aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/gl/GrGLProgram.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/gpu/gl/GrGLProgram.cpp')
-rw-r--r--src/gpu/gl/GrGLProgram.cpp1889
1 files changed, 1889 insertions, 0 deletions
diff --git a/src/gpu/gl/GrGLProgram.cpp b/src/gpu/gl/GrGLProgram.cpp
new file mode 100644
index 0000000000..fb9debf348
--- /dev/null
+++ b/src/gpu/gl/GrGLProgram.cpp
@@ -0,0 +1,1889 @@
+
+/*
+ * Copyright 2011 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+
+#include "GrGLProgram.h"
+
+#include "../GrAllocator.h"
+#include "GrGLShaderVar.h"
+#include "SkTrace.h"
+#include "SkXfermode.h"
+
+namespace {
+
+enum {
+ /// Used to mark a StageUniLocation field that should be bound
+ /// to a uniform during getUniformLocationsAndInitCache().
+ kUseUniform = 2000
+};
+
+} // namespace
+
+#define PRINT_SHADERS 0
+
+typedef GrTAllocator<GrGLShaderVar> VarArray;
+
+// number of each input/output type in a single allocation block
+static const int gVarsPerBlock = 8;
+// except FS outputs where we expect 2 at most.
+static const int gMaxFSOutputs = 2;
+
+struct ShaderCodeSegments {
+ ShaderCodeSegments()
+ : fVSUnis(gVarsPerBlock)
+ , fVSAttrs(gVarsPerBlock)
+ , fVSOutputs(gVarsPerBlock)
+ , fGSInputs(gVarsPerBlock)
+ , fGSOutputs(gVarsPerBlock)
+ , fFSInputs(gVarsPerBlock)
+ , fFSUnis(gVarsPerBlock)
+ , fFSOutputs(gMaxFSOutputs)
+ , fUsesGS(false) {}
+ GrStringBuilder fHeader; // VS+FS, GLSL version, etc
+ VarArray fVSUnis;
+ VarArray fVSAttrs;
+ VarArray fVSOutputs;
+ VarArray fGSInputs;
+ VarArray fGSOutputs;
+ VarArray fFSInputs;
+ GrStringBuilder fGSHeader; // layout qualifiers specific to GS
+ VarArray fFSUnis;
+ VarArray fFSOutputs;
+ GrStringBuilder fFSFunctions;
+ GrStringBuilder fVSCode;
+ GrStringBuilder fGSCode;
+ GrStringBuilder fFSCode;
+
+ bool fUsesGS;
+};
+
+typedef GrGLProgram::ProgramDesc::StageDesc StageDesc;
+
+#if GR_GL_ATTRIBUTE_MATRICES
+ #define VIEW_MATRIX_NAME "aViewM"
+#else
+ #define VIEW_MATRIX_NAME "uViewM"
+#endif
+
+#define POS_ATTR_NAME "aPosition"
+#define COL_ATTR_NAME "aColor"
+#define COV_ATTR_NAME "aCoverage"
+#define EDGE_ATTR_NAME "aEdge"
+#define COL_UNI_NAME "uColor"
+#define COV_UNI_NAME "uCoverage"
+#define EDGES_UNI_NAME "uEdges"
+#define COL_FILTER_UNI_NAME "uColorFilter"
+#define COL_MATRIX_UNI_NAME "uColorMatrix"
+#define COL_MATRIX_VEC_UNI_NAME "uColorMatrixVec"
+
+namespace {
+inline void tex_attr_name(int coordIdx, GrStringBuilder* s) {
+ *s = "aTexCoord";
+ s->appendS32(coordIdx);
+}
+
+inline GrGLShaderVar::Type float_vector_type(int count) {
+ GR_STATIC_ASSERT(GrGLShaderVar::kFloat_Type == 0);
+ GR_STATIC_ASSERT(GrGLShaderVar::kVec2f_Type == 1);
+ GR_STATIC_ASSERT(GrGLShaderVar::kVec3f_Type == 2);
+ GR_STATIC_ASSERT(GrGLShaderVar::kVec4f_Type == 3);
+ GrAssert(count > 0 && count <= 4);
+ return (GrGLShaderVar::Type)(count - 1);
+}
+
+inline const char* float_vector_type_str(int count) {
+ return GrGLShaderVar::TypeString(float_vector_type(count));
+}
+
+inline const char* vector_homog_coord(int count) {
+ static const char* HOMOGS[] = {"ERROR", "", ".y", ".z", ".w"};
+ GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(HOMOGS));
+ return HOMOGS[count];
+}
+
+inline const char* vector_nonhomog_coords(int count) {
+ static const char* NONHOMOGS[] = {"ERROR", "", ".x", ".xy", ".xyz"};
+ GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(NONHOMOGS));
+ return NONHOMOGS[count];
+}
+
+inline const char* vector_all_coords(int count) {
+ static const char* ALL[] = {"ERROR", "", ".xy", ".xyz", ".xyzw"};
+ GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ALL));
+ return ALL[count];
+}
+
+inline const char* all_ones_vec(int count) {
+ static const char* ONESVEC[] = {"ERROR", "1.0", "vec2(1,1)",
+ "vec3(1,1,1)", "vec4(1,1,1,1)"};
+ GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ONESVEC));
+ return ONESVEC[count];
+}
+
+inline const char* all_zeros_vec(int count) {
+ static const char* ZEROSVEC[] = {"ERROR", "0.0", "vec2(0,0)",
+ "vec3(0,0,0)", "vec4(0,0,0,0)"};
+ GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ZEROSVEC));
+ return ZEROSVEC[count];
+}
+
+inline const char* declared_color_output_name() { return "fsColorOut"; }
+inline const char* dual_source_output_name() { return "dualSourceOut"; }
+
+inline void tex_matrix_name(int stage, GrStringBuilder* s) {
+#if GR_GL_ATTRIBUTE_MATRICES
+ *s = "aTexM";
+#else
+ *s = "uTexM";
+#endif
+ s->appendS32(stage);
+}
+
+inline void normalized_texel_size_name(int stage, GrStringBuilder* s) {
+ *s = "uTexelSize";
+ s->appendS32(stage);
+}
+
+inline void sampler_name(int stage, GrStringBuilder* s) {
+ *s = "uSampler";
+ s->appendS32(stage);
+}
+
+inline void radial2_param_name(int stage, GrStringBuilder* s) {
+ *s = "uRadial2Params";
+ s->appendS32(stage);
+}
+
+inline void convolve_param_names(int stage, GrStringBuilder* k, GrStringBuilder* i) {
+ *k = "uKernel";
+ k->appendS32(stage);
+ *i = "uImageIncrement";
+ i->appendS32(stage);
+}
+
+inline void tex_domain_name(int stage, GrStringBuilder* s) {
+ *s = "uTexDom";
+ s->appendS32(stage);
+}
+}
+
+GrGLProgram::GrGLProgram() {
+}
+
+GrGLProgram::~GrGLProgram() {
+}
+
+void GrGLProgram::overrideBlend(GrBlendCoeff* srcCoeff,
+ GrBlendCoeff* dstCoeff) const {
+ switch (fProgramDesc.fDualSrcOutput) {
+ case ProgramDesc::kNone_DualSrcOutput:
+ break;
+ // the prog will write a coverage value to the secondary
+ // output and the dst is blended by one minus that value.
+ case ProgramDesc::kCoverage_DualSrcOutput:
+ case ProgramDesc::kCoverageISA_DualSrcOutput:
+ case ProgramDesc::kCoverageISC_DualSrcOutput:
+ *dstCoeff = (GrBlendCoeff)GrGpu::kIS2C_BlendCoeff;
+ break;
+ default:
+ GrCrash("Unexpected dual source blend output");
+ break;
+ }
+}
+
+// assigns modulation of two vars to an output var
+// vars can be vec4s or floats (or one of each)
+// result is always vec4
+// if either var is "" then assign to the other var
+// if both are "" then assign all ones
+static inline void modulate_helper(const char* outputVar,
+ const char* var0,
+ const char* var1,
+ GrStringBuilder* code) {
+ GrAssert(NULL != outputVar);
+ GrAssert(NULL != var0);
+ GrAssert(NULL != var1);
+ GrAssert(NULL != code);
+
+ bool has0 = '\0' != *var0;
+ bool has1 = '\0' != *var1;
+
+ if (!has0 && !has1) {
+ code->appendf("\t%s = %s;\n", outputVar, all_ones_vec(4));
+ } else if (!has0) {
+ code->appendf("\t%s = vec4(%s);\n", outputVar, var1);
+ } else if (!has1) {
+ code->appendf("\t%s = vec4(%s);\n", outputVar, var0);
+ } else {
+ code->appendf("\t%s = vec4(%s * %s);\n", outputVar, var0, var1);
+ }
+}
+
+// assigns addition of two vars to an output var
+// vars can be vec4s or floats (or one of each)
+// result is always vec4
+// if either var is "" then assign to the other var
+// if both are "" then assign all zeros
+static inline void add_helper(const char* outputVar,
+ const char* var0,
+ const char* var1,
+ GrStringBuilder* code) {
+ GrAssert(NULL != outputVar);
+ GrAssert(NULL != var0);
+ GrAssert(NULL != var1);
+ GrAssert(NULL != code);
+
+ bool has0 = '\0' != *var0;
+ bool has1 = '\0' != *var1;
+
+ if (!has0 && !has1) {
+ code->appendf("\t%s = %s;\n", outputVar, all_zeros_vec(4));
+ } else if (!has0) {
+ code->appendf("\t%s = vec4(%s);\n", outputVar, var1);
+ } else if (!has1) {
+ code->appendf("\t%s = vec4(%s);\n", outputVar, var0);
+ } else {
+ code->appendf("\t%s = vec4(%s + %s);\n", outputVar, var0, var1);
+ }
+}
+
+// given two blend coeffecients determine whether the src
+// and/or dst computation can be omitted.
