diff options
Diffstat (limited to 'src/gpu/gl/GrGLProgram.cpp')
-rw-r--r-- | src/gpu/gl/GrGLProgram.cpp | 1889 |
1 files changed, 1889 insertions, 0 deletions
diff --git a/src/gpu/gl/GrGLProgram.cpp b/src/gpu/gl/GrGLProgram.cpp new file mode 100644 index 0000000000..fb9debf348 --- /dev/null +++ b/src/gpu/gl/GrGLProgram.cpp @@ -0,0 +1,1889 @@ + +/* + * Copyright 2011 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + + +#include "GrGLProgram.h" + +#include "../GrAllocator.h" +#include "GrGLShaderVar.h" +#include "SkTrace.h" +#include "SkXfermode.h" + +namespace { + +enum { + /// Used to mark a StageUniLocation field that should be bound + /// to a uniform during getUniformLocationsAndInitCache(). + kUseUniform = 2000 +}; + +} // namespace + +#define PRINT_SHADERS 0 + +typedef GrTAllocator<GrGLShaderVar> VarArray; + +// number of each input/output type in a single allocation block +static const int gVarsPerBlock = 8; +// except FS outputs where we expect 2 at most. +static const int gMaxFSOutputs = 2; + +struct ShaderCodeSegments { + ShaderCodeSegments() + : fVSUnis(gVarsPerBlock) + , fVSAttrs(gVarsPerBlock) + , fVSOutputs(gVarsPerBlock) + , fGSInputs(gVarsPerBlock) + , fGSOutputs(gVarsPerBlock) + , fFSInputs(gVarsPerBlock) + , fFSUnis(gVarsPerBlock) + , fFSOutputs(gMaxFSOutputs) + , fUsesGS(false) {} + GrStringBuilder fHeader; // VS+FS, GLSL version, etc + VarArray fVSUnis; + VarArray fVSAttrs; + VarArray fVSOutputs; + VarArray fGSInputs; + VarArray fGSOutputs; + VarArray fFSInputs; + GrStringBuilder fGSHeader; // layout qualifiers specific to GS + VarArray fFSUnis; + VarArray fFSOutputs; + GrStringBuilder fFSFunctions; + GrStringBuilder fVSCode; + GrStringBuilder fGSCode; + GrStringBuilder fFSCode; + + bool fUsesGS; +}; + +typedef GrGLProgram::ProgramDesc::StageDesc StageDesc; + +#if GR_GL_ATTRIBUTE_MATRICES + #define VIEW_MATRIX_NAME "aViewM" +#else + #define VIEW_MATRIX_NAME "uViewM" +#endif + +#define POS_ATTR_NAME "aPosition" +#define COL_ATTR_NAME "aColor" +#define COV_ATTR_NAME "aCoverage" +#define EDGE_ATTR_NAME "aEdge" +#define COL_UNI_NAME "uColor" +#define COV_UNI_NAME "uCoverage" +#define EDGES_UNI_NAME "uEdges" +#define COL_FILTER_UNI_NAME "uColorFilter" +#define COL_MATRIX_UNI_NAME "uColorMatrix" +#define COL_MATRIX_VEC_UNI_NAME "uColorMatrixVec" + +namespace { +inline void tex_attr_name(int coordIdx, GrStringBuilder* s) { + *s = "aTexCoord"; + s->appendS32(coordIdx); +} + +inline GrGLShaderVar::Type float_vector_type(int count) { + GR_STATIC_ASSERT(GrGLShaderVar::kFloat_Type == 0); + GR_STATIC_ASSERT(GrGLShaderVar::kVec2f_Type == 1); + GR_STATIC_ASSERT(GrGLShaderVar::kVec3f_Type == 2); + GR_STATIC_ASSERT(GrGLShaderVar::kVec4f_Type == 3); + GrAssert(count > 0 && count <= 4); + return (GrGLShaderVar::Type)(count - 1); +} + +inline const char* float_vector_type_str(int count) { + return GrGLShaderVar::TypeString(float_vector_type(count)); +} + +inline const char* vector_homog_coord(int count) { + static const char* HOMOGS[] = {"ERROR", "", ".y", ".z", ".w"}; + GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(HOMOGS)); + return HOMOGS[count]; +} + +inline const char* vector_nonhomog_coords(int count) { + static const char* NONHOMOGS[] = {"ERROR", "", ".x", ".xy", ".xyz"}; + GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(NONHOMOGS)); + return NONHOMOGS[count]; +} + +inline const char* vector_all_coords(int count) { + static const