aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/opts/SkRasterPipeline_opts.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/opts/SkRasterPipeline_opts.h')
-rw-r--r--src/opts/SkRasterPipeline_opts.h3283
1 files changed, 3283 insertions, 0 deletions
diff --git a/src/opts/SkRasterPipeline_opts.h b/src/opts/SkRasterPipeline_opts.h
new file mode 100644
index 0000000000..f397033b01
--- /dev/null
+++ b/src/opts/SkRasterPipeline_opts.h
@@ -0,0 +1,3283 @@
+/*
+ * Copyright 2018 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef SkRasterPipeline_opts_DEFINED
+#define SkRasterPipeline_opts_DEFINED
+
+#include "../../jumper/SkJumper.h"
+#include "../../jumper/SkJumper_misc.h"
+
+#if !defined(__clang__)
+ #define JUMPER_IS_SCALAR
+#elif defined(__ARM_NEON)
+ #define JUMPER_IS_NEON
+#elif defined(__AVX512F__)
+ #define JUMPER_IS_AVX512
+#elif defined(__AVX2__) && defined(__F16C__) && defined(__FMA__)
+ #define JUMPER_IS_HSW
+#elif defined(__AVX__)
+ #define JUMPER_IS_AVX
+#elif defined(__SSE4_1__)
+ #define JUMPER_IS_SSE41
+#elif defined(__SSE2__)
+ #define JUMPER_IS_SSE2
+#else
+ #define JUMPER_IS_SCALAR
+#endif
+
+// Older Clangs seem to crash when generating non-optimized NEON code for ARMv7.
+#if defined(__clang__) && !defined(__OPTIMIZE__) && defined(__arm__)
+ // Apple Clang 9 and vanilla Clang 5 are fine, and may even be conservative.
+ #if defined(__apple_build_version__) && __clang_major__ < 9
+ #define JUMPER_IS_SCALAR
+ #elif __clang_major__ < 5
+ #define JUMPER_IS_SCALAR
+ #endif
+#endif
+
+#if defined(JUMPER_IS_SCALAR)
+ #include <math.h>
+#elif defined(JUMPER_IS_NEON)
+ #include <arm_neon.h>
+#else
+ #include <immintrin.h>
+#endif
+
+namespace SK_OPTS_NS {
+
+#if defined(JUMPER_IS_SCALAR)
+ // This path should lead to portable scalar code.
+ using F = float ;
+ using I32 = int32_t;
+ using U64 = uint64_t;
+ using U32 = uint32_t;
+ using U16 = uint16_t;
+ using U8 = uint8_t ;
+
+ SI F mad(F f, F m, F a) { return f*m+a; }
+ SI F min(F a, F b) { return fminf(a,b); }
+ SI F max(F a, F b) { return fmaxf(a,b); }
+ SI F abs_ (F v) { return fabsf(v); }
+ SI F floor_(F v) { return floorf(v); }
+ SI F rcp (F v) { return 1.0f / v; }
+ SI F rsqrt (F v) { return 1.0f / sqrtf(v); }
+ SI F sqrt_(F v) { return sqrtf(v); }
+ SI U32 round (F v, F scale) { return (uint32_t)(v*scale + 0.5f); }
+ SI U16 pack(U32 v) { return (U16)v; }
+ SI U8 pack(U16 v) { return (U8)v; }
+
+ SI F if_then_else(I32 c, F t, F e) { return c ? t : e; }
+
+ template <typename T>
+ SI T gather(const T* p, U32 ix) { return p[ix]; }
+
+ SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
+ *r = ptr[0];
+ *g = ptr[1];
+ *b = ptr[2];
+ }
+ SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
+ *r = ptr[0];
+ *g = ptr[1];
+ *b = ptr[2];
+ *a = ptr[3];
+ }
+ SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
+ ptr[0] = r;
+ ptr[1] = g;
+ ptr[2] = b;
+ ptr[3] = a;
+ }
+
+ SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
+ *r = ptr[0];
+ *g = ptr[1];
+ *b = ptr[2];
+ *a = ptr[3];
+ }
+ SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
+ ptr[0] = r;
+ ptr[1] = g;
+ ptr[2] = b;
+ ptr[3] = a;
+ }
+
+#elif defined(JUMPER_IS_NEON)
+ // Since we know we're using Clang, we can use its vector extensions.
+ template <typename T> using V = T __attribute__((ext_vector_type(4)));
+ using F = V<float >;
+ using I32 = V< int32_t>;
+ using U64 = V<uint64_t>;
+ using U32 = V<uint32_t>;
+ using U16 = V<uint16_t>;
+ using U8 = V<uint8_t >;
+
+ // We polyfill a few routines that Clang doesn't build into ext_vector_types.
+ SI F min(F a, F b) { return vminq_f32(a,b); }
+ SI F max(F a, F b) { return vmaxq_f32(a,b); }
+ SI F abs_ (F v) { return vabsq_f32(v); }
+ SI F rcp (F v) { auto e = vrecpeq_f32 (v); return vrecpsq_f32 (v,e ) * e; }
+ SI F rsqrt (F v) { auto e = vrsqrteq_f32(v); return vrsqrtsq_f32(v,e*e) * e; }
+ SI U16 pack(U32 v) { return __builtin_convertvector(v, U16); }
+ SI U8 pack(U16 v) { return __builtin_convertvector(v, U8); }
+
+ SI F if_then_else(I32 c, F t, F e) { return vbslq_f32((U32)c,t,e); }
+
+ #if defined(__aarch64__)
+ SI F mad(F f, F m, F a) { return vfmaq_f32(a,f,m); }
+ SI F floor_(F v) { return vrndmq_f32(v); }
+ SI F sqrt_(F v) { return vsqrtq_f32(v); }
+ SI U32 round(F v, F scale) { return vcvtnq_u32_f32(v*scale); }
+ #else
+ SI F mad(F f, F m, F a) { return vmlaq_f32(a,f,m); }
+ SI F floor_(F v) {
+ F roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v));
+ return roundtrip - if_then_else(roundtrip > v, 1, 0);
+ }
+
+ SI F sqrt_(F v) {
+ auto e = vrsqrteq_f32(v); // Estimate and two refinement steps for e = rsqrt(v).
+ e *= vrsqrtsq_f32(v,e*e);
+ e *= vrsqrtsq_f32(v,e*e);
+ return v*e; // sqrt(v) == v*rsqrt(v).
+ }
+
+ SI U32 round(F v, F scale) {
+ return vcvtq_u32_f32(mad(v,scale,0.5f));
+ }
+ #endif
+
+
+ template <typename T>
+ SI V<T> gather(const T* p, U32 ix) {
+ return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
+ }
+
+ SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
+ uint16x4x3_t rgb;
+ if (__builtin_expect(tail,0)) {
+ if ( true ) { rgb = vld3_lane_u16(ptr + 0, rgb, 0); }
+ if (tail > 1) { rgb = vld3_lane_u16(ptr + 3, rgb, 1); }
+ if (tail > 2) { rgb = vld3_lane_u16(ptr + 6, rgb, 2); }
+ } else {
+ rgb = vld3_u16(ptr);
+ }
+ *r = rgb.val[0];
+ *g = rgb.val[1];
+ *b = rgb.val[2];
+ }
+ SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
+ uint16x4x4_t rgba;
+ if (__builtin_expect(tail,0)) {
+ if ( true ) { rgba = vld4_lane_u16(ptr + 0, rgba, 0); }
+ if (tail > 1) { rgba = vld4_lane_u16(ptr + 4, rgba, 1); }
+ if (tail > 2) { rgba = vld4_lane_u16(ptr + 8, rgba, 2); }
+ } else {
+ rgba = vld4_u16(ptr);
+ }
+ *r = rgba.val[0];
+ *g = rgba.val[1];
+ *b = rgba.val[2];
+ *a = rgba.val[3];
+ }
+ SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
+ if (__builtin_expect(tail,0)) {
+ if ( true ) { vst4_lane_u16(ptr + 0, (uint16x4x4_t{{r,g,b,a}}), 0); }
+ if (tail > 1) { vst4_lane_u16(ptr + 4, (uint16x4x4_t{{r,g,b,a}}), 1); }
+ if (tail > 2) { vst4_lane_u16(ptr + 8, (uint16x4x4_t{{r,g,b,a}}), 2); }
+ } else {
+ vst4_u16(ptr, (uint16x4x4_t{{r,g,b,a}}));
+ }
+ }
+ SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
+ float32x4x4_t rgba;
+ if (__builtin_expect(tail,0)) {
+ if ( true ) { rgba = vld4q_lane_f32(ptr + 0, rgba, 0); }
+ if (tail > 1) { rgba = vld4q_lane_f32(ptr + 4, rgba, 1); }
+ if (tail > 2) { rgba = vld4q_lane_f32(ptr + 8, rgba, 2); }
+ } else {
+ rgba = vld4q_f32(ptr);
+ }
+ *r = rgba.val[0];
+ *g = rgba.val[1];
+ *b = rgba.val[2];
+ *a = rgba.val[3];
+ }
+ SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
+ if (__builtin_expect(tail,0)) {
+ if ( true ) { vst4q_lane_f32(ptr + 0, (float32x4x4_t{{r,g,b,a}}), 0); }
+ if (tail > 1) { vst4q_lane_f32(ptr + 4, (float32x4x4_t{{r,g,b,a}}), 1); }
+ if (tail > 2) { vst4q_lane_f32(ptr + 8, (float32x4x4_t{{r,g,b,a}}), 2); }
+ } else {
+ vst4q_f32(ptr, (float32x4x4_t{{r,g,b,a}}));
+ }
+ }
+
+#elif defined(JUMPER_IS_AVX) || defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
+ // These are __m256 and __m256i, but friendlier and strongly-typed.
+ template <typename T> using V = T __attribute__((ext_vector_type(8)));
+ using F = V<float >;
+ using I32 = V< int32_t>;
+ using U64 = V<uint64_t>;
+ using U32 = V<uint32_t>;
+ using U16 = V<uint16_t>;
+ using U8 = V<uint8_t >;
+
+ SI F mad(F f, F m, F a) {
+ #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
+ return _mm256_fmadd_ps(f,m,a);
+ #else
+ return f*m+a;
+ #endif
+ }
+
+ SI F min(F a, F b) { return _mm256_min_ps(a,b); }
+ SI F max(F a, F b) { return _mm256_max_ps(a,b); }
+ SI F abs_ (F v) { return _mm256_and_ps(v, 0-v); }
+ SI F floor_(F v) { return _mm256_floor_ps(v); }
+ SI F rcp (F v) { return _mm256_rcp_ps (v); }
+ SI F rsqrt (F v) { return _mm256_rsqrt_ps(v); }
+ SI F sqrt_(F v) { return _mm256_sqrt_ps (v); }
+ SI U32 round (F v, F scale) { return _mm256_cvtps_epi32(v*scale); }
+
+ SI U16 pack(U32 v) {
+ return _mm_packus_epi32(_mm256_extractf128_si256(v, 0),
+ _mm256_extractf128_si256(v, 1));
+ }
+ SI U8 pack(U16 v) {
+ auto r = _mm_packus_epi16(v,v);
+ return unaligned_load<U8>(&r);
+ }
+
+ SI F if_then_else(I32 c, F t, F e) { return _mm256_blendv_ps(e,t,c); }
+
+ template <typename T>
+ SI V<T> gather(const T* p, U32 ix) {
+ return { p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]],
+ p[ix[4]], p[ix[5]], p[ix[6]], p[ix[7]], };
+ }
+ #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
+ SI F gather(const float* p, U32 ix) { return _mm256_i32gather_ps (p, ix, 4); }
+ SI U32 gather(const uint32_t* p, U32 ix) { return _mm256_i32gather_epi32(p, ix, 4); }
+ SI U64 gather(const uint64_t* p, U32 ix) {
+ __m256i parts[] = {
+ _mm256_i32gather_epi64(p, _mm256_extracti128_si256(ix,0), 8),
+ _mm256_i32gather_epi64(p, _mm256_extracti128_si256(ix,1), 8),
+ };
+ return bit_cast<U64>(parts);
+ }
+ #endif
+
+ SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
+ __m128i _0,_1,_2,_3,_4,_5,_6,_7;
+ if (__builtin_expect(tail,0)) {
+ auto load_rgb = [](const uint16_t* src) {
+ auto v = _mm_cvtsi32_si128(*(const uint32_t*)src);
+ return _mm_insert_epi16(v, src[2], 2);
+ };
+ _1 = _2 = _3 = _4 = _5 = _6 = _7 = _mm_setzero_si128();
+ if ( true ) { _0 = load_rgb(ptr + 0); }
+ if (tail > 1) { _1 = load_rgb(ptr + 3); }
+ if (tail > 2) { _2 = load_rgb(ptr + 6); }
+ if (tail > 3) { _3 = load_rgb(ptr + 9); }
+ if (tail > 4) { _4 = load_rgb(ptr + 12); }
+ if (tail > 5) { _5 = load_rgb(ptr + 15); }
+ if (tail > 6) { _6 = load_rgb(ptr + 18); }
+ } else {
+ // Load 0+1, 2+3, 4+5 normally, and 6+7 backed up 4 bytes so we don't run over.
+ auto _01 = _mm_loadu_si128((const __m128i*)(ptr + 0)) ;
+ auto _23 = _mm_loadu_si128((const __m128i*)(ptr + 6)) ;
+ auto _45 = _mm_loadu_si128((const __m128i*)(ptr + 12)) ;
+ auto _67 = _mm_srli_si128(_mm_loadu_si128((const __m128i*)(ptr + 16)), 4);
+ _0 = _01; _1 = _mm_srli_si128(_01, 6);
+ _2 = _23; _3 = _mm_srli_si128(_23, 6);
+ _4 = _45; _5 = _mm_srli_si128(_45, 6);
+ _6 = _67; _7 = _mm_srli_si128(_67, 6);
+ }
+
+ auto _02 = _mm_unpacklo_epi16(_0, _2), // r0 r2 g0 g2 b0 b2 xx xx
+ _13 = _mm_unpacklo_epi16(_1, _3),
+ _46 = _mm_unpacklo_epi16(_4, _6),
+ _57 = _mm_unpacklo_epi16(_5, _7);
+
+ auto rg0123 = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
+ bx0123 = _mm_unpackhi_epi16(_02, _13), // b0 b1 b2 b3 xx xx xx xx
+ rg4567 = _mm_unpacklo_epi16(_46, _57),
+ bx4567 = _mm_unpackhi_epi16(_46, _57);
+
+ *r = _mm_unpacklo_epi64(rg0123, rg4567);
+ *g = _mm_unpackhi_epi64(rg0123, rg4567);
+ *b = _mm_unpacklo_epi64(bx0123, bx4567);
+ }
+ SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
+ __m128i _01, _23, _45, _67;
+ if (__builtin_expect(tail,0)) {
+ auto src = (const double*)ptr;
+ _01 = _23 = _45 = _67 = _mm_setzero_si128();
+ if (tail > 0) { _01 = _mm_loadl_pd(_01, src+0); }
+ if (tail > 1) { _01 = _mm_loadh_pd(_01, src+1); }
+ if (tail > 2) { _23 = _mm_loadl_pd(_23, src+2); }
+ if (tail > 3) { _23 = _mm_loadh_pd(_23, src+3); }
+ if (tail > 4) { _45 = _mm_loadl_pd(_45, src+4); }
+ if (tail > 5) { _45 = _mm_loadh_pd(_45, src+5); }
+ if (tail > 6) { _67 = _mm_loadl_pd(_67, src+6); }
+ } else {
+ _01 = _mm_loadu_si128(((__m128i*)ptr) + 0);
+ _23 = _mm_loadu_si128(((__m128i*)ptr) + 1);
+ _45 = _mm_loadu_si128(((__m128i*)ptr) + 2);
+ _67 = _mm_loadu_si128(((__m128i*)ptr) + 3);
+ }
+
+ auto _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2
+ _13 = _mm_unpackhi_epi16(_01, _23), // r1 r3 g1 g3 b1 b3 a1 a3
+ _46 = _mm_unpacklo_epi16(_45, _67),
+ _57 = _mm_unpackhi_epi16(_45, _67);
+
+ auto rg0123 = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
+ ba0123 = _mm_unpackhi_epi16(_02, _13), // b0 b1 b2 b3 a0 a1 a2 a3
+ rg4567 = _mm_unpacklo_epi16(_46, _57),
+ ba4567 = _mm_unpackhi_epi16(_46, _57);
+
+ *r = _mm_unpacklo_epi64(rg0123, rg4567);
+ *g = _mm_unpackhi_epi64(rg0123, rg4567);
+ *b = _mm_unpacklo_epi64(ba0123, ba4567);
+ *a = _mm_unpackhi_epi64(ba0123, ba4567);
+ }
+ SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
+ auto rg0123 = _mm_unpacklo_epi16(r, g), // r0 g0 r1 g1 r2 g2 r3 g3
+ rg4567 = _mm_unpackhi_epi16(r, g), // r4 g4 r5 g5 r6 g6 r7 g7
+ ba0123 = _mm_unpacklo_epi16(b, a),
+ ba4567 = _mm_unpackhi_epi16(b, a);
+
+ auto _01 = _mm_unpacklo_epi32(rg0123, ba0123),
+ _23 = _mm_unpackhi_epi32(rg0123, ba0123),
+ _45 = _mm_unpacklo_epi32(rg4567, ba4567),
+ _67 = _mm_unpackhi_epi32(rg4567, ba4567);
+
+ if (__builtin_expect(tail,0)) {
+ auto dst = (double*)ptr;
+ if (tail > 0) { _mm_storel_pd(dst+0, _01); }
+ if (tail > 1) { _mm_storeh_pd(dst+1, _01); }
+ if (tail > 2) { _mm_storel_pd(dst+2, _23); }
+ if (tail > 3) { _mm_storeh_pd(dst+3, _23); }
+ if (tail > 4) { _mm_storel_pd(dst+4, _45); }
+ if (tail > 5) { _mm_storeh_pd(dst+5, _45); }
+ if (tail > 6) { _mm_storel_pd(dst+6, _67); }
+ } else {
+ _mm_storeu_si128((__m128i*)ptr + 0, _01);
+ _mm_storeu_si128((__m128i*)ptr + 1, _23);
+ _mm_storeu_si128((__m128i*)ptr + 2, _45);
+ _mm_storeu_si128((__m128i*)ptr + 3, _67);
+ }
+ }
+
+ SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
+ F _04, _15, _26, _37;
+ _04 = _15 = _26 = _37 = 0;
+ switch (tail) {
+ case 0: _37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+28), 1);
+ case 7: _26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+24), 1);
+ case 6: _15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+20), 1);
+ case 5: _04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+16), 1);
+ case 4: _37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+12), 0);
+ case 3: _26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+ 8), 0);
+ case 2: _15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+ 4), 0);
+ case 1: _04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+ 0), 0);
+ }
+
+ F rg0145 = _mm256_unpacklo_ps(_04,_15), // r0 r1 g0 g1 | r4 r5 g4 g5
+ ba0145 = _mm256_unpackhi_ps(_04,_15),
+ rg2367 = _mm256_unpacklo_ps(_26,_37),
+ ba2367 = _mm256_unpackhi_ps(_26,_37);
+
+ *r = _mm256_unpacklo_pd(rg0145, rg2367);
+ *g = _mm256_unpackhi_pd(rg0145, rg2367);
+ *b = _mm256_unpacklo_pd(ba0145, ba2367);
+ *a = _mm256_unpackhi_pd(ba0145, ba2367);
+ }
+ SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
+ F rg0145 = _mm256_unpacklo_ps(r, g), // r0 g0 r1 g1 | r4 g4 r5 g5
+ rg2367 = _mm256_unpackhi_ps(r, g), // r2 ... | r6 ...
