDimension = context->caps()->maxTextureSize();
    if (maxDimension < SkTMax(size.width(), size.height())) {
        return Error::Nonfatal("Src too large to create a texture.\n");
    }
#endif

    auto surface(
        NewGpuSurface(&factory, fContextType, fContextOverrides, info, fSampleCount, fUseDIText));
    if (!surface) {
        return "Could not create a surface.";
    }
    if (FLAGS_preAbandonGpuContext) {
        factory.abandonContexts();
    }
    SkCanvas* canvas = surface->getCanvas();
    Error err = src.draw(canvas);
    if (!err.isEmpty()) {
        return err;
    }
    canvas->flush();
    if (FLAGS_gpuStats) {
        canvas->getGrContext()->dumpCacheStats(log);
        canvas->getGrContext()->dumpGpuStats(log);
    }
    if (info.colorType() == kRGB_565_SkColorType || info.colorType() == kARGB_4444_SkColorType) {
        // We don't currently support readbacks into these formats on the GPU backend. Convert to
        // 32 bit.
        info = SkImageInfo::Make(size.width(), size.height(), kRGBA_8888_SkColorType,
                                 kPremul_SkAlphaType, fColorSpace);
    }
    dst->allocPixels(info);
    canvas->readPixels(*dst, 0, 0);
    if (FLAGS_abandonGpuContext) {
        factory.abandonContexts();
    } else if (FLAGS_releaseAndAbandonGpuContext) {
        factory.releaseResourcesAndAbandonContexts();
    }
    return "";
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

GPUThreadTestingSink::GPUThreadTestingSink(GrContextFactory::ContextType ct,
                                           GrContextFactory::ContextOverrides overrides,
                                           int samples,
                                           bool diText,
                                           SkColorType colorType,
                                           SkAlphaType alphaType,
                                           sk_sp<SkColorSpace> colorSpace,
                                           bool threaded,
                                           const GrContextOptions& grCtxOptions)
        : INHERITED(ct, overrides, samples, diText, colorType, alphaType, std::move(colorSpace),
                    threaded, grCtxOptions)
        , fExecutor(SkExecutor::MakeFIFOThreadPool(FLAGS_gpuThreads)) {
    SkASSERT(fExecutor);
}

Error GPUThreadTestingSink::draw(const Src& src, SkBitmap* dst, SkWStream* wStream,
                                 SkString* log) const {
    // Draw twice, once with worker threads, and once without. Verify that we get the same result.
    // Also, force us to only use the software path renderer, so we really stress-test the threaded
    // version of that code.
    GrContextOptions contextOptions = this->baseContextOptions();
    contextOptions.fGpuPathRenderers = GpuPathRenderers::kNone;

    contextOptions.fExecutor = fExecutor.get();
    Error err = this->onDraw(src, dst, wStream, log, contextOptions);
    if (!err.isEmpty() || !dst) {
        return err;
    }

    SkBitmap reference;
    SkString refLog;
    SkDynamicMemoryWStream refStream;
    contextOptions.fExecutor = nullptr;
    Error refErr = this->onDraw(src, &reference, &refStream, &refLog, contextOptions);
    if (!refErr.isEmpty()) {
        return refErr;
    }

    return compare_bitmaps(reference, *dst);
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

static Error draw_skdocument(const Src& src, SkDocument* doc, SkWStream* dst) {
    if (src.size().isEmpty()) {
        return "Source has empty dimensions";
    }
    SkASSERT(doc);
    int pageCount = src.pageCount();
    for (int i = 0; i < pageCount; ++i) {
        int width = src.size(i).width(), height = src.size(i).height();
        SkCanvas* canvas =
                doc->beginPage(SkIntToScalar(width), SkIntToScalar(height));
        if (!canvas) {
            return "SkDocument::beginPage(w,h) returned nullptr";
        }
        Error err = src.draw(i, canvas);
        if (!err.isEmpty()) {
            return err;
        }
        doc->endPage();
    }
    doc->close();
    dst->flush();
    return "";
}

Error PDFSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
    SkDocument::PDFMetadata metadata;
    metadata.fTitle = src.name();
    metadata.fSubject = "rendering correctness test";
    metadata.fCreator = "Skia/DM";
    sk_sp<SkDocument> doc = SkDocument::MakePDF(dst, fRasterDpi, metadata, nullptr, fPDFA);
    if (!doc) {
        return "SkDocument::MakePDF() returned nullptr";
    }
    return draw_skdocument(src, doc.get(), dst);
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

