aboutsummaryrefslogtreecommitdiffhomepage
path: root/bench/GLVec4ScalarBench.cpp
blob: b5c7e22a49c4e28d6433427a84514ed03bc3778d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
/*
 * Copyright 2015 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkMatrix.h"
#include "SkPoint.h"
#include "SkString.h"

#if SK_SUPPORT_GPU
#include "GLBench.h"
#include "GrShaderCaps.h"
#include "GrShaderVar.h"
#include "gl/GrGLContext.h"
#include "gl/GrGLInterface.h"
#include "gl/GrGLUtil.h"
#include "../private/GrGLSL.h"

#include <stdio.h>

/**
 * This is a GL benchmark for comparing the performance of using vec4 or float for coverage in GLSL.
 * The generated shader code from this bench will draw several overlapping circles, one in each
 * stage, to simulate coverage calculations.  The number of circles (i.e. the number of stages) can
 * be set as a parameter.
 */

class GLVec4ScalarBench : public GLBench {
public:
    /*
     * Use float or vec4 as GLSL data type for the output coverage
     */
    enum CoverageSetup {
        kUseScalar_CoverageSetup,
        kUseVec4_CoverageSetup,
    };

    /*
     * numStages determines the number of shader stages before the XP,
     * which consequently determines how many circles are drawn
     */
    GLVec4ScalarBench(CoverageSetup coverageSetup, uint32_t numStages)
        : fCoverageSetup(coverageSetup)
        , fNumStages(numStages)
        , fVboId(0)
        , fProgram(0) {
        fName = NumStagesSetupToStr(coverageSetup, numStages);
    }

protected:
    const char* onGetName() override {
        return fName.c_str();
    }

    void setup(const GrGLContext*) override;
    void glDraw(int loops, const GrGLContext*) override;
    void teardown(const GrGLInterface*) override;

private:
    void setupSingleVbo(const GrGLInterface*, const SkMatrix*);
    GrGLuint setupShader(const GrGLContext*);


    static SkString NumStagesSetupToStr(CoverageSetup coverageSetup, uint32_t numStages) {
        SkString name("GLVec4ScalarBench");
        switch (coverageSetup) {
            default:
            case kUseScalar_CoverageSetup:
                name.appendf("_scalar_%u_stage", numStages);
                break;
            case kUseVec4_CoverageSetup:
                name.appendf("_vec4_%u_stage", numStages);
                break;
        }
        return name;
    }

    static const GrGLuint kScreenWidth = 800;
    static const GrGLuint kScreenHeight = 600;
    static const uint32_t kNumTriPerDraw = 512;
    static const uint32_t kVerticesPerTri = 3;

    SkString fName;
    CoverageSetup fCoverageSetup;
    uint32_t fNumStages;
    GrGLuint fVboId;
    GrGLuint fProgram;
    GrGLuint fFboTextureId;
};

///////////////////////////////////////////////////////////////////////////////////////////////////

GrGLuint GLVec4ScalarBench::setupShader(const GrGLContext* ctx) {
    const GrShaderCaps* shaderCaps = ctx->caps()->shaderCaps();
    const char* version = shaderCaps->versionDeclString();

    // this shader draws fNumStages overlapping circles of increasing opacity (coverage) and
    // decreasing size, with the center of each subsequent circle closer to the bottom-right
    // corner of the screen than the previous circle.

    // set up vertex shader; this is a trivial vertex shader that passes through position and color
    GrShaderVar aPosition("a_position", kVec2f_GrSLType, GrShaderVar::kIn_TypeModifier);
    GrShaderVar oPosition("o_position", kVec2f_GrSLType, GrShaderVar::kOut_TypeModifier);
    GrShaderVar aColor("a_color", kVec3f_GrSLType, GrShaderVar::kIn_TypeModifier);
    GrShaderVar oColor("o_color", kVec3f_GrSLType, GrShaderVar::kOut_TypeModifier);

    SkString vshaderTxt(version);
    aPosition.appendDecl(shaderCaps, &vshaderTxt);
    vshaderTxt.append(";\n");
    aColor.appendDecl(shaderCaps, &vshaderTxt);
    vshaderTxt.append(";\n");
    oPosition.appendDecl(shaderCaps, &vshaderTxt);
    vshaderTxt.append(";\n");
    oColor.appendDecl(shaderCaps, &vshaderTxt);
    vshaderTxt.append(";\n");

    vshaderTxt.append(
            "void main()\n"
            "{\n"
            "    gl_Position = vec4(a_position, 0.0, 1.0);\n"
            "    o_position = a_position;\n"
            "    o_color = a_color;\n"
            "}\n");

