1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
|
'''
Created on May 19, 2011
@author: bungeman
'''
import os
import re
import math
# bench representation algorithm constant names
ALGORITHM_AVERAGE = 'avg'
ALGORITHM_MEDIAN = 'med'
ALGORITHM_MINIMUM = 'min'
ALGORITHM_25TH_PERCENTILE = '25th'
# Regular expressions used throughout.
PER_SETTING_RE = '([^\s=]+)(?:=(\S+))?'
SETTINGS_RE = 'skia bench:((?:\s+' + PER_SETTING_RE + ')*)'
BENCH_RE = 'running bench (?:\[\d+ \d+\] )?\s*(\S+)'
TIME_RE = '(?:(\w*)msecs = )?\s*((?:\d+\.\d+)(?:,\s*\d+\.\d+)*)'
# non-per-tile benches have configs that don't end with ']' or '>'
CONFIG_RE = '(\S+[^\]>]):\s+((?:' + TIME_RE + '\s+)+)'
# per-tile bench lines are in the following format. Note that there are
# non-averaged bench numbers in separate lines, which we ignore now due to
# their inaccuracy.
TILE_RE = (' tile_(\S+): tile \[\d+,\d+\] out of \[\d+,\d+\] <averaged>:'
' ((?:' + TIME_RE + '\s+)+)')
# for extracting tile layout
TILE_LAYOUT_RE = ' out of \[(\d+),(\d+)\] <averaged>: '
PER_SETTING_RE_COMPILED = re.compile(PER_SETTING_RE)
SETTINGS_RE_COMPILED = re.compile(SETTINGS_RE)
BENCH_RE_COMPILED = re.compile(BENCH_RE)
TIME_RE_COMPILED = re.compile(TIME_RE)
CONFIG_RE_COMPILED = re.compile(CONFIG_RE)
TILE_RE_COMPILED = re.compile(TILE_RE)
TILE_LAYOUT_RE_COMPILED = re.compile(TILE_LAYOUT_RE)
class BenchDataPoint:
"""A single data point produced by bench.
"""
def __init__(self, bench, config, time_type, time, settings,
tile_layout='', per_tile_values=[], per_iter_time=[]):
# string name of the benchmark to measure
self.bench = bench
# string name of the configurations to run
self.config = config
# type of the timer in string: '' (walltime), 'c' (cpu) or 'g' (gpu)
self.time_type = time_type
# float number of the bench time value
self.time = time
# dictionary of the run settings
self.settings = settings
# how tiles cover the whole picture: '5x3' means 5 columns and 3 rows
self.tile_layout = tile_layout
# list of float for per_tile bench values, if applicable
self.per_tile_values = per_tile_values
# list of float for per-iteration bench time, if applicable
self.per_iter_time = per_iter_time
def __repr__(self):
return "BenchDataPoint(%s, %s, %s, %s, %s)" % (
str(self.bench),
str(self.config),
str(self.time_type),
str(self.time),
str(self.settings),
)
class _ExtremeType(object):
"""Instances of this class compare greater or less than other objects."""
def __init__(self, cmpr, rep):
object.__init__(self)
self._cmpr = cmpr
self._rep = rep
def __cmp__(self, other):
if isinstance(other, self.__class__) and other._cmpr == self._cmpr:
return 0
return self._cmpr
def __repr__(self):
return self._rep
Max = _ExtremeType(1, "Max")
Min = _ExtremeType(-1, "Min")
class _ListAlgorithm(object):
"""Algorithm for selecting the representation value from a given list.
representation is one of the ALGORITHM_XXX representation types."""