+ ba0145 = _mm256_unpacklo_ps(b, a), // b0 a0 b1 a1 | b4 a4 b5 a5
+ ba2367 = _mm256_unpackhi_ps(b, a); // b2 ... | b6 ...
+
+ F _04 = _mm256_unpacklo_pd(rg0145, ba0145), // r0 g0 b0 a0 | r4 g4 b4 a4
+ _15 = _mm256_unpackhi_pd(rg0145, ba0145), // r1 ... | r5 ...
+ _26 = _mm256_unpacklo_pd(rg2367, ba2367), // r2 ... | r6 ...
+ _37 = _mm256_unpackhi_pd(rg2367, ba2367); // r3 ... | r7 ...
+
+ if (__builtin_expect(tail, 0)) {
+ if (tail > 0) { _mm_storeu_ps(ptr+ 0, _mm256_extractf128_ps(_04, 0)); }
+ if (tail > 1) { _mm_storeu_ps(ptr+ 4, _mm256_extractf128_ps(_15, 0)); }
+ if (tail > 2) { _mm_storeu_ps(ptr+ 8, _mm256_extractf128_ps(_26, 0)); }
+ if (tail > 3) { _mm_storeu_ps(ptr+12, _mm256_extractf128_ps(_37, 0)); }
+ if (tail > 4) { _mm_storeu_ps(ptr+16, _mm256_extractf128_ps(_04, 1)); }
+ if (tail > 5) { _mm_storeu_ps(ptr+20, _mm256_extractf128_ps(_15, 1)); }
+ if (tail > 6) { _mm_storeu_ps(ptr+24, _mm256_extractf128_ps(_26, 1)); }
+ } else {
+ F _01 = _mm256_permute2f128_ps(_04, _15, 32), // 32 == 0010 0000 == lo, lo
+ _23 = _mm256_permute2f128_ps(_26, _37, 32),
+ _45 = _mm256_permute2f128_ps(_04, _15, 49), // 49 == 0011 0001 == hi, hi
+ _67 = _mm256_permute2f128_ps(_26, _37, 49);
+ _mm256_storeu_ps(ptr+ 0, _01);
+ _mm256_storeu_ps(ptr+ 8, _23);
+ _mm256_storeu_ps(ptr+16, _45);
+ _mm256_storeu_ps(ptr+24, _67);
+ }
+ }
+
+#elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41)
+ template <typename T> using V = T __attribute__((ext_vector_type(4)));
+ using F = V<float >;
+ using I32 = V< int32_t>;
+ using U64 = V<uint64_t>;
+ using U32 = V<uint32_t>;
+ using U16 = V<uint16_t>;
+ using U8 = V<uint8_t >;
+
+ SI F mad(F f, F m, F a) { return f*m+a; }
+ SI F min(F a, F b) { return _mm_min_ps(a,b); }
+ SI F max(F a, F b) { return _mm_max_ps(a,b); }
+ SI F abs_(F v) { return _mm_and_ps(v, 0-v); }
+ SI F rcp (F v) { return _mm_rcp_ps (v); }
+ SI F rsqrt (F v) { return _mm_rsqrt_ps(v); }
+ SI F sqrt_(F v) { return _mm_sqrt_ps (v); }
+ SI U32 round(F v, F scale) { return _mm_cvtps_epi32(v*scale); }
+
+ SI U16 pack(U32 v) {
+ #if defined(JUMPER_IS_SSE41)
+ auto p = _mm_packus_epi32(v,v);
+ #else
+ // Sign extend so that _mm_packs_epi32() does the pack we want.
+ auto p = _mm_srai_epi32(_mm_slli_epi32(v, 16), 16);
+ p = _mm_packs_epi32(p,p);
+ #endif
+ return unaligned_load<U16>(&p); // We have two copies. Return (the lower) one.
+ }
+ SI U8 pack(U16 v) {
+ auto r = widen_cast<__m128i>(v);
+ r = _mm_packus_epi16(r,r);
+ return unaligned_load<U8>(&r);
+ }
+
+ SI F if_then_else(I32 c, F t, F e) {
+ return _mm_or_ps(_mm_and_ps(c, t), _mm_andnot_ps(c, e));
+ }
+
+ SI F floor_(F v) {
+ #if defined(JUMPER_IS_SSE41)
+ return _mm_floor_ps(v);
+ #else
+ F roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v));
+ return roundtrip - if_then_else(roundtrip > v, 1, 0);
+ #endif
+ }
+
+ template <typename T>
+ SI V<T> gather(const T* p, U32 ix) {
+ return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
+ }
+
+ SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
+ __m128i _0, _1, _2, _3;
+ if (__builtin_expect(tail,0)) {
+ _1 = _2 = _3 = _mm_setzero_si128();
+ auto load_rgb = [](const uint16_t* src) {
+ auto v = _mm_cvtsi32_si128(*(const uint32_t*)src);
+ return _mm_insert_epi16(v, src[2], 2);
+ };
+ if ( true ) { _0 = load_rgb(ptr + 0); }
+ if (tail > 1) { _1 = load_rgb(ptr + 3); }
+ if (tail > 2) { _2 = load_rgb(ptr + 6); }
+ } else {
+ // Load slightly weirdly to make sure we don't load past the end of 4x48 bits.
+ auto _01 = _mm_loadu_si128((const __m128i*)(ptr + 0)) ,
+ _23 = _mm_srli_si128(_mm_loadu_si128((const __m128i*)(ptr + 4)), 4);
+
+ // Each _N holds R,G,B for pixel N in its lower 3 lanes (upper 5 are ignored).
+ _0 = _01;
+ _1 = _mm_srli_si128(_01, 6);
+ _2 = _23;
+ _3 = _mm_srli_si128(_23, 6);
+ }
+
+ // De-interlace to R,G,B.
+ auto _02 = _mm_unpacklo_epi16(_0, _2), // r0 r2 g0 g2 b0 b2 xx xx
+ _13 = _mm_unpacklo_epi16(_1, _3); // r1 r3 g1 g3 b1 b3 xx xx
+
+ auto R = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
+ G = _mm_srli_si128(R, 8),
+ B = _mm_unpackhi_epi16(_02, _13); // b0 b1 b2 b3 xx xx xx xx
+
+ *r = unaligned_load<U16>(&R);
+ *g = unaligned_load<U16>(&G);
+ *b = unaligned_load<U16>(&B);
+ }
+
+ SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
+ __m128i _01, _23;
+ if (__builtin_expect(tail,0)) {
+ _01 = _23 = _mm_setzero_si128();
+ auto src = (const double*)ptr;
+ if ( true ) { _01 = _mm_loadl_pd(_01, src + 0); } // r0 g0 b0 a0 00 00 00 00
+ if (tail > 1) { _01 = _mm_loadh_pd(_01, src + 1); } // r0 g0 b0 a0 r1 g1 b1 a1
+ if (tail > 2) { _23 = _mm_loadl_pd(_23, src + 2); } // r2 g2 b2 a2 00 00 00 00
+ } else {
+ _01 = _mm_loadu_si128(((__m128i*)ptr) + 0); // r0 g0 b0 a0 r1 g1 b1 a1
+ _23 = _mm_loadu_si128(((__m128i*)ptr) + 1); // r2 g2 b2 a2 r3 g3 b3 a3
+ }
+
+ auto _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2
+ _13 = _mm_unpackhi_epi16(_01, _23); // r1 r3 g1 g3 b1 b3 a1 a3
+
+ auto rg = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
+ ba = _mm_unpackhi_epi16(_02, _13); // b0 b1 b2 b3 a0 a1 a2 a3
+
+ *r = unaligned_load<U16>((uint16_t*)&rg + 0);
+ *g = unaligned_load<U16>((uint16_t*)&rg + 4);
+ *b = unaligned_load<U16>((uint16_t*)&ba + 0);
+ *a = unaligned_load<U16>((uint16_t*)&ba + 4);
+ }
+
+ SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
+ auto rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g)),
+ ba = _mm_unpacklo_epi16(widen_cast<__m128i>(b), widen_cast<__m128i>(a));
+
+ if (__builtin_expect(tail, 0)) {
+ auto dst = (double*)ptr;
+ if ( true ) { _mm_storel_pd(dst + 0, _mm_unpacklo_epi32(rg, ba)); }
+ if (tail > 1) { _mm_storeh_pd(dst + 1, _mm_unpacklo_epi32(rg, ba)); }
+ if (tail > 2) { _mm_storel_pd(dst + 2, _mm_unpackhi_epi32(rg, ba)); }
+ } else {
+ _mm_storeu_si128((__m128i*)ptr + 0, _mm_unpacklo_epi32(rg, ba));
+ _mm_storeu_si128((__m128i*)ptr + 1, _mm_unpackhi_epi32(rg, ba));
+ }
+ }
+
+ SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
+ F _0, _1, _2, _3;
+ if (__builtin_expect(tail, 0)) {
+ _1 = _2 = _3 = _mm_setzero_si128();
+ if ( true ) { _0 = _mm_loadu_ps(ptr + 0); }
+ if (tail > 1) { _1 = _mm_loadu_ps(ptr + 4); }
+ if (tail > 2) { _2 = _mm_loadu_ps(ptr + 8); }
+ } else {
+ _0 = _mm_loadu_ps(ptr + 0);
+ _1 = _mm_loadu_ps(ptr + 4);
+ _2 = _mm_loadu_ps(ptr + 8);
+ _3 = _mm_loadu_ps(ptr +12);
+ }
+ _MM_TRANSPOSE4_PS(_0,_1,_2,_3);
+ *r = _0;
+ *g = _1;
+ *b = _2;
+ *a = _3;
+ }
+
+ SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
+ _MM_TRANSPOSE4_PS(r,g,b,a);
+ if (__builtin_expect(tail, 0)) {
+ if ( true ) { _mm_storeu_ps(ptr + 0, r); }
+ if (tail > 1) { _mm_storeu_ps(ptr + 4, g); }
+ if (tail > 2) { _mm_storeu_ps(ptr + 8, b); }
+ } else {
+ _mm_storeu_ps(ptr + 0, r);
+ _mm_storeu_ps(ptr + 4, g);
+ _mm_storeu_ps(ptr + 8, b);
+ _mm_storeu_ps(ptr +12, a);
+ }
+ }
+#endif
+
+// We need to be a careful with casts.
+// (F)x means cast x to float in the portable path, but bit_cast x to float in the others.
+// These named casts and bit_cast() are always what they seem to be.
+#if defined(JUMPER_IS_SCALAR)
+ SI F cast (U32 v) { return (F)v; }
+ SI U32 trunc_(F v) { return (U32)v; }
+ SI U32 expand(U16 v) { return (U32)v; }
+ SI U32 expand(U8 v) { return (U32)v; }
+#else
+ SI F cast (U32 v) { return __builtin_convertvector((I32)v, F); }
+ SI U32 trunc_(F v) { return (U32)__builtin_convertvector( v, I32); }
+ SI U32 expand(U16 v) { return __builtin_convertvector( v, U32); }
+ SI U32 expand(U8 v) { return __builtin_convertvector( v, U32); }
+#endif
+
+template <typename V>
+SI V if_then_else(I32 c, V t, V e) {
+ return bit_cast<V>(if_then_else(c, bit_cast<F>(t), bit_cast<F>(e)));
+}
+
+SI U16 bswap(U16 x) {
+#if defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41)
+ // Somewhat inexplicably Clang decides to do (x<<8) | (x>>8) in 32-bit lanes
+ // when generating code for SSE2 and SSE4.1. We'll do it manually...
+ auto v = widen_cast<__m128i>(x);
+ v = _mm_slli_epi16(v,8) | _mm_srli_epi16(v,8);
+ return unaligned_load<U16>(&v);
+#else
+ return (x<<8) | (x>>8);
+#endif
+}
+
+SI F fract(F v) { return v - floor_(v); }
+
+// See http://www.machinedlearnings.com/2011/06/fast-approximate-logarithm-exponential.html.
+SI F approx_log2(F x) {
+ // e - 127 is a fair approximation of log2(x) in its own right...
+ F e = cast(bit_cast<U32>(x)) * (1.0f / (1<<23));
+
+ // ... but using the mantissa to refine its error is _much_ better.
+ F m = bit_cast<F>((bit_cast<U32>(x) & 0x007fffff) | 0x3f000000);
+ return e
+ - 124.225514990f
+ - 1.498030302f * m
+ - 1.725879990f / (0.3520887068f + m);
+}
+SI F approx_pow2(F x) {
+ F f = fract(x);
+ return bit_cast<F>(round(1.0f * (1<<23),
+ x + 121.274057500f
+ - 1.490129070f * f
+ + 27.728023300f / (4.84252568f - f)));
+}
+
+SI F approx_powf(F x, F y) {
+ return if_then_else(x == 0, 0
+ , approx_pow2(approx_log2(x) * y));
+}
+
+SI F from_half(U16 h) {
+#if defined(__aarch64__) && !defined(SK_BUILD_FOR_GOOGLE3) // Temporary workaround for some Google3 builds.
+ return vcvt_f32_f16(h);
+
+#elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
+ return _mm256_cvtph_ps(h);
+
+#else
+ // Remember, a half is 1-5-10 (sign-exponent-mantissa) with 15 exponent bias.
+ U32 sem = expand(h),
+ s = sem & 0x8000,
+ em = sem ^ s;
+
+ // Convert to 1-8-23 float with 127 bias, flushing denorm halfs (including zero) to zero.
+ auto denorm = (I32)em < 0x0400; // I32 comparison is often quicker, and always safe here.
+ return if_then_else(denorm, F(0)
+ , bit_cast<F>( (s<<16) + (em<<13) + ((127-15)<<23) ));
+#endif
+}
+
+SI U16 to_half(F f) {
+#if defined(__aarch64__) && !defined(SK_BUILD_FOR_GOOGLE3) // Temporary workaround for some Google3 builds.
+ return vcvt_f16_f32(f);
+
+#elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
+ return _mm256_cvtps_ph(f, _MM_FROUND_CUR_DIRECTION);
+
+#else
+ // Remember, a float is 1-8-23 (sign-exponent-mantissa) with 127 exponent bias.
+ U32 sem = bit_cast<U32>(f),
+ s = sem & 0x80000000,
+ em = sem ^ s;
+
+ // Convert to 1-5-10 half with 15 bias, flushing denorm halfs (including zero) to zero.
+ auto denorm = (I32)em < 0x38800000; // I32 comparison is often quicker, and always safe here.
+ return pack(if_then_else(denorm, U32(0)
+ , (s>>16) + (em>>13) - ((127-15)<<10)));
+#endif
+}
+
+// Our fundamental vector depth is our pixel stride.
+static const size_t N = sizeof(F) / sizeof(float);
+
+// We're finally going to get to what a Stage function looks like!
+// tail == 0 ~~> work on a full N pixels
+// tail != 0 ~~> work on only the first tail pixels
+// tail is always < N.
+
+// Any custom ABI to use for all non-externally-facing stage functions.
+#if defined(__ARM_NEON) && defined(__arm__)
+ // This lets us pass vectors more efficiently on 32-bit ARM.
+ #define ABI __attribute__((pcs("aapcs-vfp")))
+#elif defined(__clang__) && defined(_MSC_VER)
+ // TODO: can we use sysv_abi here instead? It'd allow passing far more registers.
+ #define ABI __attribute__((vectorcall))
+#else
+ #define ABI
+#endif
+
+// On 32-bit x86 we've only got 8 xmm registers, so we keep the 4 hottest (r,g,b,a)
+// in registers and the d-registers on the stack (giving us 4 temporary registers).
+// General-purpose registers are also tight, so we put most of those on the stack too.
+//
+// On ARMv7, we do the same so that we can make the r,g,b,a vectors wider.
+//
+// Finally, this narrower stage calling convention also fits Windows' __vectorcall very well.
+#if defined(__i386__) || defined(_M_IX86) || defined(__arm__) || defined(_MSC_VER)
+ #define JUMPER_NARROW_STAGES 1
+#else
+ #define JUMPER_NARROW_STAGES 0
+#endif
+
+#if JUMPER_NARROW_STAGES
+ struct Params {
+ size_t dx, dy, tail;
+ F dr,dg,db,da;
+ };
+ using Stage = void(ABI*)(Params*, void** program, F r, F g, F b, F a);
+#else
+ // We keep program the second argument, so that it's passed in rsi for load_and_inc().
+ using Stage = void(ABI*)(size_t tail, void** program, size_t dx, size_t dy, F,F,F,F, F,F,F,F);
+#endif
+
+
+static void start_pipeline(size_t dx, size_t dy, size_t xlimit, size_t ylimit, void** program) {
+ auto start = (Stage)load_and_inc(program);
+ const size_t x0 = dx;
+ for (; dy < ylimit; dy++) {
+ #if JUMPER_NARROW_STAGES
+ Params params = { x0,dy,0, 0,0,0,0 };
+ while (params.dx + N <= xlimit) {
+ start(&params,program, 0,0,0,0);
+ params.dx += N;
+ }
+ if (size_t tail = xlimit - params.dx) {
+ params.tail = tail;
+ start(&params,program, 0,0,0,0);
+ }
+ #else
+ dx = x0;
+ while (dx + N <= xlimit) {
+ start(0,program,dx,dy, 0,0,0,0, 0,0,0,0);
+ dx += N;
+ }
+ if (size_t tail = xlimit - dx) {
+ start(tail,program,dx,dy, 0,0,0,0, 0,0,0,0);
+ }
+ #endif
+ }
+}
+
+#if JUMPER_NARROW_STAGES
+ #define STAGE(name, ...) \
+ SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
+ F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \
+ static ABI void name(Params* params, void** program, \
+ F r, F g, F b, F a) { \
+ name##_k(Ctx{program},params->dx,params->dy,params->tail, r,g,b,a, \
+ params->dr, params->dg, params->db, params->da); \
+ auto next = (Stage)load_and_inc(program); \
+ next(params,program, r,g,b,a); \
+ } \
+ SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
+ F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
+#else
+ #define STAGE(name, ...) \
+ SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
+ F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \
+ static ABI void name(size_t tail, void** program, size_t dx, size_t dy, \
+ F r, F g, F b, F a, F dr, F dg, F db, F da) { \
+ name##_k(Ctx{program},dx,dy,tail, r,g,b,a, dr,dg,db,da); \
+ auto next = (Stage)load_and_inc(program); \
+ next(tail,program,dx,dy, r,g,b,a, dr,dg,db,da); \
+ } \
+ SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
+ F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
+#endif
+
+
+// just_return() is a simple no-op stage that only exists to end the chain,
+// returning back up to start_pipeline(), and from there to the caller.
+#if JUMPER_NARROW_STAGES
+ static ABI void just_return(Params*, void**, F,F,F,F) {}
+#else
+ static ABI void just_return(size_t, void**, size_t,size_t, F,F,F,F, F,F,F,F) {}
+#endif
+
+
+// We could start defining normal Stages now. But first, some helper functions.
+
+// These load() and store() methods are tail-aware,
+// but focus mainly on keeping the at-stride tail==0 case fast.
+
+template <typename V, typename T>
+SI V load(const T* src, size_t tail) {
+#if !defined(JUMPER_IS_SCALAR)
+ __builtin_assume(tail < N);
+ if (__builtin_expect(tail, 0)) {
+ V v{}; // Any inactive lanes are zeroed.
+ switch (tail) {
+ case 7: v[6] = src[6];
+ case 6: v[5] = src[5];
+ case 5: v[4] = src[4];
+ case 4: memcpy(&v, src, 4*sizeof(T)); break;
+ case 3: v[2] = src[2];
+ case 2: memcpy(&v, src, 2*sizeof(T)); break;
+ case 1: memcpy(&v, src, 1*sizeof(T)); break;
+ }
+ return v;
+ }
+#endif
+ return unaligned_load<V>(src);
+}
+
+template <typename V, typename T>
+SI void store(T* dst, V v, size_t tail) {
+#if !defined(JUMPER_IS_SCALAR)
+ __builtin_assume(tail < N);
+ if (__builtin_expect(tail, 0)) {
+ switch (tail) {
+ case 7: dst[6] = v[6];
+ case 6: dst[5] = v[5];
+ case 5: dst[4] = v[4];
+ case 4: memcpy(dst, &v, 4*sizeof(T)); break;
+ case 3: dst[2] = v[2];
+ case 2: memcpy(dst, &v, 2*sizeof(T)); break;
+ case 1: memcpy(dst, &v, 1*sizeof(T)); break;
+ }
+ return;
+ }
+#endif
+ unaligned_store(dst, v);
+}
+
+SI F from_byte(U8 b) {
+ return cast(expand(b)) * (1/255.0f);
+}
+SI void from_565(U16 _565, F* r, F* g, F* b) {
+ U32 wide = expand(_565);
+ *r = cast(wide & (31<<11)) * (1.0f / (31<<11));
+ *g = cast(wide & (63<< 5)) * (1.0f / (63<< 5));
+ *b = cast(wide & (31<< 0)) * (1.0f / (31<< 0));
+}
+SI void from_4444(U16 _4444, F* r, F* g, F* b, F* a) {
+ U32 wide = expand(_4444);
+ *r = cast(wide & (15<<12)) * (1.0f / (15<<12));
+ *g = cast(wide & (15<< 8)) * (1.0f / (15<< 8));
+ *b = cast(wide & (15<< 4)) * (1.0f / (15<< 4));
+ *a = cast(wide & (15<< 0)) * (1.0f / (15<< 0));
+}
+SI void from_8888(U32 _8888, F* r, F* g, F* b, F* a) {
+ *r = cast((_8888 ) & 0xff) * (1/255.0f);
+ *g = cast((_8888 >> 8) & 0xff) * (1/255.0f);
+ *b = cast((_8888 >> 16) & 0xff) * (1/255.0f);
+ *a = cast((_8888 >> 24) ) * (1/255.0f);
+}
+SI void from_1010102(U32 rgba, F* r, F* g, F* b, F* a) {
+ *r = cast((rgba ) & 0x3ff) * (1/1023.0f);
+ *g = cast((rgba >> 10) & 0x3ff) * (1/1023.0f);
+ *b = cast((rgba >> 20) & 0x3ff) * (1/1023.0f);
+ *a = cast((rgba >> 30) ) * (1/ 3.0f);
+}
+
+// Used by load_ and store_ stages to get to the right (dx,dy) starting point of contiguous memory.
+template <typename T>
+SI T* ptr_at_xy(const SkJumper_MemoryCtx* ctx, size_t dx, size_t dy) {
+ return (T*)ctx->pixels + dy*ctx->stride + dx;
+}
+
+// clamp v to [0,limit).
+SI F clamp(F v, F limit) {
+ F inclusive = bit_cast<F>( bit_cast<U32>(limit) - 1 ); // Exclusive -> inclusive.
+ return min(max(0, v), inclusive);
+}
+
+// Used by gather_ stages to calculate the base pointer and a vector of indices to load.
+template <typename T>
+SI U32 ix_and_ptr(T** ptr, const SkJumper_GatherCtx* ctx, F x, F y) {
+ x = clamp(x, ctx->width);
+ y = clamp(y, ctx->height);
+
+ *ptr = (const T*)ctx->pixels;
+ return trunc_(y)*ctx->stride + trunc_(x);
+}
+
+// We often have a nominally [0,1] float value we need to scale and convert to an integer,
+// whether for a table lookup or to pack back down into bytes for storage.
+//
+// In practice, especially when dealing with interesting color spaces, that notionally
+// [0,1] float may be out of [0,1] range. Unorms cannot represent that, so we must clamp.
+//
+// You can adjust the expected input to [0,bias] by tweaking that parameter.
+SI U32 to_unorm(F v, F scale, F bias = 1.0f) {
+ // TODO: platform-specific implementations to to_unorm(), removing round() entirely?
+ // Any time we use round() we probably want to use to_unorm().
+ return round(min(max(0, v), bias), scale);
+}
+
+SI I32 cond_to_mask(I32 cond) { return if_then_else(cond, I32(~0), I32(0)); }
+
+// Now finally, normal Stages!
+
+STAGE(seed_shader, const float* iota) {
+ // It's important for speed to explicitly cast(dx) and cast(dy),
+ // which has the effect of splatting them to vectors before converting to floats.
+ // On Intel this breaks a data dependency on previous loop iterations' registers.
+ r = cast(dx) + unaligned_load<F>(iota);
+ g = cast(dy) + 0.5f;
+ b = 1.0f;
+ a = 0;
+ dr = dg = db = da = 0;
+}
+
+STAGE(dither, const float* rate) {
+ // Get [(dx,dy), (dx+1,dy), (dx+2,dy), ...] loaded up in integer vectors.
+ uint32_t iota[] = {0,1,2,3,4,5,6,7};
+ U32 X = dx + unaligned_load<U32>(iota),
+ Y = dy;
+
+ // We're doing 8x8 ordered dithering, see https://en.wikipedia.org/wiki/Ordered_dithering.
+ // In this case n=8 and we're using the matrix that looks like 1/64 x [ 0 48 12 60 ... ].
+
+ // We only need X and X^Y from here on, so it's easier to just think of that as "Y".
+ Y ^= X;
+
+ // We'll mix the bottom 3 bits of each of X and Y to make 6 bits,
+ // for 2^6 == 64 == 8x8 matrix values. If X=abc and Y=def, we make fcebda.
+ U32 M = (Y & 1) << 5 | (X & 1) << 4
+ | (Y & 2) << 2 | (X & 2) << 1
+ | (Y & 4) >> 1 | (X & 4) >> 2;
+
+ // Scale that dither to [0,1), then (-0.5,+0.5), here using 63/128 = 0.4921875 as 0.5-epsilon.
+ // We want to make sure our dither is less than 0.5 in either direction to keep exact values
+ // like 0 and 1 unchanged after rounding.
+ F dither = cast(M) * (2/128.0f) - (63/128.0f);
+
+ r += *rate*dither;
+ g += *rate*dither;
+ b += *rate*dither;
+
+ r = max(0, min(r, a));
+ g = max(0, min(g, a));
+ b = max(0, min(b, a));
+}
+
+// load 4 floats from memory, and splat them into r,g,b,a
+STAGE(uniform_color, const SkJumper_UniformColorCtx* c) {
+ r = c->r;
+ g = c->g;
+ b = c->b;
+ a = c->a;
+}
+
+// splats opaque-black into r,g,b,a
+STAGE(black_color, Ctx::None) {
+ r = g = b = 0.0f;
+ a = 1.0f;
+}
+
+STAGE(white_color, Ctx::None) {
+ r = g = b = a = 1.0f;
+}
+
+// load registers r,g,b,a from context (mirrors store_rgba)
+STAGE(load_rgba, const float* ptr) {
+ r = unaligned_load<F>(ptr + 0*N);
+ g = unaligned_load<F>(ptr + 1*N);
+ b = unaligned_load<F>(ptr + 2*N);
+ a = unaligned_load<F>(ptr + 3*N);
+}
+
+// store registers r,g,b,a into context (mirrors load_rgba)
+STAGE(store_rgba, float* ptr) {
+ unaligned_store(ptr + 0*N, r);
+ unaligned_store(ptr + 1*N, g);
+ unaligned_store(ptr + 2*N, b);
+ unaligned_store(ptr + 3*N, a);
+}
+
+// Most blend modes apply the same logic to each channel.
+#define BLEND_MODE(name) \
+ SI F name##_channel(F s, F d, F sa, F da); \
+ STAGE(name, Ctx::None) { \
+ r = name##_channel(r,dr,a,da); \
+ g = name##_channel(g,dg,a,da); \
+ b = name##_channel(b,db,a,da); \
+ a = name##_channel(a,da,a,da); \
+ } \
+ SI F name##_channel(F s, F d, F sa, F da)
+
+SI F inv(F x) { return 1.0f - x; }
+SI F two(F x) { return x + x; }
+
+
+BLEND_MODE(clear) { return 0; }
+BLEND_MODE(srcatop) { return s*da + d*inv(sa); }
+BLEND_MODE(dstatop) { return d*sa + s*inv(da); }
+BLEND_MODE(srcin) { return s * da; }
+BLEND_MODE(dstin) { return d * sa; }
+BLEND_MODE(srcout) { return s * inv(da); }
+BLEND_MODE(dstout) { return d * inv(sa); }
+BLEND_MODE(srcover) { return mad(d, inv(sa), s); }
+BLEND_MODE(dstover) { return mad(s, inv(da), d); }
+
+BLEND_MODE(modulate) { return s*d; }
+BLEND_MODE(multiply) { return s*inv(da) + d*inv(sa) + s*d; }
+BLEND_MODE(plus_) { return min(s + d, 1.0f); } // We can clamp to either 1 or sa.
+BLEND_MODE(screen) { return s + d - s*d; }
+BLEND_MODE(xor_) { return s*inv(da) + d*inv(sa); }
+#undef BLEND_MODE
+
+// Most other blend modes apply the same logic to colors, and srcover to alpha.
+#define BLEND_MODE(name) \
+ SI F name##_channel(F s, F d, F sa, F da); \
+ STAGE(name, Ctx::None) { \
+ r = name##_channel(r,dr,a,da); \
+ g = name##_channel(g,dg,a,da); \
+ b = name##_channel(b,db,a,da); \
+ a = mad(da, inv(a), a); \
+ } \
+ SI F name##_channel(F s, F d, F sa, F da)
+
+BLEND_MODE(darken) { return s + d - max(s*da, d*sa) ; }
+BLEND_MODE(lighten) { return s + d - min(s*da, d*sa) ; }
+BLEND_MODE(difference) { return s + d - two(min(s*da, d*sa)); }
+BLEND_MODE(exclusion) { return s + d - two(s*d); }
+
+BLEND_MODE(colorburn) {
+ return if_then_else(d == da, d + s*inv(da),
+ if_then_else(s == 0, /* s + */ d*inv(sa),
+ sa*(da - min(da, (da-d)*sa*rcp(s))) + s*inv(da) + d*inv(sa)));
+}
+BLEND_MODE(colordodge) {
+ return if_then_else(d == 0, /* d + */ s*inv(da),
+ if_then_else(s == sa, s + d*inv(sa),
+ sa*min(da, (d*sa)*rcp(sa - s)) + s*inv(da) + d*inv(sa)));
+}
+BLEND_MODE(hardlight) {
+ return s*inv(da) + d*inv(sa)
+ + if_then_else(two(s) <= sa, two(s*d), sa*da - two((da-d)*(sa-s)));
+}
+BLEND_MODE(overlay) {
+ return s*inv(da) + d*inv(sa)
+ + if_then_else(two(d) <= da, two(s*d), sa*da - two((da-d)*(sa-s)));
+}
+
+BLEND_MODE(softlight) {
+ F m = if_then_else(da > 0, d / da, 0),
+ s2 = two(s),
+ m4 = two(two(m));
+
+ // The logic forks three ways:
+ // 1. dark src?
+ // 2. light src, dark dst?
+ // 3. light src, light dst?
+ F darkSrc = d*(sa + (s2 - sa)*(1.0f - m)), // Used in case 1.
+ darkDst = (m4*m4 + m4)*(m - 1.0f) + 7.0f*m, // Used in case 2.
+ liteDst = rcp(rsqrt(m)) - m, // Used in case 3.
+ liteSrc = d*sa + da*(s2 - sa) * if_then_else(two(two(d)) <= da, darkDst, liteDst); // 2 or 3?
+ return s*inv(da) + d*inv(sa) + if_then_else(s2 <= sa, darkSrc, liteSrc); // 1 or (2 or 3)?
+}
+#undef BLEND_MODE
+
+// We're basing our implemenation of non-separable blend modes on
+// https://www.w3.org/TR/compositing-1/#blendingnonseparable.
+// and
+// https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf
+// They're equivalent, but ES' math has been better simplified.
+//
+// Anything extra we add beyond that is to make the math work with premul inputs.
+
+SI F max(F r, F g, F b) { return max(r, max(g, b)); }
+SI F min(F r, F g, F b) { return min(r, min(g, b)); }
+
+SI F sat(F r, F g, F b) { return max(r,g,b) - min(r,g,b); }
+SI F lum(F r, F g, F b) { return r*0.30f + g*0.59f + b*0.11f; }
+
+SI void set_sat(F* r, F* g, F* b, F s) {
+ F mn = min(*r,*g,*b),
+ mx = max(*r,*g,*b),
+ sat = mx - mn;
+
+ // Map min channel to 0, max channel to s, and scale the middle proportionally.
+ auto scale = [=](F c) {
+ return if_then_else(sat == 0, 0, (c - mn) * s / sat);
+ };
+ *r = scale(*r);
+ *g = scale(*g);
+ *b = scale(*b);
+}
+SI void set_lum(F* r, F* g, F* b, F l) {
+ F diff = l - lum(*r, *g, *b);
+ *r += diff;
+ *g += diff;
+ *b += diff;
+}
+SI void clip_color(F* r, F* g, F* b, F a) {
+ F mn = min(*r, *g, *b),
+ mx = max(*r, *g, *b),
+ l = lum(*r, *g, *b);
+
+ auto clip = [=](F c) {
+ c = if_then_else(mn >= 0, c, l + (c - l) * ( l) / (l - mn) );
+ c = if_then_else(mx > a, l + (c - l) * (a - l) / (mx - l), c);
+ c = max(c, 0); // Sometimes without this we may dip just a little negative.
+ return c;
+ };
+ *r = clip(*r);
+ *g = clip(*g);
+ *b = clip(*b);
+}
+
+STAGE(hue, Ctx::None) {
+ F R = r*a,
+ G = g*a,
+ B = b*a;
+
+ set_sat(&R, &G, &B, sat(dr,dg,db)*a);
+ set_lum(&R, &G, &B, lum(dr,dg,db)*a);
+ clip_color(&R,&G,&B, a*da);
+
+ r = r*inv(da) + dr*inv(a) + R;
+ g = g*inv(da) + dg*inv(a) + G;
+ b = b*inv(da) + db*inv(a) + B;
+ a = a + da - a*da;
+}
+STAGE(saturation, Ctx::None) {
+ F R = dr*a,
+ G = dg*a,
+ B = db*a;
+
+ set_sat(&R, &G, &B, sat( r, g, b)*da);
+ set_lum(&R, &G, &B, lum(dr,dg,db)* a); // (This is not redundant.)
+ clip_color(&R,&G,&B, a*da);
+
+ r = r*inv(da) + dr*inv(a) + R;
+ g = g*inv(da) + dg*inv(a) + G;
+ b = b*inv(da) + db*inv(a) + B;
+ a = a + da - a*da;
+}
+STAGE(color, Ctx::None) {
+ F R = r*da,
+ G = g*da,
+ B = b*da;
+
+ set_lum(&R, &G, &B, lum(dr,dg,db)*a);
+ clip_color(&R,&G,&B, a*da);
+
+ r = r*inv(da) + dr*inv(a) + R;
+ g = g*inv(da) + dg*inv(a) + G;
+ b = b*inv(da) + db*inv(a) + B;
+ a = a + da - a*da;
+}
+STAGE(luminosity, Ctx::None) {
+ F R = dr*a,
+ G = dg*a,
+ B = db*a;
+
+ set_lum(&R, &G, &B, lum(r,g,b)*da);
+ clip_color(&R,&G,&B, a*da);
+
+ r = r*inv(da) + dr*inv(a) + R;
+ g = g*inv(da) + dg*inv(a) + G;
+ b = b*inv(da) + db*inv(a) + B;
+ a = a + da - a*da;
+}
+
+STAGE(srcover_rgba_8888, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
+
+ U32 dst = load<U32>(ptr, tail);
+ dr = cast((dst ) & 0xff);
+ dg = cast((dst >> 8) & 0xff);
+ db = cast((dst >> 16) & 0xff);
+ da = cast((dst >> 24) );
+ // {dr,dg,db,da} are in [0,255]
+ // { r, g, b, a} are in [0, 1] (but may be out of gamut)
+
+ r = mad(dr, inv(a), r*255.0f);
+ g = mad(dg, inv(a), g*255.0f);
+ b = mad(db, inv(a), b*255.0f);
+ a = mad(da, inv(a), a*255.0f);
+ // { r, g, b, a} are now in [0,255] (but may be out of gamut)
+
+ // to_unorm() clamps back to gamut. Scaling by 1 since we're already 255-biased.
+ dst = to_unorm(r, 1, 255)
+ | to_unorm(g, 1, 255) << 8
+ | to_unorm(b, 1, 255) << 16
+ | to_unorm(a, 1, 255) << 24;
+ store(ptr, dst, tail);
+}
+
+STAGE(srcover_bgra_8888, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
+
+ U32 dst = load<U32>(ptr, tail);
+ db = cast((dst ) & 0xff);
+ dg = cast((dst >> 8) & 0xff);
+ dr = cast((dst >> 16) & 0xff);
+ da = cast((dst >> 24) );
+ // {dr,dg,db,da} are in [0,255]
+ // { r, g, b, a} are in [0, 1] (but may be out of gamut)
+
+ r = mad(dr, inv(a), r*255.0f);
+ g = mad(dg, inv(a), g*255.0f);
+ b = mad(db, inv(a), b*255.0f);
+ a = mad(da, inv(a), a*255.0f);
+ // { r, g, b, a} are now in [0,255] (but may be out of gamut)
+
+ // to_unorm() clamps back to gamut. Scaling by 1 since we're already 255-biased.
+ dst = to_unorm(b, 1, 255)
+ | to_unorm(g, 1, 255) << 8
+ | to_unorm(r, 1, 255) << 16
+ | to_unorm(a, 1, 255) << 24;
+ store(ptr, dst, tail);
+}
+
+STAGE(clamp_0, Ctx::None) {
+ r = max(r, 0);
+ g = max(g, 0);
+ b = max(b, 0);
+ a = max(a, 0);
+}
+
+STAGE(clamp_1, Ctx::None) {
+ r = min(r, 1.0f);
+ g = min(g, 1.0f);
+ b = min(b, 1.0f);
+ a = min(a, 1.0f);
+}
+
+STAGE(clamp_a, Ctx::None) {
+ a = min(a, 1.0f);
+ r = min(r, a);
+ g = min(g, a);
+ b = min(b, a);
+}
+
+STAGE(clamp_a_dst, Ctx::None) {
+ da = min(da, 1.0f);
+ dr = min(dr, da);
+ dg = min(dg, da);
+ db = min(db, da);
+}
+
+STAGE(set_rgb, const float* rgb) {
+ r = rgb[0];
+ g = rgb[1];
+ b = rgb[2];
+}
+STAGE(swap_rb, Ctx::None) {
+ auto tmp = r;
+ r = b;
+ b = tmp;
+}
+STAGE(invert, Ctx::None) {
+ r = inv(r);
+ g = inv(g);
+ b = inv(b);
+ a = inv(a);
+}
+
+STAGE(move_src_dst, Ctx::None) {
+ dr = r;
+ dg = g;
+ db = b;
+ da = a;
+}
+STAGE(move_dst_src, Ctx::None) {
+ r = dr;
+ g = dg;
+ b = db;
+ a = da;
+}
+
+STAGE(premul, Ctx::None) {
+ r = r * a;
+ g = g * a;
+ b = b * a;
+}
+STAGE(premul_dst, Ctx::None) {
+ dr = dr * da;
+ dg = dg * da;
+ db = db * da;
+}
+STAGE(unpremul, Ctx::None) {
+ float inf = bit_cast<float>(0x7f800000);
+ auto scale = if_then_else(1.0f/a < inf, 1.0f/a, 0);
+ r *= scale;
+ g *= scale;
+ b *= scale;
+}
+
+STAGE(force_opaque , Ctx::None) { a = 1; }
+STAGE(force_opaque_dst, Ctx::None) { da = 1; }
+
+SI F from_srgb_(F s) {
+ auto lo = s * (1/12.92f);
+ auto hi = mad(s*s, mad(s, 0.3000f, 0.6975f), 0.0025f);
+ return if_then_else(s < 0.055f, lo, hi);
+}
+
+STAGE(from_srgb, Ctx::None) {
+ r = from_srgb_(r);
+ g = from_srgb_(g);
+ b = from_srgb_(b);
+}
+STAGE(from_srgb_dst, Ctx::None) {
+ dr = from_srgb_(dr);
+ dg = from_srgb_(dg);
+ db = from_srgb_(db);
+}
+STAGE(to_srgb, Ctx::None) {
+ auto fn = [&](F l) {
+ // We tweak c and d for each instruction set to make sure fn(1) is exactly 1.
+ #if defined(JUMPER_IS_AVX512)
+ const float c = 1.130026340485f,
+ d = 0.141387879848f;
+ #elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || \
+ defined(JUMPER_IS_AVX ) || defined(JUMPER_IS_HSW )
+ const float c = 1.130048394203f,
+ d = 0.141357362270f;
+ #elif defined(JUMPER_IS_NEON)
+ const float c = 1.129999995232f,
+ d = 0.141381442547f;
+ #else
+ const float c = 1.129999995232f,
+ d = 0.141377761960f;
+ #endif
+ F t = rsqrt(l);
+ auto lo = l * 12.92f;
+ auto hi = mad(t, mad(t, -0.0024542345f, 0.013832027f), c)
+ * rcp(d + t);
+ return if_then_else(l < 0.00465985f, lo, hi);
+ };
+ r = fn(r);
+ g = fn(g);
+ b = fn(b);
+}
+
+STAGE(rgb_to_hsl, Ctx::None) {
+ F mx = max(r,g,b),
+ mn = min(r,g,b),
+ d = mx - mn,
+ d_rcp = 1.0f / d;
+
+ F h = (1/6.0f) *
+ if_then_else(mx == mn, 0,
+ if_then_else(mx == r, (g-b)*d_rcp + if_then_else(g < b, 6.0f, 0),
+ if_then_else(mx == g, (b-r)*d_rcp + 2.0f,
+ (r-g)*d_rcp + 4.0f)));
+
+ F l = (mx + mn) * 0.5f;
+ F s = if_then_else(mx == mn, 0,
+ d / if_then_else(l > 0.5f, 2.0f-mx-mn, mx+mn));
+
+ r = h;
+ g = s;
+ b = l;
+}
+STAGE(hsl_to_rgb, Ctx::None) {
+ F h = r,
+ s = g,
+ l = b;
+
+ F q = l + if_then_else(l >= 0.5f, s - l*s, l*s),
+ p = 2.0f*l - q;
+
+ auto hue_to_rgb = [&](F t) {
+ t = fract(t);
+
+ F r = p;
+ r = if_then_else(t >= 4/6.0f, r, p + (q-p)*(4.0f - 6.0f*t));
+ r = if_then_else(t >= 3/6.0f, r, q);
+ r = if_then_else(t >= 1/6.0f, r, p + (q-p)*( 6.0f*t));
+ return r;
+ };
+
+ r = if_then_else(s == 0, l, hue_to_rgb(h + (1/3.0f)));
+ g = if_then_else(s == 0, l, hue_to_rgb(h ));
+ b = if_then_else(s == 0, l, hue_to_rgb(h - (1/3.0f)));
+}
+
+// Derive alpha's coverage from rgb coverage and the values of src and dst alpha.
+SI F alpha_coverage_from_rgb_coverage(F a, F da, F cr, F cg, F cb) {
+ return if_then_else(a < da, min(cr,cg,cb)
+ , max(cr,cg,cb));
+}
+
+STAGE(scale_1_float, const float* c) {
+ r = r * *c;
+ g = g * *c;
+ b = b * *c;
+ a = a * *c;
+}
+STAGE(scale_u8, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
+
+ auto scales = load<U8>(ptr, tail);
+ auto c = from_byte(scales);
+
+ r = r * c;
+ g = g * c;
+ b = b * c;
+ a = a * c;
+}
+STAGE(scale_565, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
+
+ F cr,cg,cb;
+ from_565(load<U16>(ptr, tail), &cr, &cg, &cb);
+
+ F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
+
+ r = r * cr;
+ g = g * cg;
+ b = b * cb;
+ a = a * ca;
+}
+
+SI F lerp(F from, F to, F t) {
+ return mad(to-from, t, from);
+}
+
+STAGE(lerp_1_float, const float* c) {
+ r = lerp(dr, r, *c);
+ g = lerp(dg, g, *c);
+ b = lerp(db, b, *c);
+ a = lerp(da, a, *c);
+}
+STAGE(lerp_u8, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
+
+ auto scales = load<U8>(ptr, tail);
+ auto c = from_byte(scales);
+
+ r = lerp(dr, r, c);
+ g = lerp(dg, g, c);
+ b = lerp(db, b, c);
+ a = lerp(da, a, c);
+}
+STAGE(lerp_565, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
+
+ F cr,cg,cb;
+ from_565(load<U16>(ptr, tail), &cr, &cg, &cb);
+
+ F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
+
+ r = lerp(dr, r, cr);
+ g = lerp(dg, g, cg);
+ b = lerp(db, b, cb);
+ a = lerp(da, a, ca);
+}
+
+STAGE(load_tables, const SkJumper_LoadTablesCtx* c) {
+ auto px = load<U32>((const uint32_t*)c->src + dx, tail);
+ r = gather(c->r, (px ) & 0xff);
+ g = gather(c->g, (px >> 8) & 0xff);
+ b = gather(c->b, (px >> 16) & 0xff);
+ a = cast( (px >> 24)) * (1/255.0f);
+}
+STAGE(load_tables_u16_be, const SkJumper_LoadTablesCtx* c) {
+ auto ptr = (const uint16_t*)c->src + 4*dx;
+
+ U16 R,G,B,A;
+ load4(ptr, tail, &R,&G,&B,&A);
+
+ // c->src is big-endian, so & 0xff grabs the 8 most signficant bits.
+ r = gather(c->r, expand(R) & 0xff);
+ g = gather(c->g, expand(G) & 0xff);
+ b = gather(c->b, expand(B) & 0xff);
+ a = (1/65535.0f) * cast(expand(bswap(A)));
+}
+STAGE(load_tables_rgb_u16_be, const SkJumper_LoadTablesCtx* c) {
+ auto ptr = (const uint16_t*)c->src + 3*dx;
+
+ U16 R,G,B;
+ load3(ptr, tail, &R,&G,&B);
+
+ // c->src is big-endian, so & 0xff grabs the 8 most signficant bits.
+ r = gather(c->r, expand(R) & 0xff);
+ g = gather(c->g, expand(G) & 0xff);
+ b = gather(c->b, expand(B) & 0xff);
+ a = 1.0f;
+}
+
+STAGE(byte_tables, const void* ctx) { // TODO: rename Tables SkJumper_ByteTablesCtx
+ struct Tables { const uint8_t *r, *g, *b, *a; };
+ auto tables = (const Tables*)ctx;
+
+ r = from_byte(gather(tables->r, to_unorm(r, 255)));
+ g = from_byte(gather(tables->g, to_unorm(g, 255)));
+ b = from_byte(gather(tables->b, to_unorm(b, 255)));
+ a = from_byte(gather(tables->a, to_unorm(a, 255)));
+}
+
+STAGE(byte_tables_rgb, const SkJumper_ByteTablesRGBCtx* ctx) {
+ int scale = ctx->n - 1;
+ r = from_byte(gather(ctx->r, to_unorm(r, scale)));
+ g = from_byte(gather(ctx->g, to_unorm(g, scale)));
+ b = from_byte(gather(ctx->b, to_unorm(b, scale)));
+}
+
+SI F table(F v, const SkJumper_TableCtx* ctx) {
+ return gather(ctx->table, to_unorm(v, ctx->size - 1));
+}
+STAGE(table_r, const SkJumper_TableCtx* ctx) { r = table(r, ctx); }
+STAGE(table_g, const SkJumper_TableCtx* ctx) { g = table(g, ctx); }
+STAGE(table_b, const SkJumper_TableCtx* ctx) { b = table(b, ctx); }
+STAGE(table_a, const SkJumper_TableCtx* ctx) { a = table(a, ctx); }
+
+SI F parametric(F v, const SkJumper_ParametricTransferFunction* ctx) {
+ F r = if_then_else(v <= ctx->D, mad(ctx->C, v, ctx->F)
+ , approx_powf(mad(ctx->A, v, ctx->B), ctx->G) + ctx->E);
+ return min(max(r, 0), 1.0f); // Clamp to [0,1], with argument order mattering to handle NaN.
+}
+STAGE(parametric_r, const SkJumper_ParametricTransferFunction* ctx) { r = parametric(r, ctx); }
+STAGE(parametric_g, const SkJumper_ParametricTransferFunction* ctx) { g = parametric(g, ctx); }
+STAGE(parametric_b, const SkJumper_ParametricTransferFunction* ctx) { b = parametric(b, ctx); }
+STAGE(parametric_a, const SkJumper_ParametricTransferFunction* ctx) { a = parametric(a, ctx); }
+
+STAGE(gamma, const float* G) {
+ r = approx_powf(r, *G);
+ g = approx_powf(g, *G);
+ b = approx_powf(b, *G);
+}
+STAGE(gamma_dst, const float* G) {
+ dr = approx_powf(dr, *G);
+ dg = approx_powf(dg, *G);
+ db = approx_powf(db, *G);
+}
+
+STAGE(lab_to_xyz, Ctx::None) {
+ F L = r * 100.0f,
+ A = g * 255.0f - 128.0f,
+ B = b * 255.0f - 128.0f;
+
+ F Y = (L + 16.0f) * (1/116.0f),
+ X = Y + A*(1/500.0f),
+ Z = Y - B*(1/200.0f);
+
+ X = if_then_else(X*X*X > 0.008856f, X*X*X, (X - (16/116.0f)) * (1/7.787f));
+ Y = if_then_else(Y*Y*Y > 0.008856f, Y*Y*Y, (Y - (16/116.0f)) * (1/7.787f));
+ Z = if_then_else(Z*Z*Z > 0.008856f, Z*Z*Z, (Z - (16/116.0f)) * (1/7.787f));
+
+ // Adjust to D50 illuminant.
+ r = X * 0.96422f;
+ g = Y ;
+ b = Z * 0.82521f;
+}
+
+STAGE(load_a8, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
+
+ r = g = b = 0.0f;
+ a = from_byte(load<U8>(ptr, tail));
+}
+STAGE(load_a8_dst, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
+
+ dr = dg = db = 0.0f;
+ da = from_byte(load<U8>(ptr, tail));
+}
+STAGE(gather_a8, const SkJumper_GatherCtx* ctx) {
+ const uint8_t* ptr;
+ U32 ix = ix_and_ptr(&ptr, ctx, r,g);
+ r = g = b = 0.0f;
+ a = from_byte(gather(ptr, ix));
+}
+STAGE(store_a8, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<uint8_t>(ctx, dx,dy);
+
+ U8 packed = pack(pack(to_unorm(a, 255)));
+ store(ptr, packed, tail);
+}
+
+STAGE(load_g8, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
+
+ r = g = b = from_byte(load<U8>(ptr, tail));
+ a = 1.0f;
+}
+STAGE(load_g8_dst, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
+
+ dr = dg = db = from_byte(load<U8>(ptr, tail));
+ da = 1.0f;
+}
+STAGE(gather_g8, const SkJumper_GatherCtx* ctx) {
+ const uint8_t* ptr;
+ U32 ix = ix_and_ptr(&ptr, ctx, r,g);
+ r = g = b = from_byte(gather(ptr, ix));
+ a = 1.0f;
+}
+
+STAGE(load_565, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
+
+ from_565(load<U16>(ptr, tail), &r,&g,&b);
+ a = 1.0f;
+}
+STAGE(load_565_dst, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
+
+ from_565(load<U16>(ptr, tail), &dr,&dg,&db);
+ da = 1.0f;
+}
+STAGE(gather_565, const SkJumper_GatherCtx* ctx) {
+ const uint16_t* ptr;
+ U32 ix = ix_and_ptr(&ptr, ctx, r,g);
+ from_565(gather(ptr, ix), &r,&g,&b);
+ a = 1.0f;
+}
+STAGE(store_565, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
+
+ U16 px = pack( to_unorm(r, 31) << 11
+ | to_unorm(g, 63) << 5
+ | to_unorm(b, 31) );
+ store(ptr, px, tail);
+}
+
+STAGE(load_4444, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
+ from_4444(load<U16>(ptr, tail), &r,&g,&b,&a);
+}
+STAGE(load_4444_dst, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
+ from_4444(load<U16>(ptr, tail), &dr,&dg,&db,&da);
+}
+STAGE(gather_4444, const SkJumper_GatherCtx* ctx) {
+ const uint16_t* ptr;
+ U32 ix = ix_and_ptr(&ptr, ctx, r,g);
+ from_4444(gather(ptr, ix), &r,&g,&b,&a);
+}
+STAGE(store_4444, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
+ U16 px = pack( to_unorm(r, 15) << 12
+ | to_unorm(g, 15) << 8
+ | to_unorm(b, 15) << 4
+ | to_unorm(a, 15) );
+ store(ptr, px, tail);
+}
+
+STAGE(load_8888, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
+ from_8888(load<U32>(ptr, tail), &r,&g,&b,&a);
+}
+STAGE(load_8888_dst, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
+ from_8888(load<U32>(ptr, tail), &dr,&dg,&db,&da);
+}
+STAGE(gather_8888, const SkJumper_GatherCtx* ctx) {
+ const uint32_t* ptr;
+ U32 ix = ix_and_ptr(&ptr, ctx, r,g);
+ from_8888(gather(ptr, ix), &r,&g,&b,&a);
+}
+STAGE(store_8888, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
+
+ U32 px = to_unorm(r, 255)
+ | to_unorm(g, 255) << 8
+ | to_unorm(b, 255) << 16
+ | to_unorm(a, 255) << 24;
+ store(ptr, px, tail);
+}
+
+STAGE(load_bgra, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
+ from_8888(load<U32>(ptr, tail), &b,&g,&r,&a);
+}
+STAGE(load_bgra_dst, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
+ from_8888(load<U32>(ptr, tail), &db,&dg,&dr,&da);
+}
+STAGE(gather_bgra, const SkJumper_GatherCtx* ctx) {
+ const uint32_t* ptr;
+ U32 ix = ix_and_ptr(&ptr, ctx, r,g);
+ from_8888(gather(ptr, ix), &b,&g,&r,&a);
+}
+STAGE(store_bgra, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
+
+ U32 px = to_unorm(b, 255)
+ | to_unorm(g, 255) << 8
+ | to_unorm(r, 255) << 16
+ | to_unorm(a, 255) << 24;
+ store(ptr, px, tail);
+}
+
+STAGE(load_1010102, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
+ from_1010102(load<U32>(ptr, tail), &r,&g,&b,&a);
+}
+STAGE(load_1010102_dst, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
+ from_1010102(load<U32>(ptr, tail), &dr,&dg,&db,&da);
+}
+STAGE(gather_1010102, const SkJumper_GatherCtx* ctx) {
+ const uint32_t* ptr;
+ U32 ix = ix_and_ptr(&ptr, ctx, r,g);
+ from_1010102(gather(ptr, ix), &r,&g,&b,&a);
+}
+STAGE(store_1010102, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
+
+ U32 px = to_unorm(r, 1023)
+ | to_unorm(g, 1023) << 10
+ | to_unorm(b, 1023) << 20
+ | to_unorm(a, 3) << 30;
+ store(ptr, px, tail);
+}
+
+STAGE(load_f16, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<const uint64_t>(ctx, dx,dy);
+
+ U16 R,G,B,A;
+ load4((const uint16_t*)ptr,tail, &R,&G,&B,&A);
+ r = from_half(R);
+ g = from_half(G);
+ b = from_half(B);
+ a = from_half(A);
+}
+STAGE(load_f16_dst, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<const uint64_t>(ctx, dx,dy);
+
+ U16 R,G,B,A;
+ load4((const uint16_t*)ptr,tail, &R,&G,&B,&A);
+ dr = from_half(R);
+ dg = from_half(G);
+ db = from_half(B);
+ da = from_half(A);
+}
+STAGE(gather_f16, const SkJumper_GatherCtx* ctx) {
+ const uint64_t* ptr;
+ U32 ix = ix_and_ptr(&ptr, ctx, r,g);
+ auto px = gather(ptr, ix);
+
+ U16 R,G,B,A;
+ load4((const uint16_t*)&px,0, &R,&G,&B,&A);
+ r = from_half(R);
+ g = from_half(G);
+ b = from_half(B);
+ a = from_half(A);
+}
+STAGE(store_f16, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<uint64_t>(ctx, dx,dy);
+ store4((uint16_t*)ptr,tail, to_half(r)
+ , to_half(g)
+ , to_half(b)
+ , to_half(a));
+}
+
+STAGE(load_u16_be, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<const uint16_t>(ctx, 4*dx,dy);
+
+ U16 R,G,B,A;
+ load4(ptr,tail, &R,&G,&B,&A);
+
+ r = (1/65535.0f) * cast(expand(bswap(R)));
+ g = (1/65535.0f) * cast(expand(bswap(G)));
+ b = (1/65535.0f) * cast(expand(bswap(B)));
+ a = (1/65535.0f) * cast(expand(bswap(A)));
+}
+STAGE(load_rgb_u16_be, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<const uint16_t>(ctx, 3*dx,dy);
+
+ U16 R,G,B;
+ load3(ptr,tail, &R,&G,&B);
+
+ r = (1/65535.0f) * cast(expand(bswap(R)));
+ g = (1/65535.0f) * cast(expand(bswap(G)));
+ b = (1/65535.0f) * cast(expand(bswap(B)));
+ a = 1.0f;
+}
+STAGE(store_u16_be, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<uint16_t>(ctx, 4*dx,dy);
+
+ U16 R = bswap(pack(to_unorm(r, 65535))),
+ G = bswap(pack(to_unorm(g, 65535))),
+ B = bswap(pack(to_unorm(b, 65535))),
+ A = bswap(pack(to_unorm(a, 65535)));
+
+ store4(ptr,tail, R,G,B,A);
+}
+
+STAGE(load_f32, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<const float>(ctx, 4*dx,dy);
+ load4(ptr,tail, &r,&g,&b,&a);
+}
+STAGE(load_f32_dst, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<const float>(ctx, 4*dx,dy);
+ load4(ptr,tail, &dr,&dg,&db,&da);
+}
+STAGE(store_f32, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<float>(ctx, 4*dx,dy);
+ store4(ptr,tail, r,g,b,a);
+}
+
+SI F exclusive_repeat(F v, const SkJumper_TileCtx* ctx) {
+ return v - floor_(v*ctx->invScale)*ctx->scale;
+}
+SI F exclusive_mirror(F v, const SkJumper_TileCtx* ctx) {
+ auto limit = ctx->scale;
+ auto invLimit = ctx->invScale;
+ return abs_( (v-limit) - (limit+limit)*floor_((v-limit)*(invLimit*0.5f)) - limit );
+}
+// Tile x or y to [0,limit) == [0,limit - 1 ulp] (think, sampling from images).
+// The gather stages will hard clamp the output of these stages to [0,limit)...
+// we just need to do the basic repeat or mirroring.
+STAGE(repeat_x, const SkJumper_TileCtx* ctx) { r = exclusive_repeat(r, ctx); }
+STAGE(repeat_y, const SkJumper_TileCtx* ctx) { g = exclusive_repeat(g, ctx); }
+STAGE(mirror_x, const SkJumper_TileCtx* ctx) { r = exclusive_mirror(r, ctx); }
+STAGE(mirror_y, const SkJumper_TileCtx* ctx) { g = exclusive_mirror(g, ctx); }
+
+// Clamp x to [0,1], both sides inclusive (think, gradients).
+// Even repeat and mirror funnel through a clamp to handle bad inputs like +Inf, NaN.
+SI F clamp_01(F v) { return min(max(0, v), 1); }
+
+STAGE( clamp_x_1, Ctx::None) { r = clamp_01(r); }
+STAGE(repeat_x_1, Ctx::None) { r = clamp_01(r - floor_(r)); }
+STAGE(mirror_x_1, Ctx::None) { r = clamp_01(abs_( (r-1.0f) - two(floor_((r-1.0f)*0.5f)) - 1.0f )); }
+
+// Decal stores a 32bit mask after checking the coordinate (x and/or y) against its domain:
+// mask == 0x00000000 if the coordinate(s) are out of bounds
+// mask == 0xFFFFFFFF if the coordinate(s) are in bounds
+// After the gather stage, the r,g,b,a values are AND'd with this mask, setting them to 0
+// if either of the coordinates were out of bounds.
+
+STAGE(decal_x, SkJumper_DecalTileCtx* ctx) {
+ auto w = ctx->limit_x;
+ unaligned_store(ctx->mask, cond_to_mask((0 <= r) & (r < w)));
+}
+STAGE(decal_y, SkJumper_DecalTileCtx* ctx) {
+ auto h = ctx->limit_y;
+ unaligned_store(ctx->mask, cond_to_mask((0 <= g) & (g < h)));
+}
+STAGE(decal_x_and_y, SkJumper_DecalTileCtx* ctx) {
+ auto w = ctx->limit_x;
+ auto h = ctx->limit_y;
+ unaligned_store(ctx->mask,
+ cond_to_mask((0 <= r) & (r < w) & (0 <= g) & (g < h)));
+}
+STAGE(check_decal_mask, SkJumper_DecalTileCtx* ctx) {
+ auto mask = unaligned_load<U32>(ctx->mask);
+ r = bit_cast<F>( bit_cast<U32>(r) & mask );
+ g = bit_cast<F>( bit_cast<U32>(g) & mask );
+ b = bit_cast<F>( bit_cast<U32>(b) & mask );
+ a = bit_cast<F>( bit_cast<U32>(a) & mask );
+}
+
+STAGE(luminance_to_alpha, Ctx::None) {
+ a = r*0.2126f + g*0.7152f + b*0.0722f;
+ r = g = b = 0;
+}
+
+STAGE(matrix_translate, const float* m) {
+ r += m[0];
+ g += m[1];
+}
+STAGE(matrix_scale_translate, const float* m) {
+ r = mad(r,m[0], m[2]);
+ g = mad(g,m[1], m[3]);
+}
+STAGE(matrix_2x3, const float* m) {
+ auto R = mad(r,m[0], mad(g,m[2], m[4])),
+ G = mad(r,m[1], mad(g,m[3], m[5]));
+ r = R;
+ g = G;
+}
+STAGE(matrix_3x4, const float* m) {
+ auto R = mad(r,m[0], mad(g,m[3], mad(b,m[6], m[ 9]))),
+ G = mad(r,m[1], mad(g,m[4], mad(b,m[7], m[10]))),
+ B = mad(r,m[2], mad(g,m[5], mad(b,m[8], m[11])));
+ r = R;
+ g = G;
+ b = B;
+}
+STAGE(matrix_4x5, const float* m) {
+ auto R = mad(r,m[0], mad(g,m[4], mad(b,m[ 8], mad(a,m[12], m[16])))),
+ G = mad(r,m[1], mad(g,m[5], mad(b,m[ 9], mad(a,m[13], m[17])))),
+ B = mad(r,m[2], mad(g,m[6], mad(b,m[10], mad(a,m[14], m[18])))),
+ A = mad(r,m[3], mad(g,m[7], mad(b,m[11], mad(a,m[15], m[19]))));
+ r = R;
+ g = G;
+ b = B;
+ a = A;
+}
+STAGE(matrix_4x3, const float* m) {
+ auto X = r,
+ Y = g;
+
+ r = mad(X, m[0], mad(Y, m[4], m[ 8]));
+ g = mad(X, m[1], mad(Y, m[5], m[ 9]));
+ b = mad(X, m[2], mad(Y, m[6], m[10]));
+ a = mad(X, m[3], mad(Y, m[7], m[11]));
+}
+STAGE(matrix_perspective, const float* m) {
+ // N.B. Unlike the other matrix_ stages, this matrix is row-major.
+ auto R = mad(r,m[0], mad(g,m[1], m[2])),
+ G = mad(r,m[3], mad(g,m[4], m[5])),
+ Z = mad(r,m[6], mad(g,m[7], m[8]));
+ r = R * rcp(Z);
+ g = G * rcp(Z);
+}
+
+SI void gradient_lookup(const SkJumper_GradientCtx* c, U32 idx, F t,
+ F* r, F* g, F* b, F* a) {
+ F fr, br, fg, bg, fb, bb, fa, ba;
+#if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
+ if (c->stopCount <=8) {
+ fr = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), idx);
+ br = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), idx);
+ fg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), idx);
+ bg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), idx);
+ fb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), idx);
+ bb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), idx);
+ fa = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), idx);
+ ba = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), idx);
+ } else
+#endif
+ {
+ fr = gather(c->fs[0], idx);
+ br = gather(c->bs[0], idx);
+ fg = gather(c->fs[1], idx);
+ bg = gather(c->bs[1], idx);
+ fb = gather(c->fs[2], idx);
+ bb = gather(c->bs[2], idx);
+ fa = gather(c->fs[3], idx);
+ ba = gather(c->bs[3], idx);
+ }
+
+ *r = mad(t, fr, br);
+ *g = mad(t, fg, bg);
+ *b = mad(t, fb, bb);
+ *a = mad(t, fa, ba);
+}
+
+STAGE(evenly_spaced_gradient, const SkJumper_GradientCtx* c) {
+ auto t = r;
+ auto idx = trunc_(t * (c->stopCount-1));
+ gradient_lookup(c, idx, t, &r, &g, &b, &a);
+}
+
+STAGE(gradient, const SkJumper_GradientCtx* c) {
+ auto t = r;
+ U32 idx = 0;
+
+ // N.B. The loop starts at 1 because idx 0 is the color to use before the first stop.
+ for (size_t i = 1; i < c->stopCount; i++) {
+ idx += if_then_else(t >= c->ts[i], U32(1), U32(0));
+ }
+
+ gradient_lookup(c, idx, t, &r, &g, &b, &a);
+}
+
+STAGE(evenly_spaced_2_stop_gradient, const void* ctx) {
+ // TODO: Rename Ctx SkJumper_EvenlySpaced2StopGradientCtx.
+ struct Ctx { float f[4], b[4]; };
+ auto c = (const Ctx*)ctx;
+
+ auto t = r;
+ r = mad(t, c->f[0], c->b[0]);
+ g = mad(t, c->f[1], c->b[1]);
+ b = mad(t, c->f[2], c->b[2]);
+ a = mad(t, c->f[3], c->b[3]);
+}
+
+STAGE(xy_to_unit_angle, Ctx::None) {
+ F X = r,
+ Y = g;
+ F xabs = abs_(X),
+ yabs = abs_(Y);
+
+ F slope = min(xabs, yabs)/max(xabs, yabs);
+ F s = slope * slope;
+
+ // Use a 7th degree polynomial to approximate atan.
+ // This was generated using sollya.gforge.inria.fr.
+ // A float optimized polynomial was generated using the following command.
+ // P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative);
+ F phi = slope
+ * (0.15912117063999176025390625f + s
+ * (-5.185396969318389892578125e-2f + s
+ * (2.476101927459239959716796875e-2f + s
+ * (-7.0547382347285747528076171875e-3f))));
+
+ phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi);
+ phi = if_then_else(X < 0.0f , 1.0f/2.0f - phi, phi);
+ phi = if_then_else(Y < 0.0f , 1.0f - phi , phi);
+ phi = if_then_else(phi != phi , 0 , phi); // Check for NaN.
+ r = phi;
+}
+
+STAGE(xy_to_radius, Ctx::None) {
+ F X2 = r * r,
+ Y2 = g * g;
+ r = sqrt_(X2 + Y2);
+}
+
+// Please see https://skia.org/dev/design/conical for how our 2pt conical shader works.
+
+STAGE(negate_x, Ctx::None) { r = -r; }
+
+STAGE(xy_to_2pt_conical_strip, const SkJumper_2PtConicalCtx* ctx) {
+ F x = r, y = g, &t = r;
+ t = x + sqrt_(ctx->fP0 - y*y); // ctx->fP0 = r0 * r0
+}
+
+STAGE(xy_to_2pt_conical_focal_on_circle, Ctx::None) {
+ F x = r, y = g, &t = r;
+ t = x + y*y / x; // (x^2 + y^2) / x
+}
+
+STAGE(xy_to_2pt_conical_well_behaved, const SkJumper_2PtConicalCtx* ctx) {
+ F x = r, y = g, &t = r;
+ t = sqrt_(x*x + y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
+}
+
+STAGE(xy_to_2pt_conical_greater, const SkJumper_2PtConicalCtx* ctx) {
+ F x = r, y = g, &t = r;
+ t = sqrt_(x*x - y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
+}
+
+STAGE(xy_to_2pt_conical_smaller, const SkJumper_2PtConicalCtx* ctx) {
+ F x = r, y = g, &t = r;
+ t = -sqrt_(x*x - y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
+}
+
+STAGE(alter_2pt_conical_compensate_focal, const SkJumper_2PtConicalCtx* ctx) {
+ F& t = r;
+ t = t + ctx->fP1; // ctx->fP1 = f
+}
+
+STAGE(alter_2pt_conical_unswap, Ctx::None) {
+ F& t = r;
+ t = 1 - t;
+}
+
+STAGE(mask_2pt_conical_nan, SkJumper_2PtConicalCtx* c) {
+ F& t = r;
+ auto is_degenerate = (t != t); // NaN
+ t = if_then_else(is_degenerate, F(0), t);
+ unaligned_store(&c->fMask, cond_to_mask(!is_degenerate));
+}
+
+STAGE(mask_2pt_conical_degenerates, SkJumper_2PtConicalCtx* c) {
+ F& t = r;
+ auto is_degenerate = (t <= 0) | (t != t);
+ t = if_then_else(is_degenerate, F(0), t);
+ unaligned_store(&c->fMask, cond_to_mask(!is_degenerate));
+}
+
+STAGE(apply_vector_mask, const uint32_t* ctx) {
+ const U32 mask = unaligned_load<U32>(ctx);
+ r = bit_cast<F>(bit_cast<U32>(r) & mask);
+ g = bit_cast<F>(bit_cast<U32>(g) & mask);
+ b = bit_cast<F>(bit_cast<U32>(b) & mask);
+ a = bit_cast<F>(bit_cast<U32>(a) & mask);
+}
+
+STAGE(save_xy, SkJumper_SamplerCtx* c) {
+ // Whether bilinear or bicubic, all sample points are at the same fractional offset (fx,fy).
+ // They're either the 4 corners of a logical 1x1 pixel or the 16 corners of a 3x3 grid
+ // surrounding (x,y) at (0.5,0.5) off-center.
+ F fx = fract(r + 0.5f),
+ fy = fract(g + 0.5f);
+
+ // Samplers will need to load x and fx, or y and fy.
+ unaligned_store(c->x, r);
+ unaligned_store(c->y, g);
+ unaligned_store(c->fx, fx);
+ unaligned_store(c->fy, fy);
+}
+
+STAGE(accumulate, const SkJumper_SamplerCtx* c) {
+ // Bilinear and bicubic filters are both separable, so we produce independent contributions
+ // from x and y, multiplying them together here to get each pixel's total scale factor.
+ auto scale = unaligned_load<F>(c->scalex)
+ * unaligned_load<F>(c->scaley);
+ dr = mad(scale, r, dr);
+ dg = mad(scale, g, dg);
+ db = mad(scale, b, db);
+ da = mad(scale, a, da);
+}
+
+// In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center
+// are combined in direct proportion to their area overlapping that logical query pixel.
+// At positive offsets, the x-axis contribution to that rectangle is fx, or (1-fx) at negative x.
+// The y-axis is symmetric.
+
+template <int kScale>
+SI void bilinear_x(SkJumper_SamplerCtx* ctx, F* x) {
+ *x = unaligned_load<F>(ctx->x) + (kScale * 0.5f);
+ F fx = unaligned_load<F>(ctx->fx);
+
+ F scalex;
+ if (kScale == -1) { scalex = 1.0f - fx; }
+ if (kScale == +1) { scalex = fx; }
+ unaligned_store(ctx->scalex, scalex);
+}
+template <int kScale>
+SI void bilinear_y(SkJumper_SamplerCtx* ctx, F* y) {
+ *y = unaligned_load<F>(ctx->y) + (kScale * 0.5f);
+ F fy = unaligned_load<F>(ctx->fy);
+
+ F scaley;
+ if (kScale == -1) { scaley = 1.0f - fy; }
+ if (kScale == +1) { scaley = fy; }
+ unaligned_store(ctx->scaley, scaley);
+}
+
+STAGE(bilinear_nx, SkJumper_SamplerCtx* ctx) { bilinear_x<-1>(ctx, &r); }
+STAGE(bilinear_px, SkJumper_SamplerCtx* ctx) { bilinear_x<+1>(ctx, &r); }
+STAGE(bilinear_ny, SkJumper_SamplerCtx* ctx) { bilinear_y<-1>(ctx, &g); }
+STAGE(bilinear_py, SkJumper_SamplerCtx* ctx) { bilinear_y<+1>(ctx, &g); }
+
+
+// In bicubic interpolation, the 16 pixels and +/- 0.5 and +/- 1.5 offsets from the sample
+// pixel center are combined with a non-uniform cubic filter, with higher values near the center.
+//
+// We break this function into two parts, one for near 0.5 offsets and one for far 1.5 offsets.
+// See GrCubicEffect for details of this particular filter.
+
+SI F bicubic_near(F t) {
+ // 1/18 + 9/18t + 27/18t^2 - 21/18t^3 == t ( t ( -21/18t + 27/18) + 9/18) + 1/18
+ return mad(t, mad(t, mad((-21/18.0f), t, (27/18.0f)), (9/18.0f)), (1/18.0f));
+}
+SI F bicubic_far(F t) {
+ // 0/18 + 0/18*t - 6/18t^2 + 7/18t^3 == t^2 (7/18t - 6/18)
+ return (t*t)*mad((7/18.0f), t, (-6/18.0f));
+}
+
+template <int kScale>
+SI void bicubic_x(SkJumper_SamplerCtx* ctx, F* x) {
+ *x = unaligned_load<F>(ctx->x) + (kScale * 0.5f);
+ F fx = unaligned_load<F>(ctx->fx);
+
+ F scalex;
+ if (kScale == -3) { scalex = bicubic_far (1.0f - fx); }
+ if (kScale == -1) { scalex = bicubic_near(1.0f - fx); }
+ if (kScale == +1) { scalex = bicubic_near( fx); }
+ if (kScale == +3) { scalex = bicubic_far ( fx); }
+ unaligned_store(ctx->scalex, scalex);
+}
+template <int kScale>
+SI void bicubic_y(SkJumper_SamplerCtx* ctx, F* y) {
+ *y = unaligned_load<F>(ctx->y) + (kScale * 0.5f);
+ F fy = unaligned_load<F>(ctx->fy);
+
+ F scaley;
+ if (kScale == -3) { scaley = bicubic_far (1.0f - fy); }
+ if (kScale == -1) { scaley = bicubic_near(1.0f - fy); }
+ if (kScale == +1) { scaley = bicubic_near( fy); }
+ if (kScale == +3) { scaley = bicubic_far ( fy); }
+ unaligned_store(ctx->scaley, scaley);
+}
+
+STAGE(bicubic_n3x, SkJumper_SamplerCtx* ctx) { bicubic_x<-3>(ctx, &r); }
+STAGE(bicubic_n1x, SkJumper_SamplerCtx* ctx) { bicubic_x<-1>(ctx, &r); }
+STAGE(bicubic_p1x, SkJumper_SamplerCtx* ctx) { bicubic_x<+1>(ctx, &r); }
+STAGE(bicubic_p3x, SkJumper_SamplerCtx* ctx) { bicubic_x<+3>(ctx, &r); }
+
+STAGE(bicubic_n3y, SkJumper_SamplerCtx* ctx) { bicubic_y<-3>(ctx, &g); }
+STAGE(bicubic_n1y, SkJumper_SamplerCtx* ctx) { bicubic_y<-1>(ctx, &g); }
+STAGE(bicubic_p1y, SkJumper_SamplerCtx* ctx) { bicubic_y<+1>(ctx, &g); }
+STAGE(bicubic_p3y, SkJumper_SamplerCtx* ctx) { bicubic_y<+3>(ctx, &g); }
+
+STAGE(callback, SkJumper_CallbackCtx* c) {
+ store4(c->rgba,0, r,g,b,a);
+ c->fn(c, tail ? tail : N);
+ load4(c->read_from,0, &r,&g,&b,&a);
+}
+
+// Our general strategy is to recursively interpolate each dimension,
+// accumulating the index to sample at, and our current pixel stride to help accumulate the index.
+template <int dim>
+SI void color_lookup_table(const SkJumper_ColorLookupTableCtx* ctx,
+ F& r, F& g, F& b, F a, U32 index, U32 stride) {
+ // We'd logically like to sample this dimension at x.
+ int limit = ctx->limits[dim-1];
+ F src;
+ switch(dim) {
+ case 1: src = r; break;
+ case 2: src = g; break;
+ case 3: src = b; break;
+ case 4: src = a; break;
+ }
+ F x = src * (limit - 1);
+
+ // We can't index an array by a float (darn) so we have to snap to nearby integers lo and hi.
+ U32 lo = trunc_(x ),
+ hi = trunc_(x + 0.9999f);
+
+ // Recursively sample at lo and hi.
+ F lr = r, lg = g, lb = b,
+ hr = r, hg = g, hb = b;
+ color_lookup_table<dim-1>(ctx, lr,lg,lb,a, stride*lo + index, stride*limit);
+ color_lookup_table<dim-1>(ctx, hr,hg,hb,a, stride*hi + index, stride*limit);
+
+ // Linearly interpolate those colors based on their distance to x.
+ F t = x - cast(lo);
+ r = lerp(lr, hr, t);
+ g = lerp(lg, hg, t);
+ b = lerp(lb, hb, t);
+}
+
+// Bottom out our recursion at 0 dimensions, i.e. just return the colors at index.
+template<>
+inline void color_lookup_table<0>(const SkJumper_ColorLookupTableCtx* ctx,
+ F& r, F& g, F& b, F a, U32 index, U32 stride) {
+ r = gather(ctx->table, 3*index+0);
+ g = gather(ctx->table, 3*index+1);
+ b = gather(ctx->table, 3*index+2);
+}
+
+STAGE(clut_3D, const SkJumper_ColorLookupTableCtx* ctx) {
+ color_lookup_table<3>(ctx, r,g,b,a, 0,1);
+ // This 3D color lookup table leaves alpha alone.
+}
+STAGE(clut_4D, const SkJumper_ColorLookupTableCtx* ctx) {
+ color_lookup_table<4>(ctx, r,g,b,a, 0,1);
+ // "a" was really CMYK's K, so we just set alpha opaque.
+ a = 1.0f;
+}
+
+STAGE(gauss_a_to_rgba, Ctx::None) {
+ // x = 1 - x;
+ // exp(-x * x * 4) - 0.018f;
+ // ... now approximate with quartic
+ //
+ const float c4 = -2.26661229133605957031f;
+ const float c3 = 2.89795351028442382812f;
+ const float c2 = 0.21345567703247070312f;
+ const float c1 = 0.15489584207534790039f;
+ const float c0 = 0.00030726194381713867f;
+ a = mad(a, mad(a, mad(a, mad(a, c4, c3), c2), c1), c0);
+ r = a;
+ g = a;
+ b = a;
+}
+
+// A specialized fused image shader for clamp-x, clamp-y, non-sRGB sampling.
+STAGE(bilerp_clamp_8888, SkJumper_GatherCtx* ctx) {
+ // (cx,cy) are the center of our sample.
+ F cx = r,
+ cy = g;
+
+ // All sample points are at the same fractional offset (fx,fy).
+ // They're the 4 corners of a logical 1x1 pixel surrounding (x,y) at (0.5,0.5) offsets.
+ F fx = fract(cx + 0.5f),
+ fy = fract(cy + 0.5f);
+
+ // We'll accumulate the color of all four samples into {r,g,b,a} directly.
+ r = g = b = a = 0;
+
+ for (float dy = -0.5f; dy <= +0.5f; dy += 1.0f)
+ for (float dx = -0.5f; dx <= +0.5f; dx += 1.0f) {
+ // (x,y) are the coordinates of this sample point.
+ F x = cx + dx,
+ y = cy + dy;
+
+ // ix_and_ptr() will clamp to the image's bounds for us.
+ const uint32_t* ptr;
+ U32 ix = ix_and_ptr(&ptr, ctx, x,y);
+
+ F sr,sg,sb,sa;
+ from_8888(gather(ptr, ix), &sr,&sg,&sb,&sa);
+
+ // In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center
+ // are combined in direct proportion to their area overlapping that logical query pixel.
+ // At positive offsets, the x-axis contribution to that rectangle is fx,
+ // or (1-fx) at negative x. Same deal for y.
+ F sx = (dx > 0) ? fx : 1.0f - fx,
+ sy = (dy > 0) ? fy : 1.0f - fy,
+ area = sx * sy;
+
+ r += sr * area;
+ g += sg * area;
+ b += sb * area;
+ a += sa * area;
+ }
+}
+
+namespace lowp {
+#if defined(__clang__)
+
+#if defined(__AVX2__)
+ using U8 = uint8_t __attribute__((ext_vector_type(16)));
+ using U16 = uint16_t __attribute__((ext_vector_type(16)));
+ using I16 = int16_t __attribute__((ext_vector_type(16)));
+ using I32 = int32_t __attribute__((ext_vector_type(16)));
+ using U32 = uint32_t __attribute__((ext_vector_type(16)));
+ using F = float __attribute__((ext_vector_type(16)));
+#else
+ using U8 = uint8_t __attribute__((ext_vector_type(8)));
+ using U16 = uint16_t __attribute__((ext_vector_type(8)));
+ using I16 = int16_t __attribute__((ext_vector_type(8)));
+ using I32 = int32_t __attribute__((ext_vector_type(8)));
+ using U32 = uint32_t __attribute__((ext_vector_type(8)));
+ using F = float __attribute__((ext_vector_type(8)));
+#endif
+
+static const size_t N = sizeof(U16) / sizeof(uint16_t);
+
+// TODO: follow the guidance of JUMPER_NARROW_STAGES for lowp stages too.
+
+// We pass program as the second argument so that load_and_inc() will find it in %rsi on x86-64.
+using Stage = void (ABI*)(size_t tail, void** program, size_t dx, size_t dy,
+ U16 r, U16 g, U16 b, U16 a,
+ U16 dr, U16 dg, U16 db, U16 da);
+
+static void start_pipeline(const size_t x0, const size_t y0,
+ const size_t xlimit, const size_t ylimit, void** program) {
+ auto start = (Stage)load_and_inc(program);
+ for (size_t dy = y0; dy < ylimit; dy++) {
+ size_t dx = x0;
+ for (; dx + N <= xlimit; dx += N) {
+ start( 0,program,dx,dy, 0,0,0,0, 0,0,0,0);
+ }
+ if (size_t tail = xlimit - dx) {
+ start(tail,program,dx,dy, 0,0,0,0, 0,0,0,0);
+ }
+ }
+}
+
+static ABI void just_return(size_t,void**,size_t,size_t, U16,U16,U16,U16, U16,U16,U16,U16) {}
+
+// All stages use the same function call ABI to chain into each other, but there are three types:
+// GG: geometry in, geometry out -- think, a matrix
+// GP: geometry in, pixels out. -- think, a memory gather
+// PP: pixels in, pixels out. -- think, a blend mode
+//
+// (Some stages ignore their inputs or produce no logical output. That's perfectly fine.)
+//
+// These three STAGE_ macros let you define each type of stage,
+// and will have (x,y) geometry and/or (r,g,b,a, dr,dg,db,da) pixel arguments as appropriate.
+
+#define STAGE_GG(name, ...) \
+ SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F& x, F& y); \
+ static ABI void name(size_t tail, void** program, size_t dx, size_t dy, \
+ U16 r, U16 g, U16 b, U16 a, \
+ U16 dr, U16 dg, U16 db, U16 da) { \
+ auto x = join<F>(r,g), \
+ y = join<F>(b,a); \
+ name##_k(Ctx{program}, dx,dy,tail, x,y); \
+ split(x, &r,&g); \
+ split(y, &b,&a); \
+ auto next = (Stage)load_and_inc(program); \
+ next(tail,program,dx,dy, r,g,b,a, dr,dg,db,da); \
+ } \
+ SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F& x, F& y)
+
+#define STAGE_GP(name, ...) \
+ SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F x, F y, \
+ U16& r, U16& g, U16& b, U16& a, \
+ U16& dr, U16& dg, U16& db, U16& da); \
+ static ABI void name(size_t tail, void** program, size_t dx, size_t dy, \
+ U16 r, U16 g, U16 b, U16 a, \
+ U16 dr, U16 dg, U16 db, U16 da) { \
+ auto x = join<F>(r,g), \
+ y = join<F>(b,a); \
+ name##_k(Ctx{program}, dx,dy,tail, x,y, r,g,b,a, dr,dg,db,da); \
+ auto next = (Stage)load_and_inc(program); \
+ next(tail,program,dx,dy, r,g,b,a, dr,dg,db,da); \
+ } \
+ SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F x, F y, \
+ U16& r, U16& g, U16& b, U16& a, \
+ U16& dr, U16& dg, U16& db, U16& da)
+
+#define STAGE_PP(name, ...) \
+ SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
+ U16& r, U16& g, U16& b, U16& a, \
+ U16& dr, U16& dg, U16& db, U16& da); \
+ static ABI void name(size_t tail, void** program, size_t dx, size_t dy, \
+ U16 r, U16 g, U16 b, U16 a, \
+ U16 dr, U16 dg, U16 db, U16 da) { \
+ name##_k(Ctx{program}, dx,dy,tail, r,g,b,a, dr,dg,db,da); \
+ auto next = (Stage)load_and_inc(program); \
+ next(tail,program,dx,dy, r,g,b,a, dr,dg,db,da); \
+ } \
+ SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
+ U16& r, U16& g, U16& b, U16& a, \
+ U16& dr, U16& dg, U16& db, U16& da)
+
+// ~~~~~~ Commonly used helper functions ~~~~~~ //
+
+SI U16 div255(U16 v) {
+#if 0
+ return (v+127)/255; // The ideal rounding divide by 255.
+#else
+ return (v+255)/256; // A good approximation of (v+127)/255.
+#endif
+}
+
+SI U16 inv(U16 v) { return 255-v; }
+
+SI U16 if_then_else(I16 c, U16 t, U16 e) { return (t & c) | (e & ~c); }
+SI U32 if_then_else(I32 c, U32 t, U32 e) { return (t & c) | (e & ~c); }
+
+SI U16 max(U16 x, U16 y) { return if_then_else(x < y, y, x); }
+SI U16 min(U16 x, U16 y) { return if_then_else(x < y, x, y); }
+SI U16 max(U16 x, U16 y, U16 z) { return max(x, max(y, z)); }
+SI U16 min(U16 x, U16 y, U16 z) { return min(x, min(y, z)); }
+
+SI U16 from_float(float f) { return f * 255.0f + 0.5f; }
+
+SI U16 lerp(U16 from, U16 to, U16 t) { return div255( from*inv(t) + to*t ); }
+
+template <typename D, typename S>
+SI D cast(S src) {
+ return __builtin_convertvector(src, D);
+}
+
+template <typename D, typename S>
+SI void split(S v, D* lo, D* hi) {
+ static_assert(2*sizeof(D) == sizeof(S), "");
+ memcpy(lo, (const char*)&v + 0*sizeof(D), sizeof(D));
+ memcpy(hi, (const char*)&v + 1*sizeof(D), sizeof(D));
+}
+template <typename D, typename S>
+SI D join(S lo, S hi) {
+ static_assert(sizeof(D) == 2*sizeof(S), "");
+ D v;
+ memcpy((char*)&v + 0*sizeof(S), &lo, sizeof(S));
+ memcpy((char*)&v + 1*sizeof(S), &hi, sizeof(S));
+ return v;
+}
+template <typename V, typename H>
+SI V map(V v, H (*fn)(H)) {
+ H lo,hi;
+ split(v, &lo,&hi);
+ lo = fn(lo);
+ hi = fn(hi);
+ return join<V>(lo,hi);
+}
+
+SI F if_then_else(I32 c, F t, F e) {
+ return bit_cast<F>( (bit_cast<I32>(t) & c) | (bit_cast<I32>(e) & ~c) );
+}
+SI F max(F x, F y) { return if_then_else(x < y, y, x); }
+SI F min(F x, F y) { return if_then_else(x < y, x, y); }
+
+SI F mad(F f, F m, F a) { return f*m+a; }
+SI U32 trunc_(F x) { return (U32)cast<I32>(x); }
+
+SI F rcp(F x) {
+#if defined(__AVX2__)
+ return map(x, _mm256_rcp_ps);
+#elif defined(__SSE__)
+ return map(x, _mm_rcp_ps);
+#elif defined(__ARM_NEON)
+ return map(x, +[](float32x4_t v) {
+ auto est = vrecpeq_f32(v);
+ return vrecpsq_f32(v,est)*est;
+ });
+#else
+ return 1.0f / x;
+#endif
+}
+SI F sqrt_(F x) {
+#if defined(__AVX2__)
+ return map(x, _mm256_sqrt_ps);
+#elif defined(__SSE__)
+ return map(x, _mm_sqrt_ps);
+#elif defined(__aarch64__)
+ return map(x, vsqrtq_f32);
+#elif defined(__ARM_NEON)
+ return map(x, +[](float32x4_t v) {
+ auto est = vrsqrteq_f32(v); // Estimate and two refinement steps for est = rsqrt(v).
+ est *= vrsqrtsq_f32(v,est*est);
+ est *= vrsqrtsq_f32(v,est*est);
+ return v*est; // sqrt(v) == v*rsqrt(v).
+ });
+#else
+ return F{
+ sqrtf(x[0]), sqrtf(x[1]), sqrtf(x[2]), sqrtf(x[3]),
+ sqrtf(x[4]), sqrtf(x[5]), sqrtf(x[6]), sqrtf(x[7]),
+ };
+#endif
+}
+
+SI F floor_(F x) {
+#if defined(__aarch64__)
+ return map(x, vrndmq_f32);
+#elif defined(__AVX2__)
+ return map(x, +[](__m256 v){ return _mm256_floor_ps(v); }); // _mm256_floor_ps is a macro...
+#elif defined(__SSE4_1__)
+ return map(x, +[](__m128 v){ return _mm_floor_ps(v); }); // _mm_floor_ps() is a macro too.
+#else
+ F roundtrip = cast<F>(cast<I32>(x));
+ return roundtrip - if_then_else(roundtrip > x, F(1), F(0));
+#endif
+}
+SI F abs_(F x) { return bit_cast<F>( bit_cast<I32>(x) & 0x7fffffff ); }
+
+// ~~~~~~ Basic / misc. stages ~~~~~~ //
+
+STAGE_GG(seed_shader, const float* iota) {
+ x = cast<F>(I32(dx)) + unaligned_load<F>(iota);
+ y = cast<F>(I32(dy)) + 0.5f;
+}
+
+STAGE_GG(matrix_translate, const float* m) {
+ x += m[0];
+ y += m[1];
+}
+STAGE_GG(matrix_scale_translate, const float* m) {
+ x = mad(x,m[0], m[2]);
+ y = mad(y,m[1], m[3]);
+}
+STAGE_GG(matrix_2x3, const float* m) {
+ auto X = mad(x,m[0], mad(y,m[2], m[4])),
+ Y = mad(x,m[1], mad(y,m[3], m[5]));
+ x = X;
+ y = Y;
+}
+STAGE_GG(matrix_perspective, const float* m) {
+ // N.B. Unlike the other matrix_ stages, this matrix is row-major.
+ auto X = mad(x,m[0], mad(y,m[1], m[2])),
+ Y = mad(x,m[3], mad(y,m[4], m[5])),
+ Z = mad(x,m[6], mad(y,m[7], m[8]));
+ x = X * rcp(Z);
+ y = Y * rcp(Z);
+}
+
+STAGE_PP(uniform_color, const SkJumper_UniformColorCtx* c) {
+ r = c->rgba[0];
+ g = c->rgba[1];
+ b = c->rgba[2];
+ a = c->rgba[3];
+}
+STAGE_PP(black_color, Ctx::None) { r = g = b = 0; a = 255; }
+STAGE_PP(white_color, Ctx::None) { r = g = b = 255; a = 255; }
+
+STAGE_PP(set_rgb, const float rgb[3]) {
+ r = from_float(rgb[0]);
+ g = from_float(rgb[1]);
+ b = from_float(rgb[2]);
+}
+
+STAGE_PP(clamp_a, Ctx::None) {
+ r = min(r, a);
+ g = min(g, a);
+ b = min(b, a);
+}
+STAGE_PP(clamp_a_dst, Ctx::None) {
+ dr = min(dr, da);
+ dg = min(dg, da);
+ db = min(db, da);
+}
+
+STAGE_PP(premul, Ctx::None) {
+ r = div255(r * a);
+ g = div255(g * a);
+ b = div255(b * a);
+}
+STAGE_PP(premul_dst, Ctx::None) {
+ dr = div255(dr * da);
+ dg = div255(dg * da);
+ db = div255(db * da);
+}
+
+STAGE_PP(force_opaque , Ctx::None) { a = 255; }
+STAGE_PP(force_opaque_dst, Ctx::None) { da = 255; }
+
+STAGE_PP(swap_rb, Ctx::None) {
+ auto tmp = r;
+ r = b;
+ b = tmp;
+}
+
+STAGE_PP(move_src_dst, Ctx::None) {
+ dr = r;
+ dg = g;
+ db = b;
+ da = a;
+}
+
+STAGE_PP(move_dst_src, Ctx::None) {
+ r = dr;
+ g = dg;
+ b = db;
+ a = da;
+}
+
+STAGE_PP(invert, Ctx::None) {
+ r = inv(r);
+ g = inv(g);
+ b = inv(b);
+ a = inv(a);
+}
+
+// ~~~~~~ Blend modes ~~~~~~ //
+
+// The same logic applied to all 4 channels.
+#define BLEND_MODE(name) \
+ SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da); \
+ STAGE_PP(name, Ctx::None) { \
+ r = name##_channel(r,dr,a,da); \
+ g = name##_channel(g,dg,a,da); \
+ b = name##_channel(b,db,a,da); \
+ a = name##_channel(a,da,a,da); \
+ } \
+ SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da)
+
+ BLEND_MODE(clear) { return 0; }
+ BLEND_MODE(srcatop) { return div255( s*da + d*inv(sa) ); }
+ BLEND_MODE(dstatop) { return div255( d*sa + s*inv(da) ); }
+ BLEND_MODE(srcin) { return div255( s*da ); }
+ BLEND_MODE(dstin) { return div255( d*sa ); }
+ BLEND_MODE(srcout) { return div255( s*inv(da) ); }
+ BLEND_MODE(dstout) { return div255( d*inv(sa) ); }
+ BLEND_MODE(srcover) { return s + div255( d*inv(sa) ); }
+ BLEND_MODE(dstover) { return d + div255( s*inv(da) ); }
+ BLEND_MODE(modulate) { return div255( s*d ); }
+ BLEND_MODE(multiply) { return div255( s*inv(da) + d*inv(sa) + s*d ); }
+ BLEND_MODE(plus_) { return min(s+d, 255); }
+ BLEND_MODE(screen) { return s + d - div255( s*d ); }
+ BLEND_MODE(xor_) { return div255( s*inv(da) + d*inv(sa) ); }
+#undef BLEND_MODE
+
+// The same logic applied to color, and srcover for alpha.
+#define BLEND_MODE(name) \
+ SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da); \
+ STAGE_PP(name, Ctx::None) { \
+ r = name##_channel(r,dr,a,da); \
+ g = name##_channel(g,dg,a,da); \
+ b = name##_channel(b,db,a,da); \
+ a = a + div255( da*inv(a) ); \
+ } \
+ SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da)
+
+ BLEND_MODE(darken) { return s + d - div255( max(s*da, d*sa) ); }
+ BLEND_MODE(lighten) { return s + d - div255( min(s*da, d*sa) ); }
+ BLEND_MODE(difference) { return s + d - 2*div255( min(s*da, d*sa) ); }
+ BLEND_MODE(exclusion) { return s + d - 2*div255( s*d ); }
+
+ BLEND_MODE(hardlight) {
+ return div255( s*inv(da) + d*inv(sa) +
+ if_then_else(2*s <= sa, 2*s*d, sa*da - 2*(sa-s)*(da-d)) );
+ }
+ BLEND_MODE(overlay) {
+ return div255( s*inv(da) + d*inv(sa) +
+ if_then_else(2*d <= da, 2*s*d, sa*da - 2*(sa-s)*(da-d)) );
+ }
+#undef BLEND_MODE
+
+// ~~~~~~ Helpers for interacting with memory ~~~~~~ //
+
+template <typename T>
+SI T* ptr_at_xy(const SkJumper_MemoryCtx* ctx, size_t dx, size_t dy) {
+ return (T*)ctx->pixels + dy*ctx->stride + dx;
+}
+
+template <typename T>
+SI U32 ix_and_ptr(T** ptr, const SkJumper_GatherCtx* ctx, F x, F y) {
+ auto clamp = [](F v, F limit) {
+ limit = bit_cast<F>( bit_cast<U32>(limit) - 1 ); // Exclusive -> inclusive.
+ return min(max(0, v), limit);
+ };
+ x = clamp(x, ctx->width);
+ y = clamp(y, ctx->height);
+
+ *ptr = (const T*)ctx->pixels;
+ return trunc_(y)*ctx->stride + trunc_(x);
+}
+
+template <typename V, typename T>
+SI V load(const T* ptr, size_t tail) {
+ V v = 0;
+ switch (tail & (N-1)) {
+ case 0: memcpy(&v, ptr, sizeof(v)); break;
+ #if defined(__AVX2__)
+ case 15: v[14] = ptr[14];
+ case 14: v[13] = ptr[13];
+ case 13: v[12] = ptr[12];
+ case 12: memcpy(&v, ptr, 12*sizeof(T)); break;
+ case 11: v[10] = ptr[10];
+ case 10: v[ 9] = ptr[ 9];
+ case 9: v[ 8] = ptr[ 8];
+ case 8: memcpy(&v, ptr, 8*sizeof(T)); break;
+ #endif
+ case 7: v[ 6] = ptr[ 6];
+ case 6: v[ 5] = ptr[ 5];
+ case 5: v[ 4] = ptr[ 4];
+ case 4: memcpy(&v, ptr, 4*sizeof(T)); break;
+ case 3: v[ 2] = ptr[ 2];
+ case 2: memcpy(&v, ptr, 2*sizeof(T)); break;
+ case 1: v[ 0] = ptr[ 0];
+ }
+ return v;
+}
+template <typename V, typename T>
+SI void store(T* ptr, size_t tail, V v) {
+ switch (tail & (N-1)) {
+ case 0: memcpy(ptr, &v, sizeof(v)); break;
+ #if defined(__AVX2__)
+ case 15: ptr[14] = v[14];
+ case 14: ptr[13] = v[13];
+ case 13: ptr[12] = v[12];
+ case 12: memcpy(ptr, &v, 12*sizeof(T)); break;
+ case 11: ptr[10] = v[10];
+ case 10: ptr[ 9] = v[ 9];
+ case 9: ptr[ 8] = v[ 8];
+ case 8: memcpy(ptr, &v, 8*sizeof(T)); break;
+ #endif
+ case 7: ptr[ 6] = v[ 6];
+ case 6: ptr[ 5] = v[ 5];
+ case 5: ptr[ 4] = v[ 4];
+ case 4: memcpy(ptr, &v, 4*sizeof(T)); break;
+ case 3: ptr[ 2] = v[ 2];
+ case 2: memcpy(ptr, &v, 2*sizeof(T)); break;
+ case 1: ptr[ 0] = v[ 0];
+ }
+}
+
+#if defined(__AVX2__)
+ template <typename V, typename T>
+ SI V gather(const T* ptr, U32 ix) {
+ return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]],
+ ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]],
+ ptr[ix[ 8]], ptr[ix[ 9]], ptr[ix[10]], ptr[ix[11]],
+ ptr[ix[12]], ptr[ix[13]], ptr[ix[14]], ptr[ix[15]], };
+ }
+
+ template<>
+ F gather(const float* p, U32 ix) {
+ __m256i lo, hi;
+ split(ix, &lo, &hi);
+
+ return join<F>(_mm256_i32gather_ps(p, lo, 4),
+ _mm256_i32gather_ps(p, hi, 4));
+ }
+
+ template<>
+ U32 gather(const uint32_t* p, U32 ix) {
+ __m256i lo, hi;
+ split(ix, &lo, &hi);
+
+ return join<U32>(_mm256_i32gather_epi32(p, lo, 4),
+ _mm256_i32gather_epi32(p, hi, 4));
+ }
+#else
+ template <typename V, typename T>
+ SI V gather(const T* ptr, U32 ix) {
+ return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]],
+ ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]], };
+ }
+#endif
+
+
+// ~~~~~~ 32-bit memory loads and stores ~~~~~~ //
+
+SI void from_8888(U32 rgba, U16* r, U16* g, U16* b, U16* a) {
+#if 1 && defined(__AVX2__)
+ // Swap the middle 128-bit lanes to make _mm256_packus_epi32() in cast_U16() work out nicely.
+ __m256i _01,_23;
+ split(rgba, &_01, &_23);
+ __m256i _02 = _mm256_permute2x128_si256(_01,_23, 0x20),
+ _13 = _mm256_permute2x128_si256(_01,_23, 0x31);
+ rgba = join<U32>(_02, _13);
+
+ auto cast_U16 = [](U32 v) -> U16 {
+ __m256i _02,_13;
+ split(v, &_02,&_13);
+ return _mm256_packus_epi32(_02,_13);
+ };
+#else
+ auto cast_U16 = [](U32 v) -> U16 {
+ return cast<U16>(v);
+ };
+#endif
+ *r = cast_U16(rgba & 65535) & 255;
+ *g = cast_U16(rgba & 65535) >> 8;
+ *b = cast_U16(rgba >> 16) & 255;
+ *a = cast_U16(rgba >> 16) >> 8;
+}
+
+SI void load_8888_(const uint32_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
+#if 1 && defined(__ARM_NEON)
+ uint8x8x4_t rgba;
+ switch (tail & (N-1)) {
+ case 0: rgba = vld4_u8 ((const uint8_t*)(ptr+0) ); break;
+ case 7: rgba = vld4_lane_u8((const uint8_t*)(ptr+6), rgba, 6);
+ case 6: rgba = vld4_lane_u8((const uint8_t*)(ptr+5), rgba, 5);
+ case 5: rgba = vld4_lane_u8((const uint8_t*)(ptr+4), rgba, 4);
+ case 4: rgba = vld4_lane_u8((const uint8_t*)(ptr+3), rgba, 3);
+ case 3: rgba = vld4_lane_u8((const uint8_t*)(ptr+2), rgba, 2);
+ case 2: rgba = vld4_lane_u8((const uint8_t*)(ptr+1), rgba, 1);
+ case 1: rgba = vld4_lane_u8((const uint8_t*)(ptr+0), rgba, 0);
+ }
+ *r = cast<U16>(rgba.val[0]);
+ *g = cast<U16>(rgba.val[1]);
+ *b = cast<U16>(rgba.val[2]);
+ *a = cast<U16>(rgba.val[3]);
+#else
+ from_8888(load<U32>(ptr, tail), r,g,b,a);
+#endif
+}
+SI void store_8888_(uint32_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
+#if 1 && defined(__ARM_NEON)
+ uint8x8x4_t rgba = {{
+ cast<U8>(r),
+ cast<U8>(g),
+ cast<U8>(b),
+ cast<U8>(a),
+ }};
+ switch (tail & (N-1)) {
+ case 0: vst4_u8 ((uint8_t*)(ptr+0), rgba ); break;
+ case 7: vst4_lane_u8((uint8_t*)(ptr+6), rgba, 6);
+ case 6: vst4_lane_u8((uint8_t*)(ptr+5), rgba, 5);
+ case 5: vst4_lane_u8((uint8_t*)(ptr+4), rgba, 4);
+ case 4: vst4_lane_u8((uint8_t*)(ptr+3), rgba, 3);
+ case 3: vst4_lane_u8((uint8_t*)(ptr+2), rgba, 2);
+ case 2: vst4_lane_u8((uint8_t*)(ptr+1), rgba, 1);
+ case 1: vst4_lane_u8((uint8_t*)(ptr+0), rgba, 0);
+ }
+#else
+ store(ptr, tail, cast<U32>(r | (g<<8)) << 0
+ | cast<U32>(b | (a<<8)) << 16);
+#endif
+}
+
+STAGE_PP(load_8888, const SkJumper_MemoryCtx* ctx) {
+ load_8888_(ptr_at_xy<const uint32_t>(ctx, dx,dy), tail, &r,&g,&b,&a);
+}
+STAGE_PP(load_8888_dst, const SkJumper_MemoryCtx* ctx) {
+ load_8888_(ptr_at_xy<const uint32_t>(ctx, dx,dy), tail, &dr,&dg,&db,&da);
+}
+STAGE_PP(store_8888, const SkJumper_MemoryCtx* ctx) {
+ store_8888_(ptr_at_xy<uint32_t>(ctx, dx,dy), tail, r,g,b,a);
+}
+
+STAGE_PP(load_bgra, const SkJumper_MemoryCtx* ctx) {
+ load_8888_(ptr_at_xy<const uint32_t>(ctx, dx,dy), tail, &b,&g,&r,&a);
+}
+STAGE_PP(load_bgra_dst, const SkJumper_MemoryCtx* ctx) {
+ load_8888_(ptr_at_xy<const uint32_t>(ctx, dx,dy), tail, &db,&dg,&dr,&da);
+}
+STAGE_PP(store_bgra, const SkJumper_MemoryCtx* ctx) {
+ store_8888_(ptr_at_xy<uint32_t>(ctx, dx,dy), tail, b,g,r,a);
+}
+
+STAGE_GP(gather_8888, const SkJumper_GatherCtx* ctx) {
+ const uint32_t* ptr;
+ U32 ix = ix_and_ptr(&ptr, ctx, x,y);
+ from_8888(gather<U32>(ptr, ix), &r, &g, &b, &a);
+}
+STAGE_GP(gather_bgra, const SkJumper_GatherCtx* ctx) {
+ const uint32_t* ptr;
+ U32 ix = ix_and_ptr(&ptr, ctx, x,y);
+ from_8888(gather<U32>(ptr, ix), &b, &g, &r, &a);
+}
+
+// ~~~~~~ 16-bit memory loads and stores ~~~~~~ //
+
+SI void from_565(U16 rgb, U16* r, U16* g, U16* b) {
+ // Format for 565 buffers: 15|rrrrr gggggg bbbbb|0
+ U16 R = (rgb >> 11) & 31,
+ G = (rgb >> 5) & 63,
+ B = (rgb >> 0) & 31;
+
+ // These bit replications are the same as multiplying by 255/31 or 255/63 to scale to 8-bit.
+ *r = (R << 3) | (R >> 2);
+ *g = (G << 2) | (G >> 4);
+ *b = (B << 3) | (B >> 2);
+}
+SI void load_565_(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
+ from_565(load<U16>(ptr, tail), r,g,b);
+}
+SI void store_565_(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b) {
+ // Select the top 5,6,5 bits.
+ U16 R = r >> 3,
+ G = g >> 2,
+ B = b >> 3;
+ // Pack them back into 15|rrrrr gggggg bbbbb|0.
+ store(ptr, tail, R << 11
+ | G << 5
+ | B << 0);
+}
+
+STAGE_PP(load_565, const SkJumper_MemoryCtx* ctx) {
+ load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &r,&g,&b);
+ a = 255;
+}
+STAGE_PP(load_565_dst, const SkJumper_MemoryCtx* ctx) {
+ load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &dr,&dg,&db);
+ da = 255;
+}
+STAGE_PP(store_565, const SkJumper_MemoryCtx* ctx) {
+ store_565_(ptr_at_xy<uint16_t>(ctx, dx,dy), tail, r,g,b);
+}
+STAGE_GP(gather_565, const SkJumper_GatherCtx* ctx) {
+ const uint16_t* ptr;
+ U32 ix = ix_and_ptr(&ptr, ctx, x,y);
+ from_565(gather<U16>(ptr, ix), &r, &g, &b);
+ a = 255;
+}
+
+SI void from_4444(U16 rgba, U16* r, U16* g, U16* b, U16* a) {
+ // Format for 4444 buffers: 15|rrrr gggg bbbb aaaa|0.
+ U16 R = (rgba >> 12) & 15,
+ G = (rgba >> 8) & 15,
+ B = (rgba >> 4) & 15,
+ A = (rgba >> 0) & 15;
+
+ // Scale [0,15] to [0,255].
+ *r = (R << 4) | R;
+ *g = (G << 4) | G;
+ *b = (B << 4) | B;
+ *a = (A << 4) | A;
+}
+SI void load_4444_(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
+ from_4444(load<U16>(ptr, tail), r,g,b,a);
+}
+SI void store_4444_(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
+ // Select the top 4 bits of each.
+ U16 R = r >> 4,
+ G = g >> 4,
+ B = b >> 4,
+ A = a >> 4;
+ // Pack them back into 15|rrrr gggg bbbb aaaa|0.
+ store(ptr, tail, R << 12
+ | G << 8
+ | B << 4
+ | A << 0);
+}
+
+STAGE_PP(load_4444, const SkJumper_MemoryCtx* ctx) {
+ load_4444_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &r,&g,&b,&a);
+}
+STAGE_PP(load_4444_dst, const SkJumper_MemoryCtx* ctx) {
+ load_4444_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &dr,&dg,&db,&da);
+}
+STAGE_PP(store_4444, const SkJumper_MemoryCtx* ctx) {
+ store_4444_(ptr_at_xy<uint16_t>(ctx, dx,dy), tail, r,g,b,a);
+}
+STAGE_GP(gather_4444, const SkJumper_GatherCtx* ctx) {
+ const uint16_t* ptr;
+ U32 ix = ix_and_ptr(&ptr, ctx, x,y);
+ from_4444(gather<U16>(ptr, ix), &r,&g,&b,&a);
+}
+
+// ~~~~~~ 8-bit memory loads and stores ~~~~~~ //
+
+SI U16 load_8(const uint8_t* ptr, size_t tail) {
+ return cast<U16>(load<U8>(ptr, tail));
+}
+SI void store_8(uint8_t* ptr, size_t tail, U16 v) {
+ store(ptr, tail, cast<U8>(v));
+}
+
+STAGE_PP(load_a8, const SkJumper_MemoryCtx* ctx) {
+ r = g = b = 0;
+ a = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
+}
+STAGE_PP(load_a8_dst, const SkJumper_MemoryCtx* ctx) {
+ dr = dg = db = 0;
+ da = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
+}
+STAGE_PP(store_a8, const SkJumper_MemoryCtx* ctx) {
+ store_8(ptr_at_xy<uint8_t>(ctx, dx,dy), tail, a);
+}
+STAGE_GP(gather_a8, const SkJumper_GatherCtx* ctx) {
+ const uint8_t* ptr;
+ U32 ix = ix_and_ptr(&ptr, ctx, x,y);
+ r = g = b = 0;
+ a = cast<U16>(gather<U8>(ptr, ix));
+}
+
+STAGE_PP(load_g8, const SkJumper_MemoryCtx* ctx) {
+ r = g = b = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
+ a = 255;
+}
+STAGE_PP(load_g8_dst, const SkJumper_MemoryCtx* ctx) {
+ dr = dg = db = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
+ da = 255;
+}
+STAGE_PP(luminance_to_alpha, Ctx::None) {
+ a = (r*54 + g*183 + b*19)/256; // 0.2126, 0.7152, 0.0722 with 256 denominator.
+ r = g = b = 0;
+}
+STAGE_GP(gather_g8, const SkJumper_GatherCtx* ctx) {
+ const uint8_t* ptr;
+ U32 ix = ix_and_ptr(&ptr, ctx, x,y);
+ r = g = b = cast<U16>(gather<U8>(ptr, ix));
+ a = 255;
+}
+
+// ~~~~~~ Coverage scales / lerps ~~~~~~ //
+
+STAGE_PP(scale_1_float, const float* f) {
+ U16 c = from_float(*f);
+ r = div255( r * c );
+ g = div255( g * c );
+ b = div255( b * c );
+ a = div255( a * c );
+}
+STAGE_PP(lerp_1_float, const float* f) {
+ U16 c = from_float(*f);
+ r = lerp(dr, r, c);
+ g = lerp(dg, g, c);
+ b = lerp(db, b, c);
+ a = lerp(da, a, c);
+}
+
+STAGE_PP(scale_u8, const SkJumper_MemoryCtx* ctx) {
+ U16 c = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
+ r = div255( r * c );
+ g = div255( g * c );
+ b = div255( b * c );
+ a = div255( a * c );
+}
+STAGE_PP(lerp_u8, const SkJumper_MemoryCtx* ctx) {
+ U16 c = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
+ r = lerp(dr, r, c);
+ g = lerp(dg, g, c);
+ b = lerp(db, b, c);
+ a = lerp(da, a, c);
+}
+
+// Derive alpha's coverage from rgb coverage and the values of src and dst alpha.
+SI U16 alpha_coverage_from_rgb_coverage(U16 a, U16 da, U16 cr, U16 cg, U16 cb) {
+ return if_then_else(a < da, min(cr,cg,cb)
+ , max(cr,cg,cb));
+}
+STAGE_PP(scale_565, const SkJumper_MemoryCtx* ctx) {
+ U16 cr,cg,cb;
+ load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &cr,&cg,&cb);
+ U16 ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
+
+ r = div255( r * cr );
+ g = div255( g * cg );
+ b = div255( b * cb );
+ a = div255( a * ca );
+}
+STAGE_PP(lerp_565, const SkJumper_MemoryCtx* ctx) {
+ U16 cr,cg,cb;
+ load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &cr,&cg,&cb);
+ U16 ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
+
+ r = lerp(dr, r, cr);
+ g = lerp(dg, g, cg);
+ b = lerp(db, b, cb);
+ a = lerp(da, a, ca);
+}
+
+// ~~~~~~ Gradient stages ~~~~~~ //
+
+// Clamp x to [0,1], both sides inclusive (think, gradients).
+// Even repeat and mirror funnel through a clamp to handle bad inputs like +Inf, NaN.
+SI F clamp_01(F v) { return min(max(0, v), 1); }
+
+STAGE_GG(clamp_x_1 , Ctx::None) { x = clamp_01(x); }
+STAGE_GG(repeat_x_1, Ctx::None) { x = clamp_01(x - floor_(x)); }
+STAGE_GG(mirror_x_1, Ctx::None) {
+ auto two = [](F x){ return x+x; };
+ x = clamp_01(abs_( (x-1.0f) - two(floor_((x-1.0f)*0.5f)) - 1.0f ));
+}
+
+SI I16 cond_to_mask_16(I32 cond) { return cast<I16>(cond); }
+
+STAGE_GG(decal_x, SkJumper_DecalTileCtx* ctx) {
+ auto w = ctx->limit_x;
+ unaligned_store(ctx->mask, cond_to_mask_16((0 <= x) & (x < w)));
+}
+STAGE_GG(decal_y, SkJumper_DecalTileCtx* ctx) {
+ auto h = ctx->limit_y;
+ unaligned_store(ctx->mask, cond_to_mask_16((0 <= y) & (y < h)));
+}
+STAGE_GG(decal_x_and_y, SkJumper_DecalTileCtx* ctx) {
+ auto w = ctx->limit_x;
+ auto h = ctx->limit_y;
+ unaligned_store(ctx->mask, cond_to_mask_16((0 <= x) & (x < w) & (0 <= y) & (y < h)));
+}
+STAGE_PP(check_decal_mask, SkJumper_DecalTileCtx* ctx) {
+ auto mask = unaligned_load<U16>(ctx->mask);
+ r = r & mask;
+ g = g & mask;
+ b = b & mask;
+ a = a & mask;
+}
+
+
+SI U16 round_F_to_U16(F x) { return cast<U16>(x * 255.0f + 0.5f); }
+
+SI void gradient_lookup(const SkJumper_GradientCtx* c, U32 idx, F t,
+ U16* r, U16* g, U16* b, U16* a) {
+
+ F fr, fg, fb, fa, br, bg, bb, ba;
+#if defined(__AVX2__)
+ if (c->stopCount <=8) {
+ __m256i lo, hi;
+ split(idx, &lo, &hi);
+
+ fr = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), lo),
+ _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), hi));
+ br = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), lo),
+ _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), hi));
+ fg = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), lo),
+ _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), hi));
+ bg = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), lo),
+ _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), hi));
+ fb = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), lo),
+ _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), hi));
+ bb = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), lo),
+ _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), hi));
+ fa = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), lo),
+ _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), hi));
+ ba = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), lo),
+ _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), hi));
+ } else
+#endif
+ {
+ fr = gather<F>(c->fs[0], idx);
+ fg = gather<F>(c->fs[1], idx);
+ fb = gather<F>(c->fs[2], idx);
+ fa = gather<F>(c->fs[3], idx);
+ br = gather<F>(c->bs[0], idx);
+ bg = gather<F>(c->bs[1], idx);
+ bb = gather<F>(c->bs[2], idx);
+ ba = gather<F>(c->bs[3], idx);
+ }
+ *r = round_F_to_U16(mad(t, fr, br));
+ *g = round_F_to_U16(mad(t, fg, bg));
+ *b = round_F_to_U16(mad(t, fb, bb));
+ *a = round_F_to_U16(mad(t, fa, ba));
+}
+
+STAGE_GP(gradient, const SkJumper_GradientCtx* c) {
+ auto t = x;
+ U32 idx = 0;
+
+ // N.B. The loop starts at 1 because idx 0 is the color to use before the first stop.
+ for (size_t i = 1; i < c->stopCount; i++) {
+ idx += if_then_else(t >= c->ts[i], U32(1), U32(0));
+ }
+
+ gradient_lookup(c, idx, t, &r, &g, &b, &a);
+}
+
+STAGE_GP(evenly_spaced_gradient, const SkJumper_GradientCtx* c) {
+ auto t = x;
+ auto idx = trunc_(t * (c->stopCount-1));
+ gradient_lookup(c, idx, t, &r, &g, &b, &a);
+}
+
+STAGE_GP(evenly_spaced_2_stop_gradient, const void* ctx) {
+ // TODO: Rename Ctx SkJumper_EvenlySpaced2StopGradientCtx.
+ struct Ctx { float f[4], b[4]; };
+ auto c = (const Ctx*)ctx;
+
+ auto t = x;
+ r = round_F_to_U16(mad(t, c->f[0], c->b[0]));
+ g = round_F_to_U16(mad(t, c->f[1], c->b[1]));
+ b = round_F_to_U16(mad(t, c->f[2], c->b[2]));
+ a = round_F_to_U16(mad(t, c->f[3], c->b[3]));
+}
+
+STAGE_GG(xy_to_unit_angle, Ctx::None) {
+ F xabs = abs_(x),
+ yabs = abs_(y);
+
+ F slope = min(xabs, yabs)/max(xabs, yabs);
+ F s = slope * slope;
+
+ // Use a 7th degree polynomial to approximate atan.
+ // This was generated using sollya.gforge.inria.fr.
+ // A float optimized polynomial was generated using the following command.
+ // P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative);
+ F phi = slope
+ * (0.15912117063999176025390625f + s
+ * (-5.185396969318389892578125e-2f + s
+ * (2.476101927459239959716796875e-2f + s
+ * (-7.0547382347285747528076171875e-3f))));
+
+ phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi);
+ phi = if_then_else(x < 0.0f , 1.0f/2.0f - phi, phi);
+ phi = if_then_else(y < 0.0f , 1.0f - phi , phi);
+ phi = if_then_else(phi != phi , 0 , phi); // Check for NaN.
+ x = phi;
+}
+STAGE_GG(xy_to_radius, Ctx::None) {
+ x = sqrt_(x*x + y*y);
+}
+
+// ~~~~~~ Compound stages ~~~~~~ //
+
+STAGE_PP(srcover_rgba_8888, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
+
+ load_8888_(ptr, tail, &dr,&dg,&db,&da);
+ r = r + div255( dr*inv(a) );
+ g = g + div255( dg*inv(a) );
+ b = b + div255( db*inv(a) );
+ a = a + div255( da*inv(a) );
+ store_8888_(ptr, tail, r,g,b,a);
+}
+STAGE_PP(srcover_bgra_8888, const SkJumper_MemoryCtx* ctx) {
+ auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
+
+ load_8888_(ptr, tail, &db,&dg,&dr,&da);
+ r = r + div255( dr*inv(a) );
+ g = g + div255( dg*inv(a) );
+ b = b + div255( db*inv(a) );
+ a = a + div255( da*inv(a) );
+ store_8888_(ptr, tail, b,g,r,a);
+}
+
+// Now we'll add null stand-ins for stages we haven't implemented in lowp.
+// If a pipeline uses these stages, it'll boot it out of lowp into highp.
+
+using NotImplemented = void(*)(void);
+
+static NotImplemented
+ callback, load_rgba, store_rgba,
+ clamp_0, clamp_1,
+ unpremul, dither,
+ from_srgb, from_srgb_dst, to_srgb,
+ load_f16 , load_f16_dst , store_f16 , gather_f16,
+ load_f32 , load_f32_dst , store_f32 , gather_f32,
+ load_1010102, load_1010102_dst, store_1010102, gather_1010102,
+ load_u16_be, load_rgb_u16_be, store_u16_be,
+ load_tables_u16_be, load_tables_rgb_u16_be,
+ load_tables, byte_tables, byte_tables_rgb,
+ colorburn, colordodge, softlight, hue, saturation, color, luminosity,
+ matrix_3x4, matrix_4x5, matrix_4x3,
+ parametric_r, parametric_g, parametric_b, parametric_a,
+ table_r, table_g, table_b, table_a,
+ gamma, gamma_dst,
+ lab_to_xyz, rgb_to_hsl, hsl_to_rgb, clut_3D, clut_4D,
+ gauss_a_to_rgba,
+ mirror_x, repeat_x,
+ mirror_y, repeat_y,
+ negate_x,
+ bilinear_nx, bilinear_ny, bilinear_px, bilinear_py,
+ bicubic_n3x, bicubic_n1x, bicubic_p1x, bicubic_p3x,
+ bicubic_n3y, bicubic_n1y, bicubic_p1y, bicubic_p3y,
+ save_xy, accumulate,
+ xy_to_2pt_conical_well_behaved,
+ xy_to_2pt_conical_strip,
+ xy_to_2pt_conical_focal_on_circle,
+ xy_to_2pt_conical_smaller,
+ xy_to_2pt_conical_greater,
+ xy_to_2pt_conical_compensate_focal,
+ alter_2pt_conical_compensate_focal,
+ alter_2pt_conical_unswap,
+ mask_2pt_conical_nan,
+ mask_2pt_conical_degenerates,
+ apply_vector_mask,
+ bilerp_clamp_8888;
+
+#else // We're not Clang, so define all null lowp stages.
+
+ #define M(st) static void (*st)(void) = nullptr;
+ SK_RASTER_PIPELINE_STAGES(M)
+ #undef M
+ static void (*just_return)(void) = nullptr;
+
+ static void start_pipeline(size_t,size_t,size_t,size_t, void**) {}
+
+#endif//defined(__clang__) for lowp stages
+} // namespace lowp
+
+} // namespace SK_OPTS_NS
+
+#endif//SkRasterPipeline_opts_DEFINED