+static inline void needBlendInputs(SkXfermode::Coeff srcCoeff,
+ SkXfermode::Coeff dstCoeff,
+ bool* needSrcValue,
+ bool* needDstValue) {
+ if (SkXfermode::kZero_Coeff == srcCoeff) {
+ switch (dstCoeff) {
+ // these all read the src
+ case SkXfermode::kSC_Coeff:
+ case SkXfermode::kISC_Coeff:
+ case SkXfermode::kSA_Coeff:
+ case SkXfermode::kISA_Coeff:
+ *needSrcValue = true;
+ break;
+ default:
+ *needSrcValue = false;
+ break;
+ }
+ } else {
+ *needSrcValue = true;
+ }
+ if (SkXfermode::kZero_Coeff == dstCoeff) {
+ switch (srcCoeff) {
+ // these all read the dst
+ case SkXfermode::kDC_Coeff:
+ case SkXfermode::kIDC_Coeff:
+ case SkXfermode::kDA_Coeff:
+ case SkXfermode::kIDA_Coeff:
+ *needDstValue = true;
+ break;
+ default:
+ *needDstValue = false;
+ break;
+ }
+ } else {
+ *needDstValue = true;
+ }
+}
+
+/**
+ * Create a blend_coeff * value string to be used in shader code. Sets empty
+ * string if result is trivially zero.
+ */
+static void blendTermString(GrStringBuilder* str, SkXfermode::Coeff coeff,
+ const char* src, const char* dst,
+ const char* value) {
+ switch (coeff) {
+ case SkXfermode::kZero_Coeff: /** 0 */
+ *str = "";
+ break;
+ case SkXfermode::kOne_Coeff: /** 1 */
+ *str = value;
+ break;
+ case SkXfermode::kSC_Coeff:
+ str->printf("(%s * %s)", src, value);
+ break;
+ case SkXfermode::kISC_Coeff:
+ str->printf("((%s - %s) * %s)", all_ones_vec(4), src, value);
+ break;
+ case SkXfermode::kDC_Coeff:
+ str->printf("(%s * %s)", dst, value);
+ break;
+ case SkXfermode::kIDC_Coeff:
+ str->printf("((%s - %s) * %s)", all_ones_vec(4), dst, value);
+ break;
+ case SkXfermode::kSA_Coeff: /** src alpha */
+ str->printf("(%s.a * %s)", src, value);
+ break;
+ case SkXfermode::kISA_Coeff: /** inverse src alpha (i.e. 1 - sa) */
+ str->printf("((1.0 - %s.a) * %s)", src, value);
+ break;
+ case SkXfermode::kDA_Coeff: /** dst alpha */
+ str->printf("(%s.a * %s)", dst, value);
+ break;
+ case SkXfermode::kIDA_Coeff: /** inverse dst alpha (i.e. 1 - da) */
+ str->printf("((1.0 - %s.a) * %s)", dst, value);
+ break;
+ default:
+ GrCrash("Unexpected xfer coeff.");
+ break;
+ }
+}
+/**
+ * Adds a line to the fragment shader code which modifies the color by
+ * the specified color filter.
+ */
+static void addColorFilter(GrStringBuilder* fsCode, const char * outputVar,
+ SkXfermode::Coeff uniformCoeff,
+ SkXfermode::Coeff colorCoeff,
+ const char* inColor) {
+ GrStringBuilder colorStr, constStr;
+ blendTermString(&colorStr, colorCoeff, COL_FILTER_UNI_NAME,
+ inColor, inColor);
+ blendTermString(&constStr, uniformCoeff, COL_FILTER_UNI_NAME,
+ inColor, COL_FILTER_UNI_NAME);
+
+ add_helper(outputVar, colorStr.c_str(), constStr.c_str(), fsCode);
+}
+/**
+ * Adds code to the fragment shader code which modifies the color by
+ * the specified color matrix.
+ */
+static void addColorMatrix(GrStringBuilder* fsCode, const char * outputVar,
+ const char* inColor) {
+ fsCode->appendf("\t%s = %s * vec4(%s.rgb / %s.a, %s.a) + %s;\n", outputVar, COL_MATRIX_UNI_NAME, inColor, inColor, inColor, COL_MATRIX_VEC_UNI_NAME);
+ fsCode->appendf("\t%s.rgb *= %s.a;\n", outputVar, outputVar);
+}
+
+namespace {
+
+// Adds a var that is computed in the VS and read in FS.
+// If there is a GS it will just pass it through.
+void append_varying(GrGLShaderVar::Type type,
+ const char* name,
+ ShaderCodeSegments* segments,
+ const char** vsOutName = NULL,
+ const char** fsInName = NULL) {
+ segments->fVSOutputs.push_back();
+ segments->fVSOutputs.back().setType(type);
+ segments->fVSOutputs.back().setTypeModifier(
+ GrGLShaderVar::kOut_TypeModifier);
+ segments->fVSOutputs.back().accessName()->printf("v%s", name);
+ if (vsOutName) {
+ *vsOutName = segments->fVSOutputs.back().getName().c_str();
+ }
+ // input to FS comes either from VS or GS
+ const GrStringBuilder* fsName;
+ if (segments->fUsesGS) {
+ // if we have a GS take each varying in as an array
+ // and output as non-array.
+ segments->fGSInputs.push_back();
+ segments->fGSInputs.back().setType(type);
+ segments->fGSInputs.back().setTypeModifier(
+ GrGLShaderVar::kIn_TypeModifier);
+ segments->fGSInputs.back().setUnsizedArray();
+ *segments->fGSInputs.back().accessName() =
+ segments->fVSOutputs.back().getName();
+ segments->fGSOutputs.push_back();
+ segments->fGSOutputs.back().setType(type);
+ segments->fGSOutputs.back().setTypeModifier(
+ GrGLShaderVar::kOut_TypeModifier);
+ segments->fGSOutputs.back().accessName()->printf("g%s", name);
+ fsName = segments->fGSOutputs.back().accessName();
+ } else {
+ fsName = segments->fVSOutputs.back().accessName();
+ }
+ segments->fFSInputs.push_back();
+ segments->fFSInputs.back().setType(type);
+ segments->fFSInputs.back().setTypeModifier(
+ GrGLShaderVar::kIn_TypeModifier);
+ segments->fFSInputs.back().setName(*fsName);
+ if (fsInName) {
+ *fsInName = fsName->c_str();
+ }
+}
+
+// version of above that adds a stage number to the
+// the var name (for uniqueness)
+void append_varying(GrGLShaderVar::Type type,
+ const char* name,
+ int stageNum,
+ ShaderCodeSegments* segments,
+ const char** vsOutName = NULL,
+ const char** fsInName = NULL) {
+ GrStringBuilder nameWithStage(name);
+ nameWithStage.appendS32(stageNum);
+ append_varying(type, nameWithStage.c_str(), segments, vsOutName, fsInName);
+}
+}
+
+void GrGLProgram::genEdgeCoverage(const GrGLInterface* gl,
+ GrVertexLayout layout,
+ CachedData* programData,
+ GrStringBuilder* coverageVar,
+ ShaderCodeSegments* segments) const {
+ if (fProgramDesc.fEdgeAANumEdges > 0) {
+ segments->fFSUnis.push_back().set(GrGLShaderVar::kVec3f_Type,
+ GrGLShaderVar::kUniform_TypeModifier,
+ EDGES_UNI_NAME,
+ fProgramDesc.fEdgeAANumEdges);
+ programData->fUniLocations.fEdgesUni = kUseUniform;
+ int count = fProgramDesc.fEdgeAANumEdges;
+ segments->fFSCode.append(
+ "\tvec3 pos = vec3(gl_FragCoord.xy, 1);\n");
+ for (int i = 0; i < count; i++) {
+ segments->fFSCode.append("\tfloat a");
+ segments->fFSCode.appendS32(i);
+ segments->fFSCode.append(" = clamp(dot(" EDGES_UNI_NAME "[");
+ segments->fFSCode.appendS32(i);
+ segments->fFSCode.append("], pos), 0.0, 1.0);\n");
+ }
+ if (fProgramDesc.fEdgeAAConcave && (count & 0x01) == 0) {
+ // For concave polys, we consider the edges in pairs.