XPSSink::XPSSink() {}

#ifdef SK_BUILD_FOR_WIN
static SkTScopedComPtr<IXpsOMObjectFactory> make_xps_factory() {
    IXpsOMObjectFactory* factory;
    HRN(CoCreateInstance(CLSID_XpsOMObjectFactory,
                         nullptr,
                         CLSCTX_INPROC_SERVER,
                         IID_PPV_ARGS(&factory)));
    return SkTScopedComPtr<IXpsOMObjectFactory>(factory);
}

Error XPSSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
    SkAutoCoInitialize com;
    if (!com.succeeded()) {
        return "Could not initialize COM.";
    }
    SkTScopedComPtr<IXpsOMObjectFactory> factory = make_xps_factory();
    if (!factory) {
        return "Failed to create XPS Factory.";
    }
    sk_sp<SkDocument> doc(SkDocument::MakeXPS(dst, factory.get()));
    if (!doc) {
        return "SkDocument::MakeXPS() returned nullptr";
    }
    return draw_skdocument(src, doc.get(), dst);
}
#else
Error XPSSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
    return "XPS not supported on this platform.";
}
#endif

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

PipeSink::PipeSink() {}

Error PipeSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
    return src.draw(SkPipeSerializer().beginWrite(SkRect::Make(src.size()), dst));
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

SKPSink::SKPSink() {}

Error SKPSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
    SkSize size;
    size = src.size();
    SkPictureRecorder recorder;
    Error err = src.draw(recorder.beginRecording(size.width(), size.height()));
    if (!err.isEmpty()) {
        return err;
    }
    recorder.finishRecordingAsPicture()->serialize(dst);
    return "";
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

Error DebugSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
    SkDebugCanvas debugCanvas(src.size().width(), src.size().height());
    Error err = src.draw(&debugCanvas);
    if (!err.isEmpty()) {
        return err;
    }
    std::unique_ptr<SkCanvas> nullCanvas = SkMakeNullCanvas();
    UrlDataManager dataManager(SkString("data"));
    Json::Value json = debugCanvas.toJSON(
            dataManager, debugCanvas.getSize(), nullCanvas.get());
    std::string value = Json::StyledWriter().write(json);
    return dst->write(value.c_str(), value.size()) ? "" : "SkWStream Error";
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

SVGSink::SVGSink() {}

Error SVGSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
#if defined(SK_XML)
    std::unique_ptr<SkXMLWriter> xmlWriter(new SkXMLStreamWriter(dst));
    return src.draw(SkSVGCanvas::Make(SkRect::MakeWH(SkIntToScalar(src.size().width()),
                                                     SkIntToScalar(src.size().height())),
                                      xmlWriter.get()).get());
#else
    return Error("SVG sink is disabled.");
#endif // SK_XML
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

RasterSink::RasterSink(SkColorType colorType, sk_sp<SkColorSpace> colorSpace)
    : fColorType(colorType)
    , fColorSpace(std::move(colorSpace)) {}

Error RasterSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString*) const {
    const SkISize size = src.size();
    // If there's an appropriate alpha type for this color type, use it, otherwise use premul.
    SkAlphaType alphaType = kPremul_SkAlphaType;
    (void)SkColorTypeValidateAlphaType(fColorType, alphaType, &alphaType);

    dst->allocPixelsFlags(SkImageInfo::Make(size.width(), size.height(),
                                            fColorType, alphaType, fColorSpace),
                          SkBitmap::kZeroPixels_AllocFlag);
    SkCanvas canvas(*dst);
    return src.draw(&canvas);
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

// Handy for front-patching a Src.  Do whatever up-front work you need, then call draw_to_canvas(),
// passing the Sink draw() arguments, a size, and a function draws into an SkCanvas.
// Several examples below.

template <typename Fn>
static Error draw_to_canvas(Sink* sink, SkBitmap* bitmap, SkWStream* stream, SkString* log,
                            SkISize size, const Fn& draw) {
    class ProxySrc : public Src {
    public:
        ProxySrc(SkISize size, const Fn& draw) : fSize(size), fDraw(draw) {}
        Error   draw(SkCanvas* canvas) const override { return fDraw(canvas); }
        Name    name() const override { return "ProxySrc"; }
        SkISize size() const override { return fSize; }
    private:
        SkISize   fSize;
        const Fn& fDraw;
    };
    return sink->draw(ProxySrc(size, draw), bitmap, stream, log);
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

DEFINE_bool(check, true, "If true, have most Via- modes fail if they affect the output.");