def __init__(self, data, representation=None):
if not representation:
representation = ALGORITHM_AVERAGE # default algorithm
self._data = data
self._len = len(data)
if representation == ALGORITHM_AVERAGE:
self._rep = sum(self._data) / self._len
else:
self._data.sort()
if representation == ALGORITHM_MINIMUM:
self._rep = self._data[0]
else:
# for percentiles, we use the value below which x% of values are
# found, which allows for better detection of quantum behaviors.
if representation == ALGORITHM_MEDIAN:
x = int(round(0.5 * self._len + 0.5))
elif representation == ALGORITHM_25TH_PERCENTILE:
x = int(round(0.25 * self._len + 0.5))
else:
raise Exception("invalid representation algorithm %s!" %
representation)
self._rep = self._data[x - 1]
def compute(self):
return self._rep
def _ParseAndStoreTimes(config_re_compiled, is_per_tile, line, bench,
value_dic, layout_dic):
"""Parses given bench time line with regex and adds data to value_dic.
config_re_compiled: precompiled regular expression for parsing the config
line.
is_per_tile: boolean indicating whether this is a per-tile bench.
If so, we add tile layout into layout_dic as well.
line: input string line to parse.
bench: name of bench for the time values.
value_dic: dictionary to store bench values. See bench_dic in parse() below.
layout_dic: dictionary to store tile layouts. See parse() for descriptions.
"""
for config in config_re_compiled.finditer(line):
current_config = config.group(1)
tile_layout = ''
if is_per_tile: # per-tile bench, add name prefix
current_config = 'tile_' + current_config
layouts = TILE_LAYOUT_RE_COMPILED.search(line)
if layouts and len(layouts.groups()) == 2:
tile_layout = '%sx%s' % layouts.groups()
times = config.group(2)
for new_time in TIME_RE_COMPILED.finditer(times):
current_time_type = new_time.group(1)
iters = [float(i) for i in
new_time.group(2).strip().split(',')]
value_dic.setdefault(bench, {}).setdefault(
current_config, {}).setdefault(current_time_type, []).append(
iters)
layout_dic.setdefault(bench, {}).setdefault(
current_config, {}).setdefault(current_time_type, tile_layout)
def parse_skp_bench_data(directory, revision, rep, default_settings=None):
"""Parses all the skp bench data in the given directory.
Args:
directory: string of path to input data directory.
revision: git hash revision that matches the data to process.
rep: bench representation algorithm, see bench_util.py.
default_settings: dictionary of other run settings. See writer.option() in
bench/benchmain.cpp.
Returns:
A list of BenchDataPoint objects.
"""
revision_data_points = []
file_list = os.listdir(directory)
file_list.sort()
for bench_file in file_list:
scalar_type = None
# Scalar type, if any, is in the bench filename after 'scalar_'.
if (bench_file.startswith('bench_' + revision + '_data_')):
if bench_file.find('scalar_') > 0:
components = bench_file.split('_')
scalar_type = components[components.index('scalar') + 1]
else: # Skips non skp bench files.
continue
with open('/'.join([directory, bench_file]), 'r') as file_handle:
settings = dict(default_settings or {})
settings['scalar'] = scalar_type
revision_data_points.extend(parse(settings, file_handle, rep))
return revision_data_points
# TODO(bensong): switch to reading JSON output when available. This way we don't
# need the RE complexities.
def parse(settings, lines, representation=None):
"""Parses bench output into a useful data structure.
({str:str}, __iter__ -> str) -> [BenchDataPoint]
representation is one of the ALGORITHM_XXX types."""
benches = []