+ segments->fFSFunctions.append("float cross2(vec2 a, vec2 b) {\n");
+ segments->fFSFunctions.append("\treturn dot(a, vec2(b.y, -b.x));\n");
+ segments->fFSFunctions.append("}\n");
+ for (int i = 0; i < count; i += 2) {
+ segments->fFSCode.appendf("\tfloat eb%d;\n", i / 2);
+ segments->fFSCode.appendf("\tif (cross2(" EDGES_UNI_NAME "[%d].xy, " EDGES_UNI_NAME "[%d].xy) < 0.0) {\n", i, i + 1);
+ segments->fFSCode.appendf("\t\teb%d = a%d * a%d;\n", i / 2, i, i + 1);
+ segments->fFSCode.append("\t} else {\n");
+ segments->fFSCode.appendf("\t\teb%d = a%d + a%d - a%d * a%d;\n", i / 2, i, i + 1, i, i + 1);
+ segments->fFSCode.append("\t}\n");
+ }
+ segments->fFSCode.append("\tfloat edgeAlpha = ");
+ for (int i = 0; i < count / 2 - 1; i++) {
+ segments->fFSCode.appendf("min(eb%d, ", i);
+ }
+ segments->fFSCode.appendf("eb%d", count / 2 - 1);
+ for (int i = 0; i < count / 2 - 1; i++) {
+ segments->fFSCode.append(")");
+ }
+ segments->fFSCode.append(";\n");
+ } else {
+ segments->fFSCode.append("\tfloat edgeAlpha = ");
+ for (int i = 0; i < count - 1; i++) {
+ segments->fFSCode.appendf("min(a%d * a%d, ", i, i + 1);
+ }
+ segments->fFSCode.appendf("a%d * a0", count - 1);
+ for (int i = 0; i < count - 1; i++) {
+ segments->fFSCode.append(")");
+ }
+ segments->fFSCode.append(";\n");
+ }
+ *coverageVar = "edgeAlpha";
+ } else if (layout & GrDrawTarget::kEdge_VertexLayoutBit) {
+ const char *vsName, *fsName;
+ append_varying(GrGLShaderVar::kVec4f_Type, "Edge", segments,
+ &vsName, &fsName);
+ segments->fVSAttrs.push_back().set(GrGLShaderVar::kVec4f_Type,
+ GrGLShaderVar::kAttribute_TypeModifier, EDGE_ATTR_NAME);
+ segments->fVSCode.appendf("\t%s = " EDGE_ATTR_NAME ";\n", vsName);
+ if (GrDrawState::kHairLine_EdgeType == fProgramDesc.fVertexEdgeType) {
+ segments->fFSCode.appendf("\tfloat edgeAlpha = abs(dot(vec3(gl_FragCoord.xy,1), %s.xyz));\n", fsName);
+ segments->fFSCode.append("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n");
+ } else if (GrDrawState::kQuad_EdgeType == fProgramDesc.fVertexEdgeType) {
+ segments->fFSCode.appendf("\tfloat edgeAlpha;\n");
+ // keep the derivative instructions outside the conditional
+ segments->fFSCode.appendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName);
+ segments->fFSCode.appendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName);
+ segments->fFSCode.appendf("\tif (%s.z > 0.0 && %s.w > 0.0) {\n", fsName, fsName);
+ // today we know z and w are in device space. We could use derivatives
+ segments->fFSCode.appendf("\t\tedgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);\n", fsName, fsName);
+ segments->fFSCode.append ("\t} else {\n");
+ segments->fFSCode.appendf("\t\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n"
+ "\t\t 2.0*%s.x*duvdy.x - duvdy.y);\n",
+ fsName, fsName);
+ segments->fFSCode.appendf("\t\tedgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName);
+ segments->fFSCode.appendf("\t\tedgeAlpha = clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);\n"
+ "\t}\n");
+ if (gl->supportsES2()) {
+ segments->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n");
+ }
+ } else {
+ GrAssert(GrDrawState::kHairQuad_EdgeType == fProgramDesc.fVertexEdgeType);
+ segments->fFSCode.appendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName);
+ segments->fFSCode.appendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName);
+ segments->fFSCode.appendf("\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n"
+ "\t 2.0*%s.x*duvdy.x - duvdy.y);\n",
+ fsName, fsName);
+ segments->fFSCode.appendf("\tfloat edgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName);
+ segments->fFSCode.append("\tedgeAlpha = sqrt(edgeAlpha*edgeAlpha / dot(gF, gF));\n");
+ segments->fFSCode.append("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n");
+ if (gl->supportsES2()) {
+ segments->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n");
+ }
+ }
+ *coverageVar = "edgeAlpha";
+ } else {
+ coverageVar->reset();
+ }
+}
+
+namespace {
+
+void genInputColor(GrGLProgram::ProgramDesc::ColorInput colorInput,
+ GrGLProgram::CachedData* programData,
+ ShaderCodeSegments* segments,
+ GrStringBuilder* inColor) {
+ switch (colorInput) {
+ case GrGLProgram::ProgramDesc::kAttribute_ColorInput: {
+ segments->fVSAttrs.push_back().set(GrGLShaderVar::kVec4f_Type,
+ GrGLShaderVar::kAttribute_TypeModifier,
+ COL_ATTR_NAME);
+ const char *vsName, *fsName;
+ append_varying(GrGLShaderVar::kVec4f_Type, "Color", segments, &vsName, &fsName);
+ segments->fVSCode.appendf("\t%s = " COL_ATTR_NAME ";\n", vsName);
+ *inColor = fsName;
+ } break;
+ case GrGLProgram::ProgramDesc::kUniform_ColorInput:
+ segments->fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type,
+ GrGLShaderVar::kUniform_TypeModifier,
+ COL_UNI_NAME);
+ programData->fUniLocations.fColorUni = kUseUniform;
+ *inColor = COL_UNI_NAME;
+ break;
+ case GrGLProgram::ProgramDesc::kTransBlack_ColorInput:
+ GrAssert(!"needComputedColor should be false.");
+ break;
+ case GrGLProgram::ProgramDesc::kSolidWhite_ColorInput:
+ break;
+ default:
+ GrCrash("Unknown color type.");
+ break;
+ }
+}
+
+void genAttributeCoverage(ShaderCodeSegments* segments,
+ GrStringBuilder* inOutCoverage) {
+ segments->fVSAttrs.push_back().set(GrGLShaderVar::kVec4f_Type,
+ GrGLShaderVar::kAttribute_TypeModifier,
+ COV_ATTR_NAME);
+ const char *vsName, *fsName;
+ append_varying(GrGLShaderVar::kVec4f_Type, "Coverage",
+ segments, &vsName, &fsName);
+ segments->fVSCode.appendf("\t%s = " COV_ATTR_NAME ";\n", vsName);
+ if (inOutCoverage->size()) {
+ segments->fFSCode.appendf("\tvec4 attrCoverage = %s * %s;\n",
+ fsName, inOutCoverage->c_str());
+ *inOutCoverage = "attrCoverage";
+ } else {
+ *inOutCoverage = fsName;
+ }
+}
+
+void genUniformCoverage(ShaderCodeSegments* segments,
+ GrGLProgram::CachedData* programData,
+ GrStringBuilder* inOutCoverage) {
+ segments->fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type,
+ GrGLShaderVar::kUniform_TypeModifier,
+ COV_UNI_NAME);
+ programData->fUniLocations.fCoverageUni = kUseUniform;
+ if (inOutCoverage->size()) {
+ segments->fFSCode.appendf("\tvec4 uniCoverage = %s * %s;\n",
+ COV_UNI_NAME, inOutCoverage->c_str());
+ *inOutCoverage = "uniCoverage";
+ } else {
+ *inOutCoverage = COV_UNI_NAME;
+ }
+}
+
+}
+
+void GrGLProgram::genGeometryShader(const GrGLInterface* gl,
+ GrGLSLGeneration glslGeneration,
+ ShaderCodeSegments* segments) const {
+#if GR_GL_EXPERIMENTAL_GS
+ if (fProgramDesc.fExperimentalGS) {
+ GrAssert(glslGeneration >= k150_GrGLSLGeneration);
+ segments->fGSHeader.append("layout(triangles) in;\n"
+ "layout(triangle_strip, max_vertices = 6) out;\n");
+ segments->fGSCode.append("void main() {\n"
+ "\tfor (int i = 0; i < 3; ++i) {\n"
+ "\t\tgl_Position = gl_in[i].gl_Position;\n");
+ if (this->fProgramDesc.fEmitsPointSize) {
+ segments->fGSCode.append("\t\tgl_PointSize = 1.0;\n");
+ }
+ GrAssert(segments->fGSInputs.count() == segments->fGSOutputs.count());
+ int count = segments->fGSInputs.count();
+ for (int i = 0; i < count; ++i) {
+ segments->fGSCode.appendf("\t\t%s = %s[i];\n",
+ segments->fGSOutputs[i].getName().c_str(),
+ segments->fGSInputs[i].getName().c_str());
+ }
+ segments->fGSCode.append("\t\tEmitVertex();\n"
+ "\t}\n"
+ "\tEndPrimitive();\n"
+ "}\n");
+ }
+#endif
+}
+
+const char* GrGLProgram::adjustInColor(const GrStringBuilder& inColor) const {
+ if (inColor.size()) {
+ return inColor.c_str();
+ } else {
+ if (ProgramDesc::kSolidWhite_ColorInput == fProgramDesc.fColorInput) {
+ return all_ones_vec(4);
+ } else {
+ return all_zeros_vec(4);
+ }
+ }
+}
+
+
+bool GrGLProgram::genProgram(const GrGLInterface* gl,
+ GrGLSLGeneration glslGeneration,
+ GrGLProgram::CachedData* programData) const {
+
+ ShaderCodeSegments segments;
+ const uint32_t& layout = fProgramDesc.fVertexLayout;
+
+ programData->fUniLocations.reset();
+
+#if GR_GL_EXPERIMENTAL_GS
+ segments.fUsesGS = fProgramDesc.fExperimentalGS;
+#endif
+
+ SkXfermode::Coeff colorCoeff, uniformCoeff;
+ bool applyColorMatrix = SkToBool(fProgramDesc.fColorMatrixEnabled);
+ // The rest of transfer mode color filters have not been implemented
+ if (fProgramDesc.fColorFilterXfermode < SkXfermode::kCoeffModesCnt) {
+ GR_DEBUGCODE(bool success =)
+ SkXfermode::ModeAsCoeff(static_cast<SkXfermode::Mode>
+ (fProgramDesc.fColorFilterXfermode),
+ &uniformCoeff, &colorCoeff);
+ GR_DEBUGASSERT(success);
+ } else {
+ colorCoeff = SkXfermode::kOne_Coeff;
+ uniformCoeff = SkXfermode::kZero_Coeff;
+ }
+
+ // no need to do the color filter / matrix at all if coverage is 0. The
+ // output color is scaled by the coverage. All the dual source outputs are
+ // scaled by the coverage as well.
+ if (ProgramDesc::kTransBlack_ColorInput == fProgramDesc.fCoverageInput) {
+ colorCoeff = SkXfermode::kZero_Coeff;
+ uniformCoeff = SkXfermode::kZero_Coeff;
+ applyColorMatrix = false;
+ }
+
+ // If we know the final color is going to be all zeros then we can
+ // simplify the color filter coeffecients. needComputedColor will then
+ // come out false below.
+ if (ProgramDesc::kTransBlack_ColorInput == fProgramDesc.fColorInput) {
+ colorCoeff = SkXfermode::kZero_Coeff;
+ if (SkXfermode::kDC_Coeff == uniformCoeff ||
+ SkXfermode::kDA_Coeff == uniformCoeff) {
+ uniformCoeff = SkXfermode::kZero_Coeff;
+ } else if (SkXfermode::kIDC_Coeff == uniformCoeff ||
+ SkXfermode::kIDA_Coeff == uniformCoeff) {
+ uniformCoeff = SkXfermode::kOne_Coeff;
+ }
+ }
+
+ bool needColorFilterUniform;
+ bool needComputedColor;
+ needBlendInputs(uniformCoeff, colorCoeff,
+ &needColorFilterUniform, &needComputedColor);
+
+ // the dual source output has no canonical var name, have to
+ // declare an output, which is incompatible with gl_FragColor/gl_FragData.
