aboutsummaryrefslogtreecommitdiffhomepage
path: root/bench/bench_util.py
blob: f2603f944b807f17d045dbefa23e0083617782ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
'''
Created on May 19, 2011

@author: bungeman
'''

import re
import math

# bench representation algorithm constant names
ALGORITHM_AVERAGE = 'avg'
ALGORITHM_MEDIAN = 'med'
ALGORITHM_MINIMUM = 'min'
ALGORITHM_25TH_PERCENTILE = '25th'

# Regular expressions used throughout
PER_SETTING_RE = '([^\s=]+)(?:=(\S+))?'
SETTINGS_RE = 'skia bench:((?:\s+' + PER_SETTING_RE + ')*)'
BENCH_RE = 'running bench (?:\[\d+ \d+\] )?\s*(\S+)'
TIME_RE = '(?:(\w*)msecs = )?\s*((?:\d+\.\d+)(?:,\s*\d+\.\d+)*)'
# non-per-tile benches have configs that don't end with ']' or '>'
CONFIG_RE = '(\S+[^\]>]): ((?:' + TIME_RE + '\s+)+)'
# per-tile bench lines are in the following format. Note that there are
# non-averaged bench numbers in separate lines, which we ignore now due to
# their inaccuracy.
TILE_RE = ('  tile_(\S+): tile \[\d+,\d+\] out of \[\d+,\d+\] <averaged>:'
           ' ((?:' + TIME_RE + '\s+)+)')
# for extracting tile layout
TILE_LAYOUT_RE = ' out of \[(\d+),(\d+)\] <averaged>: '

PER_SETTING_RE_COMPILED = re.compile(PER_SETTING_RE)
SETTINGS_RE_COMPILED = re.compile(SETTINGS_RE)
BENCH_RE_COMPILED = re.compile(BENCH_RE)
TIME_RE_COMPILED = re.compile(TIME_RE)
CONFIG_RE_COMPILED = re.compile(CONFIG_RE)
TILE_RE_COMPILED = re.compile(TILE_RE)
TILE_LAYOUT_RE_COMPILED = re.compile(TILE_LAYOUT_RE)

class BenchDataPoint:
    """A single data point produced by bench.

    (str, str, str, float, {str:str}, str, [floats])"""
    def __init__(self, bench, config, time_type, time, settings,
                 tile_layout='', per_tile_values=[]):
        self.bench = bench
        self.config = config
        self.time_type = time_type
        self.time = time
        self.settings = settings
        # how tiles cover the whole picture. '5x3' means 5 columns and 3 rows.
        self.tile_layout = tile_layout
        # list of per_tile bench values, if applicable
        self.per_tile_values = per_tile_values

    def __repr__(self):
        return "BenchDataPoint(%s, %s, %s, %s, %s)" % (
                   str(self.bench),
                   str(self.config),
                   str(self.time_type),
                   str(self.time),
                   str(self.settings),
               )

class _ExtremeType(object):
    """Instances of this class compare greater or less than other objects."""
    def __init__(self, cmpr, rep):
        object.__init__(self)
        self._cmpr = cmpr
        self._rep = rep

    def __cmp__(self, other):
        if isinstance(other, self.__class__) and other._cmpr == self._cmpr:
            return 0
        return self._cmpr

    def __repr__(self):
        return self._rep

Max = _ExtremeType(1, "Max")
Min = _ExtremeType(-1, "Min")

class _ListAlgorithm(object):
    """Algorithm for selecting the representation value from a given list.
    representation is one of the ALGORITHM_XXX representation types."""
    def __init__(self, data, representation=None):
        if not representation:
            representation = ALGORITHM_AVERAGE  # default algorithm
        self._data = data
        self._len = len(data)
        if representation == ALGORITHM_AVERAGE:
            self._rep = sum(self._data) / self._len
        else:
            self._data.sort()
            if representation == ALGORITHM_MINIMUM:
                self._rep = self._data[0]
            else:
                # for percentiles, we use the value below which x% of values are
                # found, which allows for better detection of quantum behaviors.
                if representation == ALGORITHM_MEDIAN:
                    x = int(round(0.5 * self._len + 0.5))
                elif representation == ALGORITHM_25TH_PERCENTILE:
                    x = int(round(0.25 * self._len + 0.5))
                else:
                    raise Exception("invalid representation algorithm %s!" %
                                    representation)
                self._rep = self._data[x - 1]

    def compute(self):
        return self._rep

def _ParseAndStoreTimes(config_re_compiled, is_per_tile, line, bench,
                        value_dic, layout_dic, representation=None):
    """Parses given bench time line with regex and adds data to value_dic.

    config_re_compiled: precompiled regular expression for parsing the config
        line.
    is_per_tile: boolean indicating whether this is a per-tile bench.
        If so, we add tile layout into layout_dic as well.
    line: input string line to parse.
    bench: name of bench for the time values.
    value_dic: dictionary to store bench values. See bench_dic in parse() below.
    layout_dic: dictionary to store tile layouts. See parse() for descriptions.
    representation: should match one of the ALGORITHM_XXX types."""

    for config in config_re_compiled.finditer(line):
        current_config = config.group(1)
        tile_layout = ''
        if is_per_tile:  # per-tile bench, add name prefix
            current_config = 'tile_' + current_config
            layouts = TILE_LAYOUT_RE_COMPILED.search(line)
            if layouts and len(layouts.groups()) == 2:
              tile_layout = '%sx%s' % layouts.groups()
        times = config.group(2)
        for new_time in TIME_RE_COMPILED.finditer(times):
            current_time_type = new_time.group(1)
            iters = [float(i) for i in
                     new_time.group(2).strip().split(',')]
            value_dic.setdefault(bench, {}).setdefault(
                current_config, {}).setdefault(current_time_type, []).append(
                    _ListAlgorithm(iters, representation).compute())
            layout_dic.setdefault(bench, {}).setdefault(
                current_config, {}).setdefault(current_time_type, tile_layout)

def parse(settings, lines, representation=None):
    """Parses bench output into a useful data structure.