char* ALL[] = {"ERROR", "", ".xy", ".xyz", ".xyzw"}; + GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ALL)); + return ALL[count]; +} + +inline const char* all_ones_vec(int count) { + static const char* ONESVEC[] = {"ERROR", "1.0", "vec2(1,1)", + "vec3(1,1,1)", "vec4(1,1,1,1)"}; + GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ONESVEC)); + return ONESVEC[count]; +} + +inline const char* all_zeros_vec(int count) { + static const char* ZEROSVEC[] = {"ERROR", "0.0", "vec2(0,0)", + "vec3(0,0,0)", "vec4(0,0,0,0)"}; + GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ZEROSVEC)); + return ZEROSVEC[count]; +} + +inline const char* declared_color_output_name() { return "fsColorOut"; } +inline const char* dual_source_output_name() { return "dualSourceOut"; } + +inline void tex_matrix_name(int stage, GrStringBuilder* s) { +#if GR_GL_ATTRIBUTE_MATRICES + *s = "aTexM"; +#else + *s = "uTexM"; +#endif + s->appendS32(stage); +} + +inline void normalized_texel_size_name(int stage, GrStringBuilder* s) { + *s = "uTexelSize"; + s->appendS32(stage); +} + +inline void sampler_name(int stage, GrStringBuilder* s) { + *s = "uSampler"; + s->appendS32(stage); +} + +inline void radial2_param_name(int stage, GrStringBuilder* s) { + *s = "uRadial2Params"; + s->appendS32(stage); +} + +inline void convolve_param_names(int stage, GrStringBuilder* k, GrStringBuilder* i) { + *k = "uKernel"; + k->appendS32(stage); + *i = "uImageIncrement"; + i->appendS32(stage); +} + +inline void tex_domain_name(int stage, GrStringBuilder* s) { + *s = "uTexDom"; + s->appendS32(stage); +} +} + +GrGLProgram::GrGLProgram() { +} + +GrGLProgram::~GrGLProgram() { +} + +void GrGLProgram::overrideBlend(GrBlendCoeff* srcCoeff, + GrBlendCoeff* dstCoeff) const { + switch (fProgramDesc.fDualSrcOutput) { + case ProgramDesc::kNone_DualSrcOutput: + break; + // the prog will write a coverage value to the secondary + // output and the dst is blended by one minus that value. + case ProgramDesc::kCoverage_DualSrcOutput: + case ProgramDesc::kCoverageISA_DualSrcOutput: + case ProgramDesc::kCoverageISC_DualSrcOutput: + *dstCoeff = (GrBlendCoeff)GrGpu::kIS2C_BlendCoeff; + break; + default: + GrCrash("Unexpected dual source blend output"); + break; + } +} + +// assigns modulation of two vars to an output var +// vars can be vec4s or floats (or one of each) +// result is always vec4 +// if either var is "" then assign to the other var +// if both are "" then assign all ones +static inline void modulate_helper(const char* outputVar, + const char* var0, + const char* var1, + GrStringBuilder* code) { + GrAssert(NULL != outputVar); + GrAssert(NULL != var0); + GrAssert(NULL != var1); + GrAssert(NULL != code); + + bool has0 = '\0' != *var0; + bool has1 = '\0' != *var1; + + if (!has0 && !has1) { + code->appendf("\t%s = %s;\n", outputVar, all_ones_vec(4)); + } else if (!has0) { + code->appendf("\t%s = vec4(%s);\n", outputVar, var1); + } else if (!has1) { + code->appendf("\t%s = vec4(%s);\n", outputVar, var0); + } else { + code->appendf("\t%s = vec4(%s * %s);\n", outputVar, var0, var1); + } +} + +// assigns addition of two vars to an output var +// vars can be vec4s or floats (or one of each) +// result is always vec4 +// if either var is "" then assign to the other var +// if both are "" then assign all zeros +static inline void add_helper(const char* outputVar, + const char* var0, + const char* var1, + GrStringBuilder* code) { + GrAssert(NULL != outputVar); + GrAssert(NULL != var0); + GrAssert(NULL != var1); + GrAssert(NULL != code); + + bool has0 = '\0' != *var0; + bool has1 = '\0' != *var1; + + if (!has0 && !has1) { + code->appendf("\t%s = %s;\n", outputVar, all_zeros_vec(4)); + } else if (!has0) { + code->appendf("\t%s = vec4(%s);\n", outputVar, var1); + } else if (!has1) { + code->appendf("\t%s = vec4(%s);\n", outputVar, var0); + } else { + code->appendf("\t%s = vec4(%s + %s);\n", outputVar, var0, var1); + } +} + +// given two blend coeffecients determine whether the src +// and/or dst computation can be omitted. +static inline void needBlendInputs(SkXfermode::Coeff srcCoeff, + SkXfermode::Coeff dstCoeff, + bool* needSrcValue, + bool* needDstValue) { + if (SkXfermode::kZero_Coeff == srcCoeff) { + switch (dstCoeff) { + // these all read the src + case SkXfermode::kSC_Coeff: + case SkXfermode::kISC_Coeff: + case SkXfermode::kSA_Coeff: + case SkXfermode::kISA_Coeff: + *needSrcValue = true; + break; + default: + *needSrcValue = false; + break; + } + } else { + *needSrcValue = true; + } + if (SkXfermode::kZero_Coeff == dstCoeff) { + switch (srcCoeff) { + // these all read the dst + case SkXfermode::kDC_Coeff: + case SkXfermode::kIDC_Coeff: + case SkXfermode::kDA_Coeff: + case SkXfermode::kIDA_Coeff: + *needDstValue = true; + break; + default: + *needDstValue = false; + break; + } + } else { + *needDstValue = true; + } +} + +/** + * Create a blend_coeff * value string to be used in shader code. Sets empty + * string if result is trivially zero. + */ +static void blendTermString(GrStringBuilder* str, SkXfermode::Coeff coeff, + const char* src, const char* dst, + const char* value) { + switch (coeff) { + case SkXfermode::kZero_Coeff: /** 0 */ + *str = ""; + break; + case SkXfermode::kOne_Coeff: /** 1 */ + *str = value; + break; + case SkXfermode::kSC_Coeff: + str->printf("(%s * %s)", src, value); + break; + case SkXfermode::kISC_Coeff: + str->printf("((%s - %s) * %s)", all_ones_vec(4), src, value); + break; + case SkXfermode::kDC_Coeff: + str->printf("(%s * %s)", dst, value); + break; + case SkXfermode::kIDC_Coeff: + str->printf("((%s - %s) * %s)", all_ones_vec(4), dst, value); + break; + case SkXfermode::kSA_Coeff: /** src alpha */ + str->printf("(%s.a * %s)", src, value); + break; + case SkXfermode::kISA_Coeff: /** inverse src alpha (i.e. 1 - sa) */ + str->printf("((1.0 - %s.a) * %s)", src, value); + break; + case SkXfermode::kDA_Coeff: /** dst alpha */ + str->printf("(%s.a * %s)", dst, value); + break; + case SkXfermode::kIDA_Coeff: /** inverse dst alpha (i.e. 1 - da) */ + str->printf("((1.0 - %s.a) * %s)", dst, value); + break; + default: + GrCrash("Unexpected xfer coeff."); + break; + } +} +/** + * Adds a line to the fragment shader code which modifies the color by + * the specified color filter. + */ +static void addColorFilter(GrStringBuilder* fsCode, const char * outputVar, + SkXfermode::Coeff uniformCoeff, + SkXfermode::Coeff colorCoeff, + const char* inColor) { + GrStringBuilder colorStr, constStr; + blendTermString(&colorStr, colorCoeff, COL_FILTER_UNI_NAME, + inColor, inColor); + blendTermString(&constStr, uniformCoeff, COL_FILTER_UNI_NAME, + inColor, COL_FILTER_UNI_NAME); + + add_helper(outputVar, colorStr.c_str(), constStr.c_str(), fsCode); +} +/** + * Adds code to the fragment shader code which modifies the color by + * the specified color matrix. + */ +static void addColorMatrix(GrStringBuilder* fsCode, const char * outputVar, + const