// Is *bitmap identical to what you get drawing src into sink?
static Error check_against_reference(const SkBitmap* bitmap, const Src& src, Sink* sink) {
    // We can only check raster outputs.
    // (Non-raster outputs like .pdf, .skp, .svg may differ but still draw identically.)
    if (FLAGS_check && bitmap) {
        SkBitmap reference;
        SkString log;
        SkDynamicMemoryWStream wStream;
        Error err = sink->draw(src, &reference, &wStream, &log);
        // If we can draw into this Sink via some pipeline, we should be able to draw directly.
        SkASSERT(err.isEmpty());
        if (!err.isEmpty()) {
            return err;
        }
        return compare_bitmaps(reference, *bitmap);
    }
    return "";
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

static SkISize auto_compute_translate(SkMatrix* matrix, int srcW, int srcH) {
    SkRect bounds = SkRect::MakeIWH(srcW, srcH);
    matrix->mapRect(&bounds);
    matrix->postTranslate(-bounds.x(), -bounds.y());
    return {SkScalarRoundToInt(bounds.width()), SkScalarRoundToInt(bounds.height())};
}

ViaMatrix::ViaMatrix(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {}

Error ViaMatrix::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
    SkMatrix matrix = fMatrix;
    SkISize size = auto_compute_translate(&matrix, src.size().width(), src.size().height());
    return draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](SkCanvas* canvas) {
        canvas->concat(matrix);
        return src.draw(canvas);
    });
}

// Undoes any flip or 90 degree rotate without changing the scale of the bitmap.
// This should be pixel-preserving.
ViaUpright::ViaUpright(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {}

Error ViaUpright::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
    Error err = fSink->draw(src, bitmap, stream, log);
    if (!err.isEmpty()) {
        return err;
    }

    SkMatrix inverse;
    if (!fMatrix.rectStaysRect() || !fMatrix.invert(&inverse)) {
        return "Cannot upright --matrix.";
    }
    SkMatrix upright = SkMatrix::I();
    upright.setScaleX(SkScalarSignAsScalar(inverse.getScaleX()));
    upright.setScaleY(SkScalarSignAsScalar(inverse.getScaleY()));
    upright.setSkewX(SkScalarSignAsScalar(inverse.getSkewX()));
    upright.setSkewY(SkScalarSignAsScalar(inverse.getSkewY()));

    SkBitmap uprighted;
    SkISize size = auto_compute_translate(&upright, bitmap->width(), bitmap->height());
    uprighted.allocPixels(bitmap->info().makeWH(size.width(), size.height()));

    SkCanvas canvas(uprighted);
    canvas.concat(upright);
    SkPaint paint;
    paint.setBlendMode(SkBlendMode::kSrc);
    canvas.drawBitmap(*bitmap, 0, 0, &paint);

    *bitmap = uprighted;
    return "";
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

Error ViaSerialization::draw(
        const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
    // Record our Src into a picture.
    auto size = src.size();
    SkPictureRecorder recorder;
    Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()),
                                                 SkIntToScalar(size.height())));
    if (!err.isEmpty()) {
        return err;
    }
    sk_sp<SkPicture> pic(recorder.finishRecordingAsPicture());

    // Serialize it and then deserialize it.
    sk_sp<SkPicture> deserialized(SkPicture::MakeFromData(pic->serialize().get()));

    return draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](SkCanvas* canvas) {
        canvas->drawPicture(deserialized);
        return check_against_reference(bitmap, src, fSink.get());
    });
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

ViaTiles::ViaTiles(int w, int h, SkBBHFactory* factory, Sink* sink)
    : Via(sink)
    , fW(w)
    , fH(h)
    , fFactory(factory) {}

Error ViaTiles::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
    auto size = src.size();
    SkPictureRecorder recorder;
    Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()),
                                                 SkIntToScalar(size.height()),
                                                 fFactory.get()));
    if (!err.isEmpty()) {
        return err;
    }
    sk_sp<SkPicture> pic(recorder.finishRecordingAsPicture());

    return draw_to_canvas(fSink.get(), bitmap, stream, log, src.size(), [&](SkCanvas* canvas) {
        const int xTiles = (size.width()  + fW - 1) / fW,
                  yTiles = (size.height() + fH - 1) / fH;
        SkMultiPictureDraw mpd(xTiles*yTiles);
        SkTArray<sk_sp<SkSurface>> surfaces;
//        surfaces.setReserve(xTiles*yTiles);

