aboutsummaryrefslogtreecommitdiffhomepage
path: root/bench/RTreeBench.cpp
blob: cdbdf35e01c67c082dd0459c8e4ac49fc4bd149d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "Benchmark.h"
#include "SkCanvas.h"
#include "SkRTree.h"
#include "SkRandom.h"
#include "SkString.h"

// confine rectangles to a smallish area, so queries generally hit something, and overlap occurs:
static const SkScalar GENERATE_EXTENTS = 1000.0f;
static const int NUM_BUILD_RECTS = 500;
static const int NUM_QUERY_RECTS = 5000;
static const int GRID_WIDTH = 100;

typedef SkRect (*MakeRectProc)(SkRandom&, int, int);

// Time how long it takes to build an R-Tree.
class RTreeBuildBench : public Benchmark {
public:
    RTreeBuildBench(const char* name, MakeRectProc proc) : fProc(proc) {
        fName.printf("rtree_%s_build", name);
    }

    bool isSuitableFor(Backend backend) SK_OVERRIDE {
        return backend == kNonRendering_Backend;
    }

protected:
    const char* onGetName() SK_OVERRIDE {
        return fName.c_str();
    }
    void onDraw(const int loops, SkCanvas* canvas) SK_OVERRIDE {
        SkRandom rand;
        SkAutoTMalloc<SkRect> rects(NUM_BUILD_RECTS);
        for (int i = 0; i < NUM_BUILD_RECTS; ++i) {
            rects[i] = fProc(rand, i, NUM_BUILD_RECTS);
        }

        for (int i = 0; i < loops; ++i) {
            SkRTree tree;
            tree.insert(rects.get(), NUM_BUILD_RECTS);
            SkASSERT(rects != NULL);  // It'd break this bench if the tree took ownership of rects.
        }
    }
private:
    MakeRectProc fProc;
    SkString fName;
    typedef Benchmark INHERITED;
};

// Time how long it takes to perform queries on an R-Tree.
class RTreeQueryBench : public Benchmark {
public:
    RTreeQueryBench(const char* name, MakeRectProc proc) : fProc(proc) {
        fName.printf("rtree_%s_query", name);
    }

    bool isSuitableFor(Backend backend) SK_OVERRIDE {
        return backend == kNonRendering_Backend;
    }
protected:
    const char* onGetName() SK_OVERRIDE {
        return fName.c_str();
    }
    void onPreDraw() SK_OVERRIDE {
        SkRandom rand;
        SkAutoTMalloc<SkRect> rects(NUM_QUERY_RECTS);
        for (int i = 0; i < NUM_QUERY_RECTS; ++i) {
            rects[i] = fProc(rand, i, NUM_QUERY_RECTS);
        }
        fTree.insert(rects.get(), NUM_QUERY_RECTS);
    }

    void onDraw(const int loops, SkCanvas* canvas) SK_OVERRIDE {
        SkRandom rand;
        for (int i = 0; i < loops; ++i) {
            SkTDArray<unsigned> hits;
            SkRect query;
            query.fLeft   = rand.nextRangeF(0, GENERATE_EXTENTS);
            query.fTop    = rand.nextRangeF(0, GENERATE_EXTENTS);
            query.fRight  = query.fLeft + 1 + rand.nextRangeF(0, GENERATE_EXTENTS/2);
            query.fBottom = query.fTop  + 1 + rand.nextRangeF(0, GENERATE_EXTENTS/2);
            fTree.search(query, &hits);
        }
    }
private:
    SkRTree fTree;
    MakeRectProc fProc;
    SkString fName;
    typedef Benchmark INHERITED;
};

static inline SkRect make_XYordered_rects(SkRandom& rand, int index, int numRects) {
    SkRect out;
    out.fLeft   = SkIntToScalar(index % GRID_WIDTH);
    out.fTop    = SkIntToScalar(index / GRID_WIDTH);
    out.fRight  = out.fLeft + 1 + rand.nextRangeF(0, GENERATE_EXTENTS/3);
    out.fBottom = out.fTop  + 1 + rand.nextRangeF(0, GENERATE_EXTENTS/3);
    return out;
}
static inline SkRect make_YXordered_rects(SkRandom& rand, int index, int numRects) {
    SkRect out;
    out.fLeft   = SkIntToScalar(index / GRID_WIDTH);
    out.fTop    = SkIntToScalar(index % GRID_WIDTH);
    out.fRight  = out.fLeft + 1 + rand.nextRangeF(0, GENERATE_EXTENTS/3);
    out.fBottom = out.fTop  + 1 + rand.nextRangeF(0, GENERATE_EXTENTS/3);
    return out;
}

static inline SkRect make_random_rects(SkRandom& rand, int index, int numRects) {
    SkRect out;
    out.fLeft   = rand.nextRangeF(0, GENERATE_EXTENTS);
    out.fTop    = rand.nextRangeF(0, GENERATE_EXTENTS);
    out.fRight  = out.fLeft + 1 + rand.nextRangeF(0, GENERATE_EXTENTS/5);
    out.fBottom = out.fTop  + 1 + rand.nextRangeF(0, GENERATE_EXTENTS/5);
    return out;
}

static inline SkRect make_concentric_rects(SkRandom&, int index, int numRects) {
    return SkRect::MakeWH(SkIntToScalar(index+1), SkIntToScalar(index+1));
}

///////////////////////////////////////////////////////////////////////////////

DEF_BENCH(return SkNEW_ARGS(RTreeBuildBench, ("XY",         &make_XYordered_rects)));
DEF_BENCH(return SkNEW_ARGS(RTreeBuildBench, ("YX",         &make_YXordered_rects)));
DEF_BENCH(return SkNEW_ARGS(RTreeBuildBench, ("random",     &make_random_rects)));
DEF_BENCH(return SkNEW_ARGS(RTreeBuildBench, ("concentric", &make_concentric_rects)));

DEF_BENCH(return SkNEW_ARGS(RTreeQueryBench, ("XY",         &make_XYordered_rects)));
DEF_BENCH(return SkNEW_ARGS(RTreeQueryBench, ("YX",         &make_YXordered_rects)));
DEF_BENCH(return SkNEW_ARGS(RTreeQueryBench, ("random",     &make_random_rects)));
DEF_BENCH(return SkNEW_ARGS(RTreeQueryBench, ("concentric", &make_concentric_rects)));