char* inColor) { + fsCode->appendf("\t%s = %s * vec4(%s.rgb / %s.a, %s.a) + %s;\n", outputVar, COL_MATRIX_UNI_NAME, inColor, inColor, inColor, COL_MATRIX_VEC_UNI_NAME); + fsCode->appendf("\t%s.rgb *= %s.a;\n", outputVar, outputVar); +} + +namespace { + +// Adds a var that is computed in the VS and read in FS. +// If there is a GS it will just pass it through. +void append_varying(GrGLShaderVar::Type type, + const char* name, + ShaderCodeSegments* segments, + const char** vsOutName = NULL, + const char** fsInName = NULL) { + segments->fVSOutputs.push_back(); + segments->fVSOutputs.back().setType(type); + segments->fVSOutputs.back().setTypeModifier( + GrGLShaderVar::kOut_TypeModifier); + segments->fVSOutputs.back().accessName()->printf("v%s", name); + if (vsOutName) { + *vsOutName = segments->fVSOutputs.back().getName().c_str(); + } + // input to FS comes either from VS or GS + const GrStringBuilder* fsName; + if (segments->fUsesGS) { + // if we have a GS take each varying in as an array + // and output as non-array. + segments->fGSInputs.push_back(); + segments->fGSInputs.back().setType(type); + segments->fGSInputs.back().setTypeModifier( + GrGLShaderVar::kIn_TypeModifier); + segments->fGSInputs.back().setUnsizedArray(); + *segments->fGSInputs.back().accessName() = + segments->fVSOutputs.back().getName(); + segments->fGSOutputs.push_back(); + segments->fGSOutputs.back().setType(type); + segments->fGSOutputs.back().setTypeModifier( + GrGLShaderVar::kOut_TypeModifier); + segments->fGSOutputs.back().accessName()->printf("g%s", name); + fsName = segments->fGSOutputs.back().accessName(); + } else { + fsName = segments->fVSOutputs.back().accessName(); + } + segments->fFSInputs.push_back(); + segments->fFSInputs.back().setType(type); + segments->fFSInputs.back().setTypeModifier( + GrGLShaderVar::kIn_TypeModifier); + segments->fFSInputs.back().setName(*fsName); + if (fsInName) { + *fsInName = fsName->c_str(); + } +} + +// version of above that adds a stage number to the +// the var name (for uniqueness) +void append_varying(GrGLShaderVar::Type type, + const char* name, + int stageNum, + ShaderCodeSegments* segments, + const char** vsOutName = NULL, + const char** fsInName = NULL) { + GrStringBuilder nameWithStage(name); + nameWithStage.appendS32(stageNum); + append_varying(type, nameWithStage.c_str(), segments, vsOutName, fsInName); +} +} + +void GrGLProgram::genEdgeCoverage(const GrGLInterface* gl, + GrVertexLayout layout, + CachedData* programData, + GrStringBuilder* coverageVar, + ShaderCodeSegments* segments) const { + if (fProgramDesc.fEdgeAANumEdges > 0) { + segments->fFSUnis.push_back().set(GrGLShaderVar::kVec3f_Type, + GrGLShaderVar::kUniform_TypeModifier, + EDGES_UNI_NAME, + fProgramDesc.fEdgeAANumEdges); + programData->fUniLocations.fEdgesUni = kUseUniform; + int count = fProgramDesc.fEdgeAANumEdges; + segments->fFSCode.append( + "\tvec3 pos = vec3(gl_FragCoord.xy, 1);\n"); + for (int i = 0; i < count; i++) { + segments->fFSCode.append("\tfloat a"); + segments->fFSCode.appendS32(i); + segments->fFSCode.append(" = clamp(dot(" EDGES_UNI_NAME "["); + segments->fFSCode.appendS32(i); + segments->fFSCode.append("], pos), 0.0, 1.0);\n"); + } + if (fProgramDesc.fEdgeAAConcave && (count & 0x01) == 0) { + // For concave polys, we consider the edges in pairs. + segments->fFSFunctions.append("float cross2(vec2 a, vec2 b) {\n"); + segments->fFSFunctions.append("\treturn