+ bool dualSourceOutputWritten = false;
+ segments.fHeader.printf(GrGetGLSLVersionDecl(gl->fBindingsExported,
+ glslGeneration));
+
+ GrGLShaderVar colorOutput;
+ bool isColorDeclared = GrGLSLSetupFSColorOuput(glslGeneration,
+ declared_color_output_name(),
+ &colorOutput);
+ if (isColorDeclared) {
+ segments.fFSOutputs.push_back(colorOutput);
+ }
+
+#if GR_GL_ATTRIBUTE_MATRICES
+ segments.fVSAttrs.push_back().set(GrGLShaderVar::kMat33f_Type,
+ GrGLShaderVar::kAttribute_TypeModifier, VIEW_MATRIX_NAME);
+ programData->fUniLocations.fViewMatrixUni = kSetAsAttribute;
+#else
+ segments.fVSUnis.push_back().set(GrGLShaderVar::kMat33f_Type,
+ GrGLShaderVar::kUniform_TypeModifier, VIEW_MATRIX_NAME);
+ programData->fUniLocations.fViewMatrixUni = kUseUniform;
+#endif
+ segments.fVSAttrs.push_back().set(GrGLShaderVar::kVec2f_Type,
+ GrGLShaderVar::kAttribute_TypeModifier, POS_ATTR_NAME);
+
+ segments.fVSCode.append(
+ "void main() {\n"
+ "\tvec3 pos3 = " VIEW_MATRIX_NAME " * vec3("POS_ATTR_NAME", 1);\n"
+ "\tgl_Position = vec4(pos3.xy, 0, pos3.z);\n");
+
+ // incoming color to current stage being processed.
+ GrStringBuilder inColor;
+
+ if (needComputedColor) {
+ genInputColor((ProgramDesc::ColorInput) fProgramDesc.fColorInput,
+ programData, &segments, &inColor);
+ }
+
+ // we output point size in the GS if present
+ if (fProgramDesc.fEmitsPointSize && !segments.fUsesGS){
+ segments.fVSCode.append("\tgl_PointSize = 1.0;\n");
+ }
+
+ segments.fFSCode.append("void main() {\n");
+
+ // add texture coordinates that are used to the list of vertex attr decls
+ GrStringBuilder texCoordAttrs[GrDrawState::kMaxTexCoords];
+ for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) {
+ if (GrDrawTarget::VertexUsesTexCoordIdx(t, layout)) {
+ tex_attr_name(t, texCoordAttrs + t);
+ segments.fVSAttrs.push_back().set(GrGLShaderVar::kVec2f_Type,
+ GrGLShaderVar::kAttribute_TypeModifier,
+ texCoordAttrs[t].c_str());
+ }
+ }
+
+ ///////////////////////////////////////////////////////////////////////////
+ // compute the final color
+
+ // if we have color stages string them together, feeding the output color
+ // of each to the next and generating code for each stage.
+ if (needComputedColor) {
+ GrStringBuilder outColor;
+ for (int s = 0; s < fProgramDesc.fFirstCoverageStage; ++s) {
+ if (fProgramDesc.fStages[s].isEnabled()) {
+ // create var to hold stage result
+ outColor = "color";
+ outColor.appendS32(s);
+ segments.fFSCode.appendf("\tvec4 %s;\n", outColor.c_str());
+
+ const char* inCoords;
+ // figure out what our input coords are
+ if (GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(s) &
+ layout) {
+ inCoords = POS_ATTR_NAME;
+ } else {
+ int tcIdx = GrDrawTarget::VertexTexCoordsForStage(s, layout);
+ // we better have input tex coordinates if stage is enabled.
+ GrAssert(tcIdx >= 0);
+ GrAssert(texCoordAttrs[tcIdx].size());
+ inCoords = texCoordAttrs[tcIdx].c_str();
+ }
+
+ this->genStageCode(gl,
+ s,
+ fProgramDesc.fStages[s],
+ inColor.size() ? inColor.c_str() : NULL,
+ outColor.c_str(),
+ inCoords,
+ &segments,
+ &programData->fUniLocations.fStages[s]);
+ inColor = outColor;
+ }
+ }
+ }
+
+ // if have all ones or zeros for the "dst" input to the color filter then we
+ // may be able to make additional optimizations.
+ if (needColorFilterUniform && needComputedColor && !inColor.size()) {
+ GrAssert(ProgramDesc::kSolidWhite_ColorInput == fProgramDesc.fColorInput);
+ bool uniformCoeffIsZero = SkXfermode::kIDC_Coeff == uniformCoeff ||
+ SkXfermode::kIDA_Coeff == uniformCoeff;
+ if (uniformCoeffIsZero) {
+ uniformCoeff = SkXfermode::kZero_Coeff;
+ bool bogus;
+ needBlendInputs(SkXfermode::kZero_Coeff, colorCoeff,
+ &needColorFilterUniform, &bogus);
+ }
+ }
+ if (needColorFilterUniform) {
+ segments.fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type,
+ GrGLShaderVar::kUniform_TypeModifier,
+ COL_FILTER_UNI_NAME);
+ programData->fUniLocations.fColorFilterUni = kUseUniform;
+ }
+ bool wroteFragColorZero = false;
+ if (SkXfermode::kZero_Coeff == uniformCoeff &&
+ SkXfermode::kZero_Coeff == colorCoeff &&
+ !applyColorMatrix) {
+ segments.fFSCode.appendf("\t%s = %s;\n",
+ colorOutput.getName().c_str(),
+ all_zeros_vec(4));
+ wroteFragColorZero = true;
+ } else if (SkXfermode::kDst_Mode != fProgramDesc.fColorFilterXfermode) {
+ segments.fFSCode.appendf("\tvec4 filteredColor;\n");
+ const char* color = adjustInColor(inColor);
+ addColorFilter(&segments.fFSCode, "filteredColor", uniformCoeff,
+ colorCoeff, color);
+ inColor = "filteredColor";
+ }
+ if (applyColorMatrix) {
+ segments.fFSUnis.push_back().set(GrGLShaderVar::kMat44f_Type,
+ GrGLShaderVar::kUniform_TypeModifier,
+ COL_MATRIX_UNI_NAME);
+ segments.fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type,
+ GrGLShaderVar::kUniform_TypeModifier,
+ COL_MATRIX_VEC_UNI_NAME);
+ programData->fUniLocations.fColorMatrixUni = kUseUniform;
+ programData->fUniLocations.fColorMatrixVecUni = kUseUniform;
+ segments.fFSCode.appendf("\tvec4 matrixedColor;\n");
+ const char* color = adjustInColor(inColor);
+ addColorMatrix(&segments.fFSCode, "matrixedColor", color);
+ inColor = "matrixedColor";
+ }
+
+ ///////////////////////////////////////////////////////////////////////////
+ // compute the partial coverage (coverage stages and edge aa)
+
+ GrStringBuilder inCoverage;
+ bool coverageIsZero = ProgramDesc::kTransBlack_ColorInput ==
+ fProgramDesc.fCoverageInput;
+ // we don't need to compute coverage at all if we know the final shader
+ // output will be zero and we don't have a dual src blend output.
+ if (!wroteFragColorZero ||
+ ProgramDesc::kNone_DualSrcOutput != fProgramDesc.fDualSrcOutput) {
+
+ if (!coverageIsZero) {
+ this->genEdgeCoverage(gl,
+ layout,
+ programData,
+ &inCoverage,
+ &segments);
+
+ switch (fProgramDesc.fCoverageInput) {
+ case ProgramDesc::kSolidWhite_ColorInput:
+ // empty string implies solid white
+ break;
+ case ProgramDesc::kAttribute_ColorInput:
+ genAttributeCoverage(&segments, &inCoverage);
+ break;
+ case ProgramDesc::kUniform_ColorInput:
+ genUniformCoverage(&segments, programData, &inCoverage);
+ break;
+ default:
+ GrCrash("Unexpected input coverage.");
+ }
+
+ GrStringBuilder outCoverage;
+ const int& startStage = fProgramDesc.fFirstCoverageStage;
+ for (int s = startStage; s < GrDrawState::kNumStages; ++s) {
+ if (fProgramDesc.fStages[s].isEnabled()) {
+ // create var to hold stage output
+ outCoverage = "coverage";
+ outCoverage.appendS32(s);
+ segments.fFSCode.appendf("\tvec4 %s;\n",
+ outCoverage.c_str());
+
+ const char* inCoords;
+ // figure out what our input coords are
+ if (GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(s) &
+ layout) {
+ inCoords = POS_ATTR_NAME;
+ } else {
+ int tcIdx =
+ GrDrawTarget::VertexTexCoordsForStage(s, layout);
+ // we better have input tex coordinates if stage is
+ // enabled.
+ GrAssert(tcIdx >= 0);
+ GrAssert(texCoordAttrs[tcIdx].size());
+ inCoords = texCoordAttrs[tcIdx].c_str();
+ }
+
+ genStageCode(gl, s,
+ fProgramDesc.fStages[s],
+ inCoverage.size() ? inCoverage.c_str() : NULL,
+ outCoverage.c_str(),
+ inCoords,
+ &segments,
+ &programData->fUniLocations.fStages[s]);
+ inCoverage = outCoverage;
+ }
+ }
+ }
+ if (ProgramDesc::kNone_DualSrcOutput != fProgramDesc.fDualSrcOutput) {
+ segments.fFSOutputs.push_back().set(GrGLShaderVar::kVec4f_Type,
+ GrGLShaderVar::kOut_TypeModifier,
+ dual_source_output_name());
+ bool outputIsZero = coverageIsZero;
+ GrStringBuilder coeff;
+ if (!outputIsZero &&
+ ProgramDesc::kCoverage_DualSrcOutput !=
+ fProgramDesc.fDualSrcOutput && !wroteFragColorZero) {
+ if (!inColor.size()) {
+ outputIsZero = true;
+ } else {
+ if (fProgramDesc.fDualSrcOutput ==
+ ProgramDesc::kCoverageISA_DualSrcOutput) {
+ coeff.printf("(1 - %s.a)", inColor.c_str());
+ } else {
+ coeff.printf("(vec4(1,1,1,1) - %s)", inColor.c_str());
+ }
+ }
+ }
+ if (outputIsZero) {
+ segments.fFSCode.appendf("\t%s = %s;\n",
+ dual_source_output_name(),
+ all_zeros_vec(4));
+ } else {
+ modulate_helper(dual_source_output_name(),
+ coeff.c_str(),
+ inCoverage.c_str(),
+ &segments.fFSCode);
+ }
+ dualSourceOutputWritten = true;
+ }
+ }
+
+ ///////////////////////////////////////////////////////////////////////////
+ // combine color and coverage as frag color
+
+ if (!wroteFragColorZero) {
+ if (coverageIsZero) {
+ segments.fFSCode.appendf("\t%s = %s;\n",
+ colorOutput.getName().c_str(),
+ all_zeros_vec(4));
+ } else {
+ modulate_helper(colorOutput.getName().c_str(),
+ inColor.c_str(),
+ inCoverage.c_str(),
+ &segments.fFSCode);
+ }
+ if (ProgramDesc::kNo_OutputPM == fProgramDesc.fOutputPM) {
+ segments.fFSCode.appendf("\t%s = %s.a <= 0.0 ? vec4(0,0,0,0) : vec4(%s.rgb / %s.a, %s.a);\n",
+ colorOutput.getName().c_str(),
+ colorOutput.getName().c_str(),
+ colorOutput.getName().c_str(),
+ colorOutput.getName().c_str(),
+ colorOutput.getName().c_str());
+ }
+ }
+
+ segments.fVSCode.append("}\n");
+ segments.fFSCode.append("}\n");
+
+ ///////////////////////////////////////////////////////////////////////////
+ // insert GS
+#if GR_DEBUG
+ this->genGeometryShader(gl, glslGeneration, &segments);
+#endif
+
+ ///////////////////////////////////////////////////////////////////////////
+ // compile and setup attribs and unis
+
+ if (!CompileShaders(gl, glslGeneration, segments, programData)) {
+ return false;
+ }
+
+ if (!this->bindOutputsAttribsAndLinkProgram(gl, texCoordAttrs,
+ isColorDeclared,
+ dualSourceOutputWritten,
+ programData)) {
+ return false;
+ }
+
+ this->getUniformLocationsAndInitCache(gl, programData);
+
+ return true;
+}
+
+namespace {
+
+inline void expand_decls(const VarArray& vars,
+ const GrGLInterface* gl,
+ GrStringBuilder* string,
+ GrGLSLGeneration gen) {
+ const int count = vars.count();
+ for (int i = 0; i < count; ++i) {
+ vars[i].appendDecl(gl, string, gen);
+ }
+}
+
+inline void print_shader(int stringCnt,
+ const char** strings,
+ int* stringLengths) {
+ for (int i = 0; i < stringCnt; ++i) {
+ if (NULL == stringLengths || stringLengths[i] < 0) {
+ GrPrintf(strings[i]);
+ } else {
+ GrPrintf("%.*s", stringLengths[i], strings[i]);
+ }
+ }
+}
+
+typedef SkTArray<const char*, true> StrArray;
+#define PREALLOC_STR_ARRAY(N) SkSTArray<(N), const char*, true>
+
+typedef SkTArray<int, true> LengthArray;
+#define PREALLOC_LENGTH_ARRAY(N) SkSTArray<(N), int, true>
+
+// these shouldn't relocate
+typedef GrTAllocator<GrStringBuilder> TempArray;
+#define PREALLOC_TEMP_ARRAY(N) GrSTAllocator<(N), GrStringBuilder>
+
+inline void append_string(const GrStringBuilder& str,
+ StrArray* strings,
+ LengthArray* lengths) {
+ int length = (int) str.size();
+ if (length) {
+ strings->push_back(str.c_str());
+ lengths->push_back(length);
+ }
+ GrAssert(strings->count() == lengths->count());
+}
+
+inline void append_decls(const VarArray& vars,
+ const GrGLInterface* gl,
+ StrArray* strings,
+ LengthArray* lengths,
+ TempArray* temp,
+ GrGLSLGeneration gen) {
+ expand_decls(vars, gl, &temp->push_back(), gen);
+ append_string(temp->back(), strings, lengths);
+}
+
+}
+
+bool GrGLProgram::CompileShaders(const GrGLInterface* gl,
+ GrGLSLGeneration glslGeneration,
+ const ShaderCodeSegments& segments,
+ CachedData* programData) {
+ enum { kPreAllocStringCnt = 8 };
+
+ PREALLOC_STR_ARRAY(kPreAllocStringCnt) strs;
+ PREALLOC_LENGTH_ARRAY(kPreAllocStringCnt) lengths;
+ PREALLOC_TEMP_ARRAY(kPreAllocStringCnt) temps;
+
+ GrStringBuilder unis;
+ GrStringBuilder inputs;
+ GrStringBuilder outputs;
+
+ append_string(segments.fHeader, &strs, &lengths);
+ append_decls(segments.fVSUnis, gl, &strs, &lengths, &temps, glslGeneration);
+ append_decls(segments.fVSAttrs, gl, &strs, &lengths,
+ &temps, glslGeneration);
+ append_decls(segments.fVSOutputs, gl, &strs, &lengths,
+ &temps, glslGeneration);
+ append_string(segments.fVSCode, &strs, &lengths);
+
+#if PRINT_SHADERS
+ print_shader(strs.count(), &strs[0], &lengths[0]);
+ GrPrintf("\n");
+#endif
+
+ programData->fVShaderID =
+ CompileShader(gl, GR_GL_VERTEX_SHADER, strs.count(),
+ &strs[0], &lengths[0]);
+
+ if (!programData->fVShaderID) {
+ return false;
+ }
+ if (segments.fUsesGS) {
+ strs.reset();
+ lengths.reset();
+ temps.reset();
+ append_string(segments.fHeader, &strs, &lengths);
+ append_string(segments.fGSHeader, &strs, &lengths);
+ append_decls(segments.fGSInputs, gl, &strs, &lengths,
+ &temps, glslGeneration);
+ append_decls(segments.fGSOutputs, gl, &strs, &lengths,
+ &temps, glslGeneration);
+ append_string(segments.fGSCode, &strs, &lengths);
+#if PRINT_SHADERS
+ print_shader(strs.count(), &strs[0], &lengths[0]);
+ GrPrintf("\n");
+#endif
+ programData->fGShaderID =
+ CompileShader(gl, GR_GL_GEOMETRY_SHADER, strs.count(),
+ &strs[0], &lengths[0]);
+ } else {
+ programData->fGShaderID = 0;
+ }
+
+ strs.reset();
+ lengths.reset();
+ temps.reset();
+
+ append_string(segments.fHeader, &strs, &lengths);
+ GrStringBuilder precisionStr(GrGetGLSLShaderPrecisionDecl(gl->fBindingsExported));
+ append_string(precisionStr, &strs, &lengths);
+ append_decls(segments.fFSUnis, gl, &strs, &lengths, &temps, glslGeneration);
+ append_decls(segments.fFSInputs, gl, &strs, &lengths,
+ &temps, glslGeneration);
+ // We shouldn't have declared outputs on 1.10
+ GrAssert(k110_GrGLSLGeneration != glslGeneration ||
+ segments.fFSOutputs.empty());
+ append_decls(segments.fFSOutputs, gl, &strs, &lengths,
+ &temps, glslGeneration);
+ append_string(segments.fFSFunctions, &strs, &lengths);
+ append_string(segments.fFSCode, &strs, &lengths);
+
+#if PRINT_SHADERS
+ print_shader(strs.count(), &strs[0], &lengths[0]);
+ GrPrintf("\n");
+#endif
+
+ programData->fFShaderID =
+ CompileShader(gl, GR_GL_FRAGMENT_SHADER, strs.count(),
+ &strs[0], &lengths[0]);
+
+ if (!programData->fFShaderID) {
+ return false;
+ }
+
+ return true;
+}
+
+GrGLuint GrGLProgram::CompileShader(const GrGLInterface* gl,
+ GrGLenum type,
+ int stringCnt,
+ const char** strings,
+ int* stringLengths) {
+ SK_TRACE_EVENT1("GrGLProgram::CompileShader",
+ "stringCount", SkStringPrintf("%i", stringCnt).c_str());
+
+ GrGLuint shader;
+ GR_GL_CALL_RET(gl, shader, CreateShader(type));
+ if (0 == shader) {
+ return 0;
+ }
+
+ GrGLint compiled = GR_GL_INIT_ZERO;
+ GR_GL_CALL(gl, ShaderSource(shader, stringCnt, strings, stringLengths));
+ GR_GL_CALL(gl, CompileShader(shader));
+ GR_GL_CALL(gl, GetShaderiv(shader, GR_GL_COMPILE_STATUS, &compiled));
+
+ if (!compiled) {
+ GrGLint infoLen = GR_GL_INIT_ZERO;
+ GR_GL_CALL(gl, GetShaderiv(shader, GR_GL_INFO_LOG_LENGTH, &infoLen));
+ SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger
+ if (infoLen > 0) {
+ // retrieve length even though we don't need it to workaround
+ // bug in chrome cmd buffer param validation.
+ GrGLsizei length = GR_GL_INIT_ZERO;
+ GR_GL_CALL(gl, GetShaderInfoLog(shader, infoLen+1,
+ &length, (char*)log.get()));
+ print_shader(stringCnt, strings, stringLengths);
+ GrPrintf("\n%s", log.get());
+ }
+ GrAssert(!"Shader compilation failed!");
+ GR_GL_CALL(gl, DeleteShader(shader));
+ return 0;
+ }
+ return shader;
+}
+
+bool GrGLProgram::bindOutputsAttribsAndLinkProgram(
+ const GrGLInterface* gl,
+ GrStringBuilder texCoordAttrNames[],
+ bool bindColorOut,
+ bool bindDualSrcOut,
+ CachedData* programData) const {
+ GR_GL_CALL_RET(gl, programData->fProgramID, CreateProgram());
+ if (!programData->fProgramID) {
+ return false;
+ }
+ const GrGLint& progID = programData->fProgramID;
+
+ GR_GL_CALL(gl, AttachShader(progID, programData->fVShaderID));
+ if (programData->fGShaderID) {
+ GR_GL_CALL(gl, AttachShader(progID, programData->fGShaderID));
+ }
+ GR_GL_CALL(gl, AttachShader(progID, programData->fFShaderID));
+
+ if (bindColorOut) {
+ GR_GL_CALL(gl, BindFragDataLocation(programData->fProgramID,
+ 0, declared_color_output_name()));
+ }
+ if (bindDualSrcOut) {
+ GR_GL_CALL(gl, BindFragDataLocationIndexed(programData->fProgramID,
+ 0, 1, dual_source_output_name()));
+ }
+
+ // Bind the attrib locations to same values for all shaders
+ GR_GL_CALL(gl, BindAttribLocation(progID, PositionAttributeIdx(),
+ POS_ATTR_NAME));
+ for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) {
+ if (texCoordAttrNames[t].size()) {
+ GR_GL_CALL(gl, BindAttribLocation(progID,
+ TexCoordAttributeIdx(t),
+ texCoordAttrNames[t].c_str()));
+ }
+ }
+
+ if (kSetAsAttribute == programData->fUniLocations.fViewMatrixUni) {
+ GR_GL_CALL(gl, BindAttribLocation(progID,
+ ViewMatrixAttributeIdx(),
+ VIEW_MATRIX_NAME));
+ }
+
+ for (int s = 0; s < GrDrawState::kNumStages; ++s) {
+ const StageUniLocations& unis = programData->fUniLocations.fStages[s];
+ if (kSetAsAttribute == unis.fTextureMatrixUni) {
+ GrStringBuilder matName;
+ tex_matrix_name(s, &matName);
+ GR_GL_CALL(gl, BindAttribLocation(progID,
+ TextureMatrixAttributeIdx(s),
+ matName.c_str()));
+ }
+ }
+
+ GR_GL_CALL(gl, BindAttribLocation(progID, ColorAttributeIdx(),
+ COL_ATTR_NAME));
+ GR_GL_CALL(gl, BindAttribLocation(progID, CoverageAttributeIdx(),
+ COV_ATTR_NAME));
+ GR_GL_CALL(gl, BindAttribLocation(progID, EdgeAttributeIdx(),
+ EDGE_ATTR_NAME));
+
+ GR_GL_CALL(gl, LinkProgram(progID));
+
+ GrGLint linked = GR_GL_INIT_ZERO;
+ GR_GL_CALL(gl, GetProgramiv(progID, GR_GL_LINK_STATUS, &linked));
+ if (!linked) {
+ GrGLint infoLen = GR_GL_INIT_ZERO;
+ GR_GL_CALL(gl, GetProgramiv(progID, GR_GL_INFO_LOG_LENGTH, &infoLen));
+ SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger
+ if (infoLen > 0) {
+ // retrieve length even though we don't need it to workaround
+ // bug in chrome cmd buffer param validation.
+ GrGLsizei length = GR_GL_INIT_ZERO;
+ GR_GL_CALL(gl, GetProgramInfoLog(progID, infoLen+1,
+ &length, (char*)log.get()));
+ GrPrintf((char*)log.get());
+ }
+ GrAssert(!"Error linking program");
+ GR_GL_CALL(gl, DeleteProgram(progID));
+ programData->fProgramID = 0;
+ return false;
+ }
+ return true;
+}
+
+void GrGLProgram::getUniformLocationsAndInitCache(const GrGLInterface* gl,
+ CachedData* programData) const {
+ const GrGLint& progID = programData->fProgramID;
+
+ if (kUseUniform == programData->fUniLocations.fViewMatrixUni) {
+ GR_GL_CALL_RET(gl, programData->fUniLocations.fViewMatrixUni,
+ GetUniformLocation(progID, VIEW_MATRIX_NAME));
+ GrAssert(kUnusedUniform != programData->fUniLocations.fViewMatrixUni);
+ }
+ if (kUseUniform == programData->fUniLocations.fColorUni) {
+ GR_GL_CALL_RET(gl, programData->fUniLocations.fColorUni,
+ GetUniformLocation(progID, COL_UNI_NAME));
+ GrAssert(kUnusedUniform != programData->fUniLocations.fColorUni);
+ }
+ if (kUseUniform == programData->fUniLocations.fColorFilterUni) {
+ GR_GL_CALL_RET(gl, programData->fUniLocations.fColorFilterUni,
+ GetUniformLocation(progID, COL_FILTER_UNI_NAME));
+ GrAssert(kUnusedUniform != programData->fUniLocations.fColorFilterUni);
+ }
+
+ if (kUseUniform == programData->fUniLocations.fColorMatrixUni) {
+ GR_GL_CALL_RET(gl, programData->fUniLocations.fColorMatrixUni,
+ GetUniformLocation(progID, COL_MATRIX_UNI_NAME));
+ }
+
+ if (kUseUniform == programData->fUniLocations.fColorMatrixVecUni) {
+ GR_GL_CALL_RET(gl, programData->fUniLocations.fColorMatrixVecUni,
+ GetUniformLocation(progID, COL_MATRIX_VEC_UNI_NAME));
+ }
+ if (kUseUniform == programData->fUniLocations.fCoverageUni) {
+ GR_GL_CALL_RET(gl, programData->fUniLocations.fCoverageUni,
+ GetUniformLocation(progID, COV_UNI_NAME));
+ GrAssert(kUnusedUniform != programData->fUniLocations.fCoverageUni);
+ }
+
+ if (kUseUniform == programData->fUniLocations.fEdgesUni) {
+ GR_GL_CALL_RET(gl, programData->fUniLocations.fEdgesUni,
+ GetUniformLocation(progID, EDGES_UNI_NAME));
+ GrAssert(kUnusedUniform != programData->fUniLocations.fEdgesUni);
+ } else {
+ programData->fUniLocations.fEdgesUni = kUnusedUniform;
+ }
+
+ for (int s = 0; s < GrDrawState::kNumStages; ++s) {
+ StageUniLocations& locations = programData->fUniLocations.fStages[s];
+ if (fProgramDesc.fStages[s].isEnabled()) {
+ if (kUseUniform == locations.fTextureMatrixUni) {
+ GrStringBuilder texMName;
+ tex_matrix_name(s, &texMName);
+ GR_GL_CALL_RET(gl, locations.fTextureMatrixUni,
+ GetUniformLocation(progID, texMName.c_str()));
+ GrAssert(kUnusedUniform != locations.fTextureMatrixUni);
+ }
+
+ if (kUseUniform == locations.fSamplerUni) {
+ GrStringBuilder samplerName;
+ sampler_name(s, &samplerName);
+ GR_GL_CALL_RET(gl, locations.fSamplerUni,
+ GetUniformLocation(progID,samplerName.c_str()));
+ GrAssert(kUnusedUniform != locations.fSamplerUni);
+ }
+
+ if (kUseUniform == locations.fNormalizedTexelSizeUni) {
+ GrStringBuilder texelSizeName;
+ normalized_texel_size_name(s, &texelSizeName);
+ GR_GL_CALL_RET(gl, locations.fNormalizedTexelSizeUni,
+ GetUniformLocation(progID, texelSizeName.c_str()));
+ GrAssert(kUnusedUniform != locations.fNormalizedTexelSizeUni);
+ }
+
+ if (kUseUniform == locations.fRadial2Uni) {
+ GrStringBuilder radial2ParamName;
+ radial2_param_name(s, &radial2ParamName);
+ GR_GL_CALL_RET(gl, locations.fRadial2Uni,
+ GetUniformLocation(progID, radial2ParamName.c_str()));
+ GrAssert(kUnusedUniform != locations.fRadial2Uni);
+ }
+
+ if (kUseUniform == locations.fTexDomUni) {
+ GrStringBuilder texDomName;
+ tex_domain_name(s, &texDomName);
+ GR_GL_CALL_RET(gl, locations.fTexDomUni,
+ GetUniformLocation(progID, texDomName.c_str()));
+ GrAssert(kUnusedUniform != locations.fTexDomUni);
+ }
+
+ GrStringBuilder kernelName, imageIncrementName;
+ convolve_param_names(s, &kernelName, &imageIncrementName);
+ if (kUseUniform == locations.fKernelUni) {
+ GR_GL_CALL_RET(gl, locations.fKernelUni,
+ GetUniformLocation(progID, kernelName.c_str()));
+ GrAssert(kUnusedUniform != locations.fKernelUni);
+ }
+
+ if (kUseUniform == locations.fImageIncrementUni) {
+ GR_GL_CALL_RET(gl, locations.fImageIncrementUni,
+ GetUniformLocation(progID,
+ imageIncrementName.c_str()));
+ GrAssert(kUnusedUniform != locations.fImageIncrementUni);
+ }
+ }
+ }
+ GR_GL_CALL(gl, UseProgram(progID));
+
+ // init sampler unis and set bogus values for state tracking
+ for (int s = 0; s < GrDrawState::kNumStages; ++s) {
+ if (kUnusedUniform != programData->fUniLocations.fStages[s].fSamplerUni) {
+ GR_GL_CALL(gl, Uniform1i(programData->fUniLocations.fStages[s].fSamplerUni, s));
+ }
+ programData->fTextureMatrices[s] = GrMatrix::InvalidMatrix();
+ programData->fRadial2CenterX1[s] = GR_ScalarMax;
+ programData->fRadial2Radius0[s] = -GR_ScalarMax;
+ programData->fTextureWidth[s] = -1;
+ programData->fTextureHeight[s] = -1;
+ }
+ programData->fViewMatrix = GrMatrix::InvalidMatrix();
+ programData->fColor = GrColor_ILLEGAL;
+ programData->fColorFilterColor = GrColor_ILLEGAL;
+}
+
+//============================================================================
+// Stage code generation
+//============================================================================
+
+namespace {
+
+bool isRadialMapping(GrGLProgram::StageDesc::CoordMapping mapping) {
+ return
+ (GrGLProgram::StageDesc::kRadial2Gradient_CoordMapping == mapping ||
+ GrGLProgram::StageDesc::kRadial2GradientDegenerate_CoordMapping == mapping);
+}
+
+GrGLShaderVar* genRadialVS(int stageNum,
+ ShaderCodeSegments* segments,
+ GrGLProgram::StageUniLocations* locations,
+ const char** radial2VaryingVSName,
+ const char** radial2VaryingFSName,
+ const char* varyingVSName,
+ int varyingDims, int coordDims) {
+
+ GrGLShaderVar* radial2FSParams = &segments->fFSUnis.push_back();
+ radial2FSParams->setType(GrGLShaderVar::kFloat_Type);
+ radial2FSParams->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier);
+ radial2FSParams->setArrayCount(6);
+ radial2_param_name(stageNum, radial2FSParams->accessName());
+ segments->fVSUnis.push_back(*radial2FSParams).setEmitPrecision(true);
+
+ locations->fRadial2Uni = kUseUniform;
+
+ // for radial grads without perspective we can pass the linear
+ // part of the quadratic as a varying.
+ if (varyingDims == coordDims) {
+ GrAssert(2 == coordDims);
+ append_varying(GrGLShaderVar::kFloat_Type,
+ "Radial2BCoeff",
+ stageNum,
+ segments,
+ radial2VaryingVSName,
+ radial2VaryingFSName);
+
+ GrStringBuilder radial2p2;
+ GrStringBuilder radial2p3;
+ radial2FSParams->appendArrayAccess(2, &radial2p2);
+ radial2FSParams->appendArrayAccess(3, &radial2p3);
+
+ // r2Var = 2 * (r2Parm[2] * varCoord.x - r2Param[3])
+ const char* r2ParamName = radial2FSParams->getName().c_str();
+ segments->fVSCode.appendf("\t%s = 2.0 *(%s * %s.x - %s);\n",
+ *radial2VaryingVSName, radial2p2.c_str(),
+ varyingVSName, radial2p3.c_str());
+ }
+
+ return radial2FSParams;
+}
+
+bool genRadial2GradientCoordMapping(int stageNum,
+ ShaderCodeSegments* segments,
+ const char* radial2VaryingFSName,
+ GrGLShaderVar* radial2Params,
+ GrStringBuilder& sampleCoords,
+ GrStringBuilder& fsCoordName,
+ int varyingDims,
+ int coordDims) {
+ GrStringBuilder cName("c");
+ GrStringBuilder ac4Name("ac4");
+ GrStringBuilder rootName("root");
+
+ cName.appendS32(stageNum);
+ ac4Name.appendS32(stageNum);
+ rootName.appendS32(stageNum);
+
+ GrStringBuilder radial2p0;
+ GrStringBuilder radial2p1;
+ GrStringBuilder radial2p2;
+ GrStringBuilder radial2p3;
+ GrStringBuilder radial2p4;
+ GrStringBuilder radial2p5;
+ radial2Params->appendArrayAccess(0, &radial2p0);
+ radial2Params->appendArrayAccess(1, &radial2p1);
+ radial2Params->appendArrayAccess(2, &radial2p2);
+ radial2Params->appendArrayAccess(3, &radial2p3);
+ radial2Params->appendArrayAccess(4, &radial2p4);
+ radial2Params->appendArrayAccess(5, &radial2p5);
+
+ // if we were able to interpolate the linear component bVar is the varying
+ // otherwise compute it
+ GrStringBuilder bVar;
+ if (coordDims == varyingDims) {
+ bVar = radial2VaryingFSName;
+ GrAssert(2 == varyingDims);
+ } else {
+ GrAssert(3 == varyingDims);
+ bVar = "b";
+ bVar.appendS32(stageNum);
+ segments->fFSCode.appendf("\tfloat %s = 2.0 * (%s * %s.x - %s);\n",
+ bVar.c_str(), radial2p2.c_str(),
+ fsCoordName.c_str(), radial2p3.c_str());
+ }
+
+ // c = (x^2)+(y^2) - params[4]
+ segments->fFSCode.appendf("\tfloat %s = dot(%s, %s) - %s;\n",
+ cName.c_str(), fsCoordName.c_str(),
+ fsCoordName.c_str(),
+ radial2p4.c_str());
+ // ac4 = 4.0 * params[0] * c
+ segments->fFSCode.appendf("\tfloat %s = %s * 4.0 * %s;\n",
+ ac4Name.c_str(), radial2p0.c_str(),
+ cName.c_str());
+
+ // root = sqrt(b^2-4ac)
+ // (abs to avoid exception due to fp precision)
+ segments->fFSCode.appendf("\tfloat %s = sqrt(abs(%s*%s - %s));\n",
+ rootName.c_str(), bVar.c_str(), bVar.c_str(),
+ ac4Name.c_str());
+
+ // x coord is: (-b + params[5] * sqrt(b^2-4ac)) * params[1]
+ // y coord is 0.5 (texture is effectively 1D)
+ sampleCoords.printf("vec2((-%s + %s * %s) * %s, 0.5)",
+ bVar.c_str(), radial2p5.c_str(),
+ rootName.c_str(), radial2p1.c_str());
+ return true;
+}
+
+bool genRadial2GradientDegenerateCoordMapping(int stageNum,
+ ShaderCodeSegments* segments,
+ const char* radial2VaryingFSName,
+ GrGLShaderVar* radial2Params,
+ GrStringBuilder& sampleCoords,
+ GrStringBuilder& fsCoordName,
+ int varyingDims,
+ int coordDims) {
+ GrStringBuilder cName("c");
+
+ cName.appendS32(stageNum);
+
+ GrStringBuilder radial2p2;
+ GrStringBuilder radial2p3;
+ GrStringBuilder radial2p4;
+ radial2Params->appendArrayAccess(2, &radial2p2);
+ radial2Params->appendArrayAccess(3, &radial2p3);
+ radial2Params->appendArrayAccess(4, &radial2p4);
+
+ // if we were able to interpolate the linear component bVar is the varying
+ // otherwise compute it
+ GrStringBuilder bVar;
+ if (coordDims == varyingDims) {
+ bVar = radial2VaryingFSName;
+ GrAssert(2 == varyingDims);
+ } else {
+ GrAssert(3 == varyingDims);
+ bVar = "b";
+ bVar.appendS32(stageNum);
+ segments->fFSCode.appendf("\tfloat %s = 2.0 * (%s * %s.x - %s);\n",
+ bVar.c_str(), radial2p2.c_str(),
+ fsCoordName.c_str(), radial2p3.c_str());
+ }
+
+ // c = (x^2)+(y^2) - params[4]
+ segments->fFSCode.appendf("\tfloat %s = dot(%s, %s) - %s;\n",
+ cName.c_str(), fsCoordName.c_str(),
+ fsCoordName.c_str(),
+ radial2p4.c_str());
+
+ // x coord is: -c/b
+ // y coord is 0.5 (texture is effectively 1D)
+ sampleCoords.printf("vec2((-%s / %s), 0.5)", cName.c_str(), bVar.c_str());
+ return true;
+}
+
+void gen2x2FS(int stageNum,
+ ShaderCodeSegments* segments,
+ GrGLProgram::StageUniLocations* locations,
+ GrStringBuilder* sampleCoords,
+ const char* samplerName,
+ const char* texelSizeName,
+ const char* swizzle,
+ const char* fsOutColor,
+ GrStringBuilder& texFunc,
+ GrStringBuilder& modulate,
+ bool complexCoord,
+ int coordDims) {
+ locations->fNormalizedTexelSizeUni = kUseUniform;
+ if (complexCoord) {
+ // assign the coord to a var rather than compute 4x.
+ GrStringBuilder coordVar("tCoord");
+ coordVar.appendS32(stageNum);
+ segments->fFSCode.appendf("\t%s %s = %s;\n",
+ float_vector_type_str(coordDims),
+ coordVar.c_str(), sampleCoords->c_str());
+ *sampleCoords = coordVar;
+ }
+ GrAssert(2 == coordDims);
+ GrStringBuilder accumVar("accum");
+ accumVar.appendS32(stageNum);
+ segments->fFSCode.appendf("\tvec4 %s = %s(%s, %s + vec2(-%s.x,-%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle);
+ segments->fFSCode.appendf("\t%s += %s(%s, %s + vec2(+%s.x,-%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle);
+ segments->fFSCode.appendf("\t%s += %s(%s, %s + vec2(-%s.x,+%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle);
+ segments->fFSCode.appendf("\t%s += %s(%s, %s + vec2(+%s.x,+%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle);
+ segments->fFSCode.appendf("\t%s = .25 * %s%s;\n", fsOutColor, accumVar.c_str(), modulate.c_str());
+
+}
+
+void genConvolutionVS(int stageNum,
+ const StageDesc& desc,
+ ShaderCodeSegments* segments,
+ GrGLProgram::StageUniLocations* locations,
+ GrGLShaderVar** kernel,
+ const char** imageIncrementName,
+ const char* varyingVSName) {
+ //GrGLShaderVar* kernel = &segments->fFSUnis.push_back();
+ *kernel = &segments->fFSUnis.push_back();
+ (*kernel)->setType(GrGLShaderVar::kFloat_Type);
+ (*kernel)->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier);
+ (*kernel)->setArrayCount(desc.fKernelWidth);
+ GrGLShaderVar* imgInc = &segments->fFSUnis.push_back();
+ imgInc->setType(GrGLShaderVar::kVec2f_Type);
+ imgInc->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier);
+
+ convolve_param_names(stageNum,
+ (*kernel)->accessName(),
+ imgInc->accessName());
+ *imageIncrementName = imgInc->getName().c_str();
+
+ // need image increment in both VS and FS
+ segments->fVSUnis.push_back(*imgInc).setEmitPrecision(true);
+
+ locations->fKernelUni = kUseUniform;
+ locations->fImageIncrementUni = kUseUniform;
+ float scale = (desc.fKernelWidth - 1) * 0.5f;
+ segments->fVSCode.appendf("\t%s -= vec2(%g, %g) * %s;\n",
+ varyingVSName, scale, scale,
+ *imageIncrementName);
+}
+
+void genConvolutionFS(int stageNum,
+ const StageDesc& desc,
+ ShaderCodeSegments* segments,
+ const char* samplerName,
+ GrGLShaderVar* kernel,
+ const char* swizzle,
+ const char* imageIncrementName,
+ const char* fsOutColor,
+ GrStringBuilder& sampleCoords,
+ GrStringBuilder& texFunc,
+ GrStringBuilder& modulate) {
+ GrStringBuilder sumVar("sum");
+ sumVar.appendS32(stageNum);
+ GrStringBuilder coordVar("coord");
+ coordVar.appendS32(stageNum);
+
+ GrStringBuilder kernelIndex;
+ kernel->appendArrayAccess("i", &kernelIndex);
+
+ segments->fFSCode.appendf("\tvec4 %s = vec4(0, 0, 0, 0);\n",
+ sumVar.c_str());
+ segments->fFSCode.appendf("\tvec2 %s = %s;\n",
+ coordVar.c_str(),
+ sampleCoords.c_str());
+ segments->fFSCode.appendf("\tfor (int i = 0; i < %d; i++) {\n",
+ desc.fKernelWidth);
+ segments->fFSCode.appendf("\t\t%s += %s(%s, %s)%s * %s;\n",
+ sumVar.c_str(), texFunc.c_str(),
+ samplerName, coordVar.c_str(), swizzle,
+ kernelIndex.c_str());
+ segments->fFSCode.appendf("\t\t%s += %s;\n",
+ coordVar.c_str(),
+ imageIncrementName);
+ segments->fFSCode.appendf("\t}\n");
+ segments->fFSCode.appendf("\t%s = %s%s;\n", fsOutColor,
+ sumVar.c_str(), modulate.c_str());
+}
+
+}
+
+void GrGLProgram::genStageCode(const GrGLInterface* gl,
+ int stageNum,
+ const GrGLProgram::StageDesc& desc,
+ const char* fsInColor, // NULL means no incoming color
+ const char* fsOutColor,
+ const char* vsInCoord,
+ ShaderCodeSegments* segments,
+ StageUniLocations* locations) const {
+
+ GrAssert(stageNum >= 0 && stageNum <= GrDrawState::kNumStages);
+ GrAssert((desc.fInConfigFlags & StageDesc::kInConfigBitMask) ==
+ desc.fInConfigFlags);
+
+ // First decide how many coords are needed to access the texture
+ // Right now it's always 2 but we could start using 1D textures for
+ // gradients.
+ static const int coordDims = 2;
+ int varyingDims;
+ /// Vertex Shader Stuff
+
+ // decide whether we need a matrix to transform texture coords
+ // and whether the varying needs a perspective coord.
+ const char* matName = NULL;
+ if (desc.fOptFlags & StageDesc::kIdentityMatrix_OptFlagBit) {
+ varyingDims = coordDims;
+ } else {
+ GrGLShaderVar* mat;
+ #if GR_GL_ATTRIBUTE_MATRICES
+ mat = &segments->fVSAttrs.push_back();
+ mat->setTypeModifier(GrGLShaderVar::kAttribute_TypeModifier);
+ locations->fTextureMatrixUni = kSetAsAttribute;
+ #else
+ mat = &segments->fVSUnis.push_back();
+ mat->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier);
+ locations->fTextureMatrixUni = kUseUniform;
+ #endif
+ tex_matrix_name(stageNum, mat->accessName());
+ mat->setType(GrGLShaderVar::kMat33f_Type);
+ matName = mat->getName().c_str();
+
+ if (desc.fOptFlags & StageDesc::kNoPerspective_OptFlagBit) {
+ varyingDims = coordDims;
+ } else {
+ varyingDims = coordDims + 1;
+ }
+ }
+
+ segments->fFSUnis.push_back().set(GrGLShaderVar::kSampler2D_Type,
+ GrGLShaderVar::kUniform_TypeModifier, "");
+ sampler_name(stageNum, segments->fFSUnis.back().accessName());
+ locations->fSamplerUni = kUseUniform;
+ const char* samplerName = segments->fFSUnis.back().getName().c_str();
+
+ const char* texelSizeName = NULL;
+ if (StageDesc::k2x2_FetchMode == desc.fFetchMode) {
+ segments->fFSUnis.push_back().set(GrGLShaderVar::kVec2f_Type,
+ GrGLShaderVar::kUniform_TypeModifier, "");
+ normalized_texel_size_name(stageNum, segments->fFSUnis.back().accessName());
+ texelSizeName = segments->fFSUnis.back().getName().c_str();
+ }
+
+ const char *varyingVSName, *varyingFSName;
+ append_varying(float_vector_type(varyingDims),
+ "Stage",
+ stageNum,
+ segments,
+ &varyingVSName,
+ &varyingFSName);
+
+ if (!matName) {
+ GrAssert(varyingDims == coordDims);
+ segments->fVSCode.appendf("\t%s = %s;\n", varyingVSName, vsInCoord);
+ } else {
+ // varying = texMatrix * texCoord
+ segments->fVSCode.appendf("\t%s = (%s * vec3(%s, 1))%s;\n",
+ varyingVSName, matName, vsInCoord,
+ vector_all_coords(varyingDims));
+ }
+
+ GrGLShaderVar* radial2Params = NULL;
+ const char* radial2VaryingVSName = NULL;
+ const char* radial2VaryingFSName = NULL;
+
+ if (isRadialMapping((StageDesc::CoordMapping) desc.fCoordMapping)) {
+ radial2Params = genRadialVS(stageNum, segments,
+ locations,
+ &radial2VaryingVSName,
+ &radial2VaryingFSName,
+ varyingVSName,
+ varyingDims, coordDims);
+ }
+
+ GrGLShaderVar* kernel = NULL;
+ const char* imageIncrementName = NULL;
+ if (StageDesc::kConvolution_FetchMode == desc.fFetchMode) {
+ genConvolutionVS(stageNum, desc, segments, locations,
+ &kernel, &imageIncrementName, varyingVSName);
+ }
+
+ /// Fragment Shader Stuff
+ GrStringBuilder fsCoordName;
+ // function used to access the shader, may be made projective
+ GrStringBuilder texFunc("texture2D");
+ if (desc.fOptFlags & (StageDesc::kIdentityMatrix_OptFlagBit |
+ StageDesc::kNoPerspective_OptFlagBit)) {
+ GrAssert(varyingDims == coordDims);
+ fsCoordName = varyingFSName;
+ } else {
+ // if we have to do some special op on the varyings to get
+ // our final tex coords then when in perspective we have to
+ // do an explicit divide. Otherwise, we can use a Proj func.
+ if (StageDesc::kIdentity_CoordMapping == desc.fCoordMapping &&
+ StageDesc::kSingle_FetchMode == desc.fFetchMode) {
+ texFunc.append("Proj");
+ fsCoordName = varyingFSName;
+ } else {
+ fsCoordName = "inCoord";
+ fsCoordName.appendS32(stageNum);
+ segments->fFSCode.appendf("\t%s %s = %s%s / %s%s;\n",
+ GrGLShaderVar::TypeString(float_vector_type(coordDims)),
+ fsCoordName.c_str(),
+ varyingFSName,
+ vector_nonhomog_coords(varyingDims),
+ varyingFSName,
+ vector_homog_coord(varyingDims));
+ }
+ }
+
+ GrStringBuilder sampleCoords;
+ bool complexCoord = false;
+ switch (desc.fCoordMapping) {
+ case StageDesc::kIdentity_CoordMapping:
+ sampleCoords = fsCoordName;
+ break;
+ case StageDesc::kSweepGradient_CoordMapping:
+ sampleCoords.printf("vec2(atan(- %s.y, - %s.x) * 0.1591549430918 + 0.5, 0.5)", fsCoordName.c_str(), fsCoordName.c_str());
+ complexCoord = true;
+ break;
+ case StageDesc::kRadialGradient_CoordMapping:
+ sampleCoords.printf("vec2(length(%s.xy), 0.5)", fsCoordName.c_str());
+ complexCoord = true;
+ break;
+ case StageDesc::kRadial2Gradient_CoordMapping:
+ complexCoord = genRadial2GradientCoordMapping(
+ stageNum, segments,
+ radial2VaryingFSName, radial2Params,
+ sampleCoords, fsCoordName,
+ varyingDims, coordDims);
+
+ break;
+ case StageDesc::kRadial2GradientDegenerate_CoordMapping:
+ complexCoord = genRadial2GradientDegenerateCoordMapping(
+ stageNum, segments,
+ radial2VaryingFSName, radial2Params,
+ sampleCoords, fsCoordName,
+ varyingDims, coordDims);
+ break;
+
+ };
+
+ const char* swizzle = "";
+ if (desc.fInConfigFlags & StageDesc::kSwapRAndB_InConfigFlag) {
+ GrAssert(!(desc.fInConfigFlags & StageDesc::kSmearAlpha_InConfigFlag));
+ swizzle = ".bgra";
+ } else if (desc.fInConfigFlags & StageDesc::kSmearAlpha_InConfigFlag) {
+ GrAssert(!(desc.fInConfigFlags &
+ StageDesc::kMulRGBByAlpha_InConfigFlag));
+ swizzle = ".aaaa";
+ }
+
+ GrStringBuilder modulate;
+ if (NULL != fsInColor) {
+ modulate.printf(" * %s", fsInColor);
+ }
+
+ if (desc.fOptFlags &
+ StageDesc::kCustomTextureDomain_OptFlagBit) {
+ GrStringBuilder texDomainName;
+ tex_domain_name(stageNum, &texDomainName);
+ segments->fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type,
+ GrGLShaderVar::kUniform_TypeModifier, texDomainName);
+ GrStringBuilder coordVar("clampCoord");
+ segments->fFSCode.appendf("\t%s %s = clamp(%s, %s.xy, %s.zw);\n",
+ float_vector_type_str(coordDims),
+ coordVar.c_str(),
+ sampleCoords.c_str(),
+ texDomainName.c_str(),
+ texDomainName.c_str());
+ sampleCoords = coordVar;
+ locations->fTexDomUni = kUseUniform;
+ }
+
+ switch (desc.fFetchMode) {
+ case StageDesc::k2x2_FetchMode:
+ GrAssert(!(desc.fInConfigFlags &
+ StageDesc::kMulRGBByAlpha_InConfigFlag));
+ gen2x2FS(stageNum, segments, locations, &sampleCoords,
+ samplerName, texelSizeName, swizzle, fsOutColor,
+ texFunc, modulate, complexCoord, coordDims);
+ break;
+ case StageDesc::kConvolution_FetchMode:
+ GrAssert(!(desc.fInConfigFlags &
+ StageDesc::kMulRGBByAlpha_InConfigFlag));
+ genConvolutionFS(stageNum, desc, segments,
+ samplerName, kernel, swizzle, imageIncrementName, fsOutColor,
+ sampleCoords, texFunc, modulate);
+ break;
+ default:
+ if (desc.fInConfigFlags & StageDesc::kMulRGBByAlpha_InConfigFlag) {
+ GrAssert(!(desc.fInConfigFlags &
+ StageDesc::kSmearAlpha_InConfigFlag));
+ segments->fFSCode.appendf("\t%s = %s(%s, %s)%s;\n",
+ fsOutColor, texFunc.c_str(),
+ samplerName, sampleCoords.c_str(),
+ swizzle);
+ segments->fFSCode.appendf("\t%s = vec4(%s.rgb*%s.a,%s.a)%s;\n",
+ fsOutColor, fsOutColor, fsOutColor,
+ fsOutColor, modulate.c_str());
+ } else {
+ segments->fFSCode.appendf("\t%s = %s(%s, %s)%s%s;\n",
+ fsOutColor, texFunc.c_str(),
+ samplerName, sampleCoords.c_str(),
+ swizzle, modulate.c_str());
+ }
+ }
+}
+
+