        SkImageInfo info = canvas->imageInfo().makeWH(fW, fH);
        for (int j = 0; j < yTiles; j++) {
            for (int i = 0; i < xTiles; i++) {
                // This lets our ultimate Sink determine the best kind of surface.
                // E.g., if it's a GpuSink, the surfaces and images are textures.
                auto s = canvas->makeSurface(info);
                if (!s) {
                    s = SkSurface::MakeRaster(info);  // Some canvases can't create surfaces.
                }
                surfaces.push_back(s);
                SkCanvas* c = s->getCanvas();
                c->translate(SkIntToScalar(-i * fW),
                             SkIntToScalar(-j * fH));  // Line up the canvas with this tile.
                mpd.add(c, pic.get());
            }
        }
        mpd.draw();
        for (int j = 0; j < yTiles; j++) {
            for (int i = 0; i < xTiles; i++) {
                sk_sp<SkImage> image(surfaces[i+xTiles*j]->makeImageSnapshot());
                canvas->drawImage(image, SkIntToScalar(i*fW), SkIntToScalar(j*fH));
            }
        }
        return "";
    });
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

Error ViaPicture::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
    auto size = src.size();
    return draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error {
        SkPictureRecorder recorder;
        sk_sp<SkPicture> pic;
        Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()),
                                                     SkIntToScalar(size.height())));
        if (!err.isEmpty()) {
            return err;
        }
        pic = recorder.finishRecordingAsPicture();
        canvas->drawPicture(pic);
        return check_against_reference(bitmap, src, fSink.get());
    });
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

Error ViaDefer::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
    auto size = src.size();
    return draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error {
        SkDeferredCanvas deferred(canvas, SkDeferredCanvas::kEager);
        return src.draw(&deferred);
    });
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

Error ViaPipe::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
    auto size = src.size();
    return draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error {
        SkDynamicMemoryWStream tmpStream;
        Error err = src.draw(SkPipeSerializer().beginWrite(SkRect::Make(size), &tmpStream));
        if (!err.isEmpty()) {
            return err;
        }
        sk_sp<SkData> data = tmpStream.detachAsData();
        SkPipeDeserializer().playback(data->data(), data->size(), canvas);
        return check_against_reference(bitmap, src, fSink.get());
    });
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

// Draw the Src into two pictures, then draw the second picture into the wrapped Sink.
// This tests that any shortcuts we may take while recording that second picture are legal.
Error ViaSecondPicture::draw(
        const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
    auto size = src.size();
    return draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error {
        SkPictureRecorder recorder;
        sk_sp<SkPicture> pic;
        for (int i = 0; i < 2; i++) {
            Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()),
                                                         SkIntToScalar(size.height())));
            if (!err.isEmpty()) {
                return err;
            }
            pic = recorder.finishRecordingAsPicture();
        }
        canvas->drawPicture(pic);
        return check_against_reference(bitmap, src, fSink.get());
    });
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

// Draw the Src twice.  This can help exercise caching.
Error ViaTwice::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
    return draw_to_canvas(fSink.get(), bitmap, stream, log, src.size(), [&](SkCanvas* canvas) -> Error {
        for (int i = 0; i < 2; i++) {
            SkAutoCanvasRestore acr(canvas, true/*save now*/);
            canvas->clear(SK_ColorTRANSPARENT);
            Error err = src.draw(canvas);
            if (err.isEmpty()) {
                return err;
            }
        }
        return check_against_reference(bitmap, src, fSink.get());
    });
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

#ifdef TEST_VIA_SVG
#include "SkXMLWriter.h"
#include "SkSVGCanvas.h"
#include "SkSVGDOM.h"

Error ViaSVG::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
    auto size = src.size();
    return draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error {
        SkDynamicMemoryWStream wstream;
        SkXMLStreamWriter writer(&wstream);
        Error err = src.draw(SkSVGCanvas::Make(SkRect::Make(size), &writer).get());
        if (!err.isEmpty()) {
            return err;
        }
        std::unique_ptr<SkStream> rstream(wstream.detachAsStream());
        auto dom = SkSVGDOM::MakeFromStream(*rstream);
        if (dom) {
            dom->setContainerSize(SkSize::Make(size));
            dom->render(canvas);
        }
        return "";
    });
}
#endif