dot(a, vec2(b.y, -b.x));\n"); + segments->fFSFunctions.append("}\n"); + for (int i = 0; i < count; i += 2) { + segments->fFSCode.appendf("\tfloat eb%d;\n", i / 2); + segments->fFSCode.appendf("\tif (cross2(" EDGES_UNI_NAME "[%d].xy, " EDGES_UNI_NAME "[%d].xy) < 0.0) {\n", i, i + 1); + segments->fFSCode.appendf("\t\teb%d = a%d * a%d;\n", i / 2, i, i + 1); + segments->fFSCode.append("\t} else {\n"); + segments->fFSCode.appendf("\t\teb%d = a%d + a%d - a%d * a%d;\n", i / 2, i, i + 1, i, i + 1); + segments->fFSCode.append("\t}\n"); + } + segments->fFSCode.append("\tfloat edgeAlpha = "); + for (int i = 0; i < count / 2 - 1; i++) { + segments->fFSCode.appendf("min(eb%d, ", i); + } + segments->fFSCode.appendf("eb%d", count / 2 - 1); + for (int i = 0; i < count / 2 - 1; i++) { + segments->fFSCode.append(")"); + } + segments->fFSCode.append(";\n"); + } else { + segments->fFSCode.append("\tfloat edgeAlpha = "); + for (int i = 0; i < count - 1; i++) { + segments->fFSCode.appendf("min(a%d * a%d, ", i, i + 1); + } + segments->fFSCode.appendf("a%d * a0", count - 1); + for (int i = 0; i < count - 1; i++) { + segments->fFSCode.append(")"); + } + segments->fFSCode.append(";\n"); + } + *coverageVar = "edgeAlpha"; + } else if (layout & GrDrawTarget::kEdge_VertexLayoutBit) { + const char *vsName, *fsName; + append_varying(GrGLShaderVar::kVec4f_Type, "Edge", segments, + &vsName, &fsName); + segments->fVSAttrs.push_back().set(GrGLShaderVar::kVec4f_Type, + GrGLShaderVar::kAttribute_TypeModifier, EDGE_ATTR_NAME); + segments->fVSCode.appendf("\t%s = " EDGE_ATTR_NAME ";\n", vsName); + if (GrDrawState::kHairLine_EdgeType == fProgramDesc.fVertexEdgeType) { + segments->fFSCode.appendf("\tfloat edgeAlpha = abs(dot(vec3(gl_FragCoord.xy,1), %s.xyz));\n", fsName); + segments->fFSCode.append("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n"); + } else if (GrDrawState::kQuad_EdgeType == fProgramDesc.fVertexEdgeType) { + segments->fFSCode.appendf("\tfloat edgeAlpha;\n"); + // keep the derivative instructions outside the conditional + segments->fFSCode.appendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName); + segments->fFSCode.appendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName); + segments->fFSCode.appendf("\tif (%s.z > 0.0 && %s.w > 0.0) {\n", fsName, fsName); + // today we know z and w are in device space. We could use derivatives + segments->fFSCode.appendf("\t\tedgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);\n", fsName, fsName); + segments->fFSCode.append ("\t} else {\n"); + segments->fFSCode.appendf("\t\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n" + "\t\t 2.0*%s.x*duvdy.x - duvdy.y);\n", + fsName, fsName); + segments->fFSCode.appendf("\t\tedgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName); + segments->fFSCode.appendf("\t\tedgeAlpha = clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);\n" + "\t}\n"); + if (gl->supportsES2()) { + segments->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n"); + } + } else { + GrAssert(GrDrawState::kHairQuad_EdgeType == fProgramDesc.fVertexEdgeType); + segments->fFSCode.appendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName); + segments->fFSCode.appendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName); + segments->fFSCode.appendf("\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n" + "\t 2.0*%s.x*duvdy.x - duvdy.y);\n", + fsName, fsName); + segments->fFSCode.appendf("\tfloat edgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName); + segments->fFSCode.append("\tedgeAlpha = sqrt(edgeAlpha*edgeAlpha / dot(gF, gF));\n"); + segments->fFSCode.append("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n"); + if (gl->supportsES2()) { + segments->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n"); + } + } + *coverageVar = "edgeAlpha"; + } else { + coverageVar->reset(); + } +} + +namespace { + +void genInputColor(GrGLProgram::ProgramDesc::ColorInput colorInput, + GrGLProgram::CachedData* programData, + ShaderCodeSegments* segments, + GrStringBuilder* inColor) { + switch (colorInput) { + case GrGLProgram::ProgramDesc::kAttribute_ColorInput: { + segments->fVSAttrs.push_back().set(GrGLShaderVar::kVec4f_Type, + GrGLShaderVar::kAttribute_TypeModifier, + COL_ATTR_NAME); + const char *vsName, *fsName; + append_varying(GrGLShaderVar::kVec4f_Type, "Color", segments, &vsName, &fsName); + segments->fVSCode.appendf("\t%s = " COL_ATTR_NAME ";\n", vsName); + *inColor = fsName; + } break; + case GrGLProgram::ProgramDesc::kUniform_ColorInput: + segments->fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type, + GrGLShaderVar::kUniform_TypeModifier, + COL_UNI_NAME); + programData->fUniLocations.fColorUni = kUseUniform; + *inColor = COL_UNI_NAME; + break; + case GrGLProgram::ProgramDesc::kTransBlack_ColorInput: + GrAssert(!"needComputedColor should be false."); + break; + case GrGLProgram::ProgramDesc::kSolidWhite_ColorInput: + break; + default: + GrCrash("Unknown color type."); + break; + } +} + +void genAttributeCoverage(ShaderCodeSegments* segments, + GrStringBuilder* inOutCoverage) { + segments->fVSAttrs.push_back().set(GrGLShaderVar::kVec4f_Type, + GrGLShaderVar::kAttribute_TypeModifier, + COV_ATTR_NAME); + const char *vsName, *fsName; + append_varying(GrGLShaderVar::kVec4f_Type, "Coverage", + segments, &vsName, &fsName); + segments->fVSCode.appendf("\t%s = " COV_ATTR_NAME ";\n", vsName); + if (inOutCoverage->size()) { + segments->fFSCode.appendf("\tvec4 attrCoverage = %s * %s;\n", + fsName, inOutCoverage->c_str()); + *inOutCoverage = "attrCoverage"; + } else { + *inOutCoverage = fsName; + } +} + +void genUniformCoverage(ShaderCodeSegments* segments, + GrGLProgram::CachedData* programData, + GrStringBuilder* inOutCoverage) { + segments->fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type, + GrGLShaderVar::kUniform_TypeModifier, + COV_UNI_NAME); + programData->fUniLocations.fCoverageUni = kUseUniform; + if (inOutCoverage->size()) { + segments->fFSCode.appendf("\tvec4 uniCoverage = %s * %s;\n", + COV_UNI_NAME, inOutCoverage->c_str()); + *inOutCoverage = "uniCoverage"; + } else { + *inOutCoverage = COV_UNI_NAME; + } +} + +} + +void GrGLProgram::genGeometryShader(const GrGLInterface* gl, + GrGLSLGeneration glslGeneration, + ShaderCodeSegments* segments) const { +#if GR_GL_EXPERIMENTAL_GS + if (fProgramDesc.fExperimentalGS) { + GrAssert(glslGeneration >= k150_GrGLSLGeneration); + segments->fGSHeader.append("layout(triangles) in;\n" + "layout(triangle_strip, max_vertices = 6) out;\n"); + segments->fGSCode.append("void main() {\n" + "\tfor (int i = 0; i < 3; ++i) {\n" + "\t\tgl_Position = gl_in[i].gl_Position;\n"); + if (this->fProgramDesc.fEmitsPointSize) { + segments->fGSCode.append("\t\tgl_PointSize = 1.0;\n"); + } + GrAssert(segments->fGSInputs.count() == segments->fGSOutputs.count()); + int count = segments->fGSInputs.count(); + for (int i = 0; i < count; ++i) { + segments->fