aboutsummaryrefslogtreecommitdiffhomepage
path: root/bench/bench_util.py
blob: 82a16f052254686bccd1be4e6efac828ad8b0b3e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
'''
Created on May 19, 2011

@author: bungeman
'''

import re
import math

class BenchDataPoint:
    """A single data point produced by bench.
    
    (str, str, str, float, {str:str})"""
    def __init__(self, bench, config, time_type, time, settings):
        self.bench = bench
        self.config = config
        self.time_type = time_type
        self.time = time
        self.settings = settings
    
    def __repr__(self):
        return "BenchDataPoint(%s, %s, %s, %s, %s)" % (
                   str(self.bench),
                   str(self.config),
                   str(self.time_type),
                   str(self.time),
                   str(self.settings),
               )
    
class _ExtremeType(object):
    """Instances of this class compare greater or less than other objects."""
    def __init__(self, cmpr, rep):
        object.__init__(self)
        self._cmpr = cmpr
        self._rep = rep
    
    def __cmp__(self, other):
        if isinstance(other, self.__class__) and other._cmpr == self._cmpr:
            return 0
        return self._cmpr
    
    def __repr__(self):
        return self._rep

Max = _ExtremeType(1, "Max")
Min = _ExtremeType(-1, "Min")

class _ListAlgorithm(object):
    """Algorithm for selecting the representation value from a given list.
    representation is one of 'avg', 'min', 'med', '25th' (average, minimum,
    median, 25th percentile)"""
    def __init__(self, data, representation=None):
        if not representation:
            representation = 'avg'  # default algorithm is average
        self._data = data
        self._len = len(data)
        if representation == 'avg':
            self._rep = sum(self._data) / self._len
        else:
            self._data.sort()
            if representation == 'min':
                self._rep = self._data[0]
            else:
                # for percentiles, we use the value below which x% of values are
                # found, which allows for better detection of quantum behaviors.
                if representation == 'med':
                    x = int(round(0.5 * self._len + 0.5))
                elif representation == '25th':
                    x = int(round(0.25 * self._len + 0.5))
                else:
                    raise Exception("invalid representation algorithm %s!" %
                                    representation)
                self._rep = self._data[x - 1]

    def compute(self):
        return self._rep

def parse(settings, lines, representation='avg'):
    """Parses bench output into a useful data structure.
    
    ({str:str}, __iter__ -> str) -> [BenchDataPoint]
    representation should match one of those defined in class _ListAlgorithm."""
    
    benches = []
    current_bench = None
    setting_re = '([^\s=]+)(?:=(\S+))?'
    settings_re = 'skia bench:((?:\s+' + setting_re + ')*)'
    bench_re = 'running bench (?:\[\d+ \d+\] )?\s*(\S+)'
    time_re = '(?:(\w*)msecs = )?\s*((?:\d+\.\d+)(?:,\d+\.\d+)*)'
    config_re = '(\S+): ((?:' + time_re + '\s+)+)'
    
    for line in lines:
        
        #see if this line is a settings line
        settingsMatch = re.search(settings_re, line)
        if (settingsMatch):
            settings = dict(settings)
            for settingMatch in re.finditer(setting_re, settingsMatch.group(1)):
                if (settingMatch.group(2)):
                    settings[settingMatch.group(1)] = settingMatch.group(2)
                else:
                    settings[settingMatch.group(1)] = True
                
        #see if this line starts a new bench
        new_bench = re.search(bench_re, line)
        if new_bench:
            current_bench = new_bench.group(1)
        
        #add configs on this line to the current bench
        if current_bench:
            for new_config in re.finditer(config_re, line):
                current_config = new_config.group(1)
                times = new_config.group(2)
                for new_time in re.finditer(time_re, times):
                    current_time_type = new_time.group(1)
                    iters = [float(i) for i in
                             new_time.group(2).strip().split(',')]
                    benches.append(BenchDataPoint(
                            current_bench
                            , current_config
                            , current_time_type
                            , _ListAlgorithm(iters, representation).compute()
                            , settings))
    
    return benches
    
class LinearRegression:
    """Linear regression data based on a set of data points.
    
    ([(Number,Number)])
    There must be at least two points for this to make sense."""
    def __init__(self, points):
        n = len(points)
        max_x = Min
        min_x = Max
        
        Sx = 0.0
        Sy = 0.0
        Sxx = 0.0
        Sxy = 0.0
        Syy = 0.0
        for point in points:
            x = point[0]
            y = point[1]
            max_x = max(max_x, x)
            min_x = min(min_x, x)
            
            Sx += x
            Sy += y
            Sxx += x*x
            Sxy += x*y
            Syy += y*y
        
        denom = n*Sxx - Sx*Sx
        if (denom != 0.0):
            B = (n*Sxy - Sx*Sy) / denom
        else:
            B = 0.0
        a = (1.0/n)*(Sy - B*Sx)
        
        se2 = 0
        sB2 = 0
        sa2 = 0
        if (n >= 3 and denom != 0.0):
            se2 = (1.0/(n*(n-2)) * (n*Syy - Sy*Sy - B*B*denom))
            sB2 = (n*se2) / denom
            sa2 = sB2 * (1.0/n) * Sxx
        
        
        self.slope = B
        self.intercept = a
        self.serror = math.sqrt(max(0, se2))
        self.serror_slope = math.sqrt(max(0, sB2))
        self.serror_intercept = math.sqrt(max(0, sa2))
        self.max_x = max_x
        self.min_x = min_x
        
    def __repr__(self):
        return "LinearRegression(%s, %s, %s, %s, %s)" % (
                   str(self.slope),
                   str(self.intercept),
                   str(self.serror),
                   str(self.serror_slope),
                   str(self.serror_intercept),
               )
    
    def find_min_slope(self):
        """Finds the minimal slope given one standard deviation."""
        slope = self.slope
        intercept = self.intercept
        error = self.serror
        regr_start = self.min_x
        regr_end = self.max_x
        regr_width = regr_end - regr_start
        
        if slope < 0:
            lower_left_y = slope*regr_start + intercept - error
            upper_right_y = slope*regr_end + intercept + error
            return min(0, (upper_right_y - lower_left_y) / regr_width)
        
        elif slope > 0:
            upper_left_y = slope*regr_start + intercept + error
            lower_right_y = slope*regr_end + intercept - error
            return max(0, (lower_right_y - upper_left_y) / regr_width)
        
        return 0

def CreateRevisionLink(revision_number):
    """Returns HTML displaying the given revision number and linking to
    that revision's change page at code.google.com, e.g.
    http://code.google.com/p/skia/source/detail?r=2056
    """
    return '<a href="http://code.google.com/p/skia/source/detail?r=%s">%s</a>'%(
        revision_number, revision_number)

def main():
    foo = [[0.0, 0.0], [0.0, 1.0], [0.0, 2.0], [0.0, 3.0]]
    LinearRegression(foo)

if __name__ == "__main__":
    main()