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

// This is like SkRecords::Draw, in that it plays back SkRecords ops into a Canvas.
// Unlike SkRecords::Draw, it builds a single-op sub-picture out of each Draw-type op.
// This is an only-slightly-exaggerated simluation of Blink's Slimming Paint pictures.
struct DrawsAsSingletonPictures {
    SkCanvas* fCanvas;
    const SkDrawableList& fDrawables;
    SkRect fBounds;

    template <typename T>
    void draw(const T& op, SkCanvas* canvas) {
        // We must pass SkMatrix::I() as our initial matrix.
        // By default SkRecords::Draw() uses the canvas' matrix as its initial matrix,
        // which would have the funky effect of applying transforms over and over.
        SkRecords::Draw d(canvas, nullptr, fDrawables.begin(), fDrawables.count(), &SkMatrix::I());
        d(op);
    }

    // Draws get their own picture.
    template <typename T>
    SK_WHEN(T::kTags & SkRecords::kDraw_Tag, void) operator()(const T& op) {
        SkPictureRecorder rec;
        this->draw(op, rec.beginRecording(fBounds));
        sk_sp<SkPicture> pic(rec.finishRecordingAsPicture());
        fCanvas->drawPicture(pic);
    }

    // We'll just issue non-draws directly.
    template <typename T>
    skstd::enable_if_t<!(T::kTags & SkRecords::kDraw_Tag), void> operator()(const T& op) {
        this->draw(op, fCanvas);
    }
};

// Record Src into a picture, then record it into a macro picture with a sub-picture for each draw.
// Then play back that macro picture into our wrapped sink.
Error ViaSingletonPictures::draw(
        const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
    auto size = src.size();
    return draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error {
        // Use low-level (Skia-private) recording APIs so we can read the SkRecord.
        SkRecord skr;
        SkRecorder recorder(&skr, size.width(), size.height());
        Error err = src.draw(&recorder);
        if (!err.isEmpty()) {
            return err;
        }

        // Record our macro-picture, with each draw op as its own sub-picture.
        SkPictureRecorder macroRec;
        SkCanvas* macroCanvas = macroRec.beginRecording(SkIntToScalar(size.width()),
                                                        SkIntToScalar(size.height()));

        std::unique_ptr<SkDrawableList> drawables(recorder.detachDrawableList());
        const SkDrawableList empty;

        DrawsAsSingletonPictures drawsAsSingletonPictures = {
            macroCanvas,
            drawables ? *drawables : empty,
            SkRect::MakeWH((SkScalar)size.width(), (SkScalar)size.height()),
        };
        for (int i = 0; i < skr.count(); i++) {
            skr.visit(i, drawsAsSingletonPictures);
        }
        sk_sp<SkPicture> macroPic(macroRec.finishRecordingAsPicture());

        canvas->drawPicture(macroPic);
        return check_against_reference(bitmap, src, fSink.get());
    });
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

Error ViaLite::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
    auto size = src.size();
    SkIRect bounds = {0,0, size.width(), size.height()};
    return draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error {
        SkLiteDL dl;
        SkLiteRecorder rec;
        rec.reset(&dl, bounds);

        Error err = src.draw(&rec);
        if (!err.isEmpty()) {
            return err;
        }
        dl.draw(canvas);
        return check_against_reference(bitmap, src, fSink.get());
    });
}

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

ViaCSXform::ViaCSXform(Sink* sink, sk_sp<SkColorSpace> cs, bool colorSpin)
    : Via(sink)
    , fCS(std::move(cs))
    , fColorSpin(colorSpin) {}

Error ViaCSXform::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
    return draw_to_canvas(fSink.get(), bitmap, stream, log, src.size(),
                          [&](SkCanvas* canvas) -> Error {
        auto proxy = SkCreateColorSpaceXformCanvas(canvas, fCS);
        Error err = src.draw(proxy.get());
        if (!err.isEmpty()) {
            return err;
        }

        // Undo the color spin, so we can look at the pixels in Gold.
        if (fColorSpin) {
            SkBitmap pixels;
            pixels.allocPixels(canvas->imageInfo());
            canvas->readPixels(pixels, 0, 0);
            for (int y = 0; y < pixels.height(); y++) {
                for (int x = 0; x < pixels.width(); x++) {
                    uint32_t pixel = *pixels.getAddr32(x, y);
                    uint8_t r = SkGetPackedR32(pixel);
                    uint8_t g = SkGetPackedG32(pixel);
                    uint8_t b = SkGetPackedB32(pixel);
                    uint8_t a = SkGetPackedA32(pixel);
                    *pixels.getAddr32(x, y) =
                            SkSwizzle_RGBA_to_PMColor(b << 0 | r << 8 | g << 16 | a << 24);
                }
            }

            canvas->writePixels(pixels, 0, 0);
        }

        return "";
    });
}

}  // namespace DM