    ({str:str}, __iter__ -> str) -> [BenchDataPoint]
    representation is one of the ALGORITHM_XXX types."""

    benches = []
    current_bench = None
    bench_dic = {}  # [bench][config][time_type] -> [list of bench values]
    # [bench][config][time_type] -> tile_layout
    layout_dic = {}

    for line in lines:

        # see if this line is a settings line
        settingsMatch = SETTINGS_RE_COMPILED.search(line)
        if (settingsMatch):
            settings = dict(settings)
            for settingMatch in PER_SETTING_RE_COMPILED.finditer(settingsMatch.group(1)):
                if (settingMatch.group(2)):
                    settings[settingMatch.group(1)] = settingMatch.group(2)
                else:
                    settings[settingMatch.group(1)] = True

        # see if this line starts a new bench
        new_bench = BENCH_RE_COMPILED.search(line)
        if new_bench:
            current_bench = new_bench.group(1)

        # add configs on this line to the bench_dic
        if current_bench:
            if line.startswith('  tile_') :
                _ParseAndStoreTimes(TILE_RE_COMPILED, True, line, current_bench,
                                    bench_dic, layout_dic, representation)
            else:
                _ParseAndStoreTimes(CONFIG_RE_COMPILED, False, line,
                                    current_bench,
                                    bench_dic, layout_dic, representation)

    # append benches to list, use the total time as final bench value.
    for bench in bench_dic:
        for config in bench_dic[bench]:
            for time_type in bench_dic[bench][config]:
                tile_layout = ''
                per_tile_values = []
                if len(bench_dic[bench][config][time_type]) > 1:
                    # per-tile values, extract tile_layout
                    per_tile_values = bench_dic[bench][config][time_type]
                    tile_layout = layout_dic[bench][config][time_type]
                benches.append(BenchDataPoint(
                    bench,
                    config,
                    time_type,
                    sum(bench_dic[bench][config][time_type]),
                    settings,
                    tile_layout,
                    per_tile_values))

    return benches

class LinearRegression:
    """Linear regression data based on a set of data points.

    ([(Number,Number)])
    There must be at least two points for this to make sense."""
    def __init__(self, points):
        n = len(points)
        max_x = Min
        min_x = Max

        Sx = 0.0
        Sy = 0.0
        Sxx = 0.0
        Sxy = 0.0
        Syy = 0.0
        for point in points:
            x = point[0]
            y = point[1]
            max_x = max(max_x, x)
            min_x = min(min_x, x)

            Sx += x
            Sy += y
            Sxx += x*x
            Sxy += x*y
            Syy += y*y

        denom = n*Sxx - Sx*Sx
        if (denom != 0.0):
            B = (n*Sxy - Sx*Sy) / denom
        else:
            B = 0.0
        a = (1.0/n)*(Sy - B*Sx)

        se2 = 0
        sB2 = 0
        sa2 = 0
        if (n >= 3 and denom != 0.0):
            se2 = (1.0/(n*(n-2)) * (n*Syy - Sy*Sy - B*B*denom))
            sB2 = (n*se2) / denom
            sa2 = sB2 * (1.0/n) * Sxx


        self.slope = B
        self.intercept = a
        self.serror = math.sqrt(max(0, se2))
        self.serror_slope = math.sqrt(max(0, sB2))
        self.serror_intercept = math.sqrt(max(0, sa2))
        self.max_x = max_x
        self.min_x = min_x

    def __repr__(self):
        return "LinearRegression(%s, %s, %s, %s, %s)" % (
                   str(self.slope),
                   str(self.intercept),
                   str(self.serror),
                   str(self.serror_slope),
                   str(self.serror_intercept),
               )

    def find_min_slope(self):
        """Finds the minimal slope given one standard deviation."""
        slope = self.slope
        intercept = self.intercept
        error = self.serror
        regr_start = self.min_x
        regr_end = self.max_x
        regr_width = regr_end - regr_start

        if slope < 0:
            lower_left_y = slope*regr_start + intercept - error
            upper_right_y = slope*regr_end + intercept + error
            return min(0, (upper_right_y - lower_left_y) / regr_width)

        elif slope > 0:
            upper_left_y = slope*regr_start + intercept + error
            lower_right_y = slope*regr_end + intercept - error
            return max(0, (lower_right_y - upper_left_y) / regr_width)

        return 0

def CreateRevisionLink(revision_number):
    """Returns HTML displaying the given revision number and linking to
    that revision's change page at code.google.com, e.g.
    http://code.google.com/p/skia/source/detail?r=2056
    """
    return '<a href="http://code.google.com/p/skia/source/detail?r=%s">%s</a>'%(
        revision_number, revision_number)

def main():
    foo = [[0.0, 0.0], [0.0, 1.0], [0.0, 2.0], [0.0, 3.0]]
    LinearRegression(foo)

if __name__ == "__main__":
    main()