current_bench = None
# [bench][config][time_type] -> [[per-iter values]] where per-tile config
# has per-iter value list for each tile [[<tile1_iter1>,<tile1_iter2>,...],
# [<tile2_iter1>,<tile2_iter2>,...],...], while non-per-tile config only
# contains one list of iterations [[iter1, iter2, ...]].
bench_dic = {}
# [bench][config][time_type] -> tile_layout
layout_dic = {}
for line in lines:
# see if this line is a settings line
settingsMatch = SETTINGS_RE_COMPILED.search(line)
if (settingsMatch):
settings = dict(settings)
for settingMatch in PER_SETTING_RE_COMPILED.finditer(settingsMatch.group(1)):
if (settingMatch.group(2)):
settings[settingMatch.group(1)] = settingMatch.group(2)
else:
settings[settingMatch.group(1)] = True
# see if this line starts a new bench
new_bench = BENCH_RE_COMPILED.search(line)
if new_bench:
current_bench = new_bench.group(1)
# add configs on this line to the bench_dic
if current_bench:
if line.startswith(' tile_') :
_ParseAndStoreTimes(TILE_RE_COMPILED, True, line, current_bench,
bench_dic, layout_dic)
else:
_ParseAndStoreTimes(CONFIG_RE_COMPILED, False, line,
current_bench, bench_dic, layout_dic)
# append benches to list
for bench in bench_dic:
for config in bench_dic[bench]:
for time_type in bench_dic[bench][config]:
tile_layout = ''
per_tile_values = [] # empty for non-per-tile configs
per_iter_time = [] # empty for per-tile configs
bench_summary = None # a single final bench value
if len(bench_dic[bench][config][time_type]) > 1:
# per-tile config; compute representation for each tile
per_tile_values = [
_ListAlgorithm(iters, representation).compute()
for iters in bench_dic[bench][config][time_type]]
# use sum of each tile representation for total bench value
bench_summary = sum(per_tile_values)
# extract tile layout
tile_layout = layout_dic[bench][config][time_type]
else:
# get the list of per-iteration values
per_iter_time = bench_dic[bench][config][time_type][0]
bench_summary = _ListAlgorithm(
per_iter_time, representation).compute()
benches.append(BenchDataPoint(
bench,
config,
time_type,
bench_summary,
settings,
tile_layout,
per_tile_values,
per_iter_time))
return benches
class LinearRegression:
"""Linear regression data based on a set of data points.
([(Number,Number)])
There must be at least two points for this to make sense."""
def __init__(self, points):
n = len(points)
max_x = Min
min_x = Max
Sx = 0.0
Sy = 0.0
Sxx = 0.0
Sxy = 0.0
Syy = 0.0
for point in points:
x = point[0]
y = point[1]
max_x = max(max_x, x)
min_x = min(min_x, x)
Sx += x
Sy += y
Sxx += x*x
Sxy += x*y
Syy += y*y
denom = n*Sxx - Sx*Sx
if (denom != 0.0):
B = (n*Sxy - Sx*Sy) / denom
else:
B = 0.0
a = (1.0/n)*(Sy - B*Sx)
se2 = 0
sB2 = 0
sa2 = 0
if (n >= 3 and denom != 0.0):
se2 = (1.0/(n*(n-2)) * (n*Syy - Sy*Sy - B*B*denom))
sB2 = (n*se2) / denom
sa2 = sB2 * (1.0/n) * Sxx
self.slope = B
self.intercept = a
self.serror = math.sqrt(max(0, se2))
self.serror_slope = math.sqrt(max(0, sB2))
self.serror_intercept = math.sqrt(max(0, sa2))
self.max_x = max_x
self.min_x = min_x
def __repr__(self):
return "LinearRegression(%s, %s, %s, %s, %s)" % (
str(self.slope),
str(self.intercept),
str(self.serror),
str(self.serror_slope),
str(self.serror_intercept),
)
def find_min_slope(self):
"""Finds the minimal slope given one standard deviation."""
slope = self.slope
intercept = self.intercept
error = self.serror
regr_start = self.min_x
regr_end = self.max_x
regr_width = regr_end - regr_start
if slope < 0:
lower_left_y = slope*regr_start + intercept - error
upper_right_y = slope*regr_end + intercept + error
return min(0, (upper_right_y - lower_left_y) / regr_width)
elif slope > 0:
upper_left_y = slope*regr_start + intercept + error
lower_right_y = slope*regr_end + intercept - error
return max(0, (lower_right_y - upper_left_y) / regr_width)
return 0
def CreateRevisionLink(revision_number):
"""Returns HTML displaying the given revision number and linking to
that revision's change page at code.google.com, e.g.
http://code.google.com/p/skia/source/detail?r=2056
"""
return '<a href="http://code.google.com/p/skia/source/detail?r=%s">%s</a>'%(
revision_number, revision_number)
def main():
foo = [[0.0, 0.0], [0.0, 1.0], [0.0, 2.0], [0.0, 3.0]]
LinearRegression(foo)
if __name__ == "__main__":
main()
|