    // set up fragment shader; this fragment shader will have fNumStages coverage stages plus an
    // XP stage at the end.  Each coverage stage computes the pixel's distance from some hard-
    // coded center and compare that to some hard-coded circle radius to compute a coverage.
    // Then, this coverage is mixed with the coverage from the previous stage and passed to the
    // next stage.
    GrShaderVar oFragColor("o_FragColor", kVec4f_GrSLType, GrShaderVar::kOut_TypeModifier);
    SkString fshaderTxt(version);
    GrGLSLAppendDefaultFloatPrecisionDeclaration(kMedium_GrSLPrecision, *shaderCaps, &fshaderTxt);
    oPosition.setTypeModifier(GrShaderVar::kIn_TypeModifier);
    oPosition.appendDecl(shaderCaps, &fshaderTxt);
    fshaderTxt.append(";\n");
    oColor.setTypeModifier(GrShaderVar::kIn_TypeModifier);
    oColor.appendDecl(shaderCaps, &fshaderTxt);
    fshaderTxt.append(";\n");

    const char* fsOutName;
    if (shaderCaps->mustDeclareFragmentShaderOutput()) {
        oFragColor.appendDecl(shaderCaps, &fshaderTxt);
        fshaderTxt.append(";\n");
        fsOutName = oFragColor.c_str();
    } else {
        fsOutName = "sk_FragColor";
    }


    fshaderTxt.appendf(
            "void main()\n"
            "{\n"
            "    vec4 outputColor;\n"
            "    %s outputCoverage;\n"
            "    outputColor = vec4(%s, 1.0);\n"
            "    outputCoverage = %s;\n",
            fCoverageSetup == kUseVec4_CoverageSetup ? "vec4" : "float",
            oColor.getName().c_str(),
            fCoverageSetup == kUseVec4_CoverageSetup ? "vec4(1.0)" : "1.0"
            );

    float radius = 1.0f;
    for (uint32_t i = 0; i < fNumStages; i++) {
        float centerX = 1.0f - radius;
        float centerY = 1.0f - radius;
        fshaderTxt.appendf(
            "    {\n"
            "        float d = length(%s - vec2(%f, %f));\n"
            "        float edgeAlpha = clamp(100.0 * (%f - d), 0.0, 1.0);\n"
            "        outputCoverage = 0.5 * outputCoverage + 0.5 * %s;\n"
            "    }\n",
            oPosition.getName().c_str(), centerX, centerY,
            radius,
            fCoverageSetup == kUseVec4_CoverageSetup ? "vec4(edgeAlpha)" : "edgeAlpha"
            );
        radius *= 0.8f;
    }
    fshaderTxt.appendf(
            "    {\n"
            "        %s = outputColor * outputCoverage;\n"
            "    }\n"
            "}\n",
            fsOutName);

    return CreateProgram(ctx, vshaderTxt.c_str(), fshaderTxt.c_str());
}

template<typename Func>
static void setup_matrices(int numQuads, Func f) {
    // We draw a really small triangle so we are not fill rate limited
    for (int i = 0 ; i < numQuads; i++) {
        SkMatrix m = SkMatrix::I();
        m.setScale(0.01f, 0.01f);
        f(m);
    }
}

///////////////////////////////////////////////////////////////////////////////////////////////////

struct Vertex {
    SkPoint fPositions;
    GrGLfloat fColors[3];
};

void GLVec4ScalarBench::setupSingleVbo(const GrGLInterface* gl, const SkMatrix* viewMatrices) {
    // triangles drawn will alternate between the top-right half of the screen and the bottom-left
    // half of the screen
    Vertex vertices[kVerticesPerTri * kNumTriPerDraw];
    for (uint32_t i = 0; i < kNumTriPerDraw; i++) {
        Vertex* v = &vertices[i * kVerticesPerTri];
        if (i % 2 == 0) {
            v[0].fPositions.set(-1.0f, -1.0f);
            v[1].fPositions.set( 1.0f, -1.0f);
            v[2].fPositions.set( 1.0f,  1.0f);
        } else {
            v[0].fPositions.set(-1.0f, -1.0f);
            v[1].fPositions.set( 1.0f, 1.0f);
            v[2].fPositions.set( -1.0f, 1.0f);
        }
        SkPoint* position = reinterpret_cast<SkPoint*>(v);
        viewMatrices[i].mapPointsWithStride(position, sizeof(Vertex), kVerticesPerTri);

        GrGLfloat color[3] = {1.0f, 0.0f, 1.0f};
        for (uint32_t j = 0; j < kVerticesPerTri; j++) {
            v->fColors[0] = color[0];
            v->fColors[1] = color[1];
            v->fColors[2] = color[2];
            v++;
        }
    }

    GR_GL_CALL(gl, GenBuffers(1, &fVboId));
    GR_GL_CALL(gl, BindBuffer(GR_GL_ARRAY_BUFFER, fVboId));
    GR_GL_CALL(gl, EnableVertexAttribArray(0));
    GR_GL_CALL(gl, EnableVertexAttribArray(1));
    GR_GL_CALL(gl, VertexAttribPointer(0, 2, GR_GL_FLOAT, GR_GL_FALSE, sizeof(Vertex),
                                       (GrGLvoid*)0));
    GR_GL_CALL(gl, VertexAttribPointer(1, 3, GR_GL_FLOAT, GR_GL_FALSE, sizeof(Vertex),
                                       (GrGLvoid*)(sizeof(SkPoint))));
    GR_GL_CALL(gl, BufferData(GR_GL_ARRAY_BUFFER, sizeof(vertices), vertices, GR_GL_STATIC_DRAW));
}

void GLVec4ScalarBench::setup(const GrGLContext* ctx) {
    const GrGLInterface* gl = ctx->interface();
    if (!gl) {
        SkFAIL("GL interface is nullptr in setup()!\n");
    }
    fFboTextureId = SetupFramebuffer(gl, kScreenWidth, kScreenHeight);

    fProgram = this->setupShader(ctx);

    int index = 0;
    SkMatrix viewMatrices[kNumTriPerDraw];
    setup_matrices(kNumTriPerDraw, [&index, &viewMatrices](const SkMatrix& m) {
        viewMatrices[index++] = m;
    });
    this->setupSingleVbo(gl, viewMatrices);

    GR_GL_CALL(gl, UseProgram(fProgram));
}

void GLVec4ScalarBench::glDraw(int loops, const GrGLContext* ctx) {
    const GrGLInterface* gl = ctx->interface();

    for (int i = 0; i < loops; i++) {
        GR_GL_CALL(gl, DrawArrays(GR_GL_TRIANGLES, 0, kVerticesPerTri * kNumTriPerDraw));
    }

// using -w when running nanobench will not produce correct images;
// changing this to #if 1 will write the correct images to the Skia folder.
#if 0
    SkString filename("out");
    filename.appendf("_%s.png", this->getName());
    DumpImage(gl, kScreenWidth, kScreenHeight, filename.c_str());
#endif
}

void GLVec4ScalarBench::teardown(const GrGLInterface* gl) {
    GR_GL_CALL(gl, BindBuffer(GR_GL_ARRAY_BUFFER, 0));
    GR_GL_CALL(gl, BindTexture(GR_GL_TEXTURE_2D, 0));
    GR_GL_CALL(gl, BindFramebuffer(GR_GL_FRAMEBUFFER, 0));
    GR_GL_CALL(gl, DeleteTextures(1, &fFboTextureId));
    GR_GL_CALL(gl, DeleteProgram(fProgram));
    GR_GL_CALL(gl, DeleteBuffers(1, &fVboId));
}

///////////////////////////////////////////////////////////////////////////////

DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseScalar_CoverageSetup, 1) )
DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseVec4_CoverageSetup, 1) )
DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseScalar_CoverageSetup, 2) )
DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseVec4_CoverageSetup, 2) )
DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseScalar_CoverageSetup, 4) )
DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseVec4_CoverageSetup, 4) )
DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseScalar_CoverageSetup, 6) )
DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseVec4_CoverageSetup, 6) )
DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseScalar_CoverageSetup, 8) )
DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseVec4_CoverageSetup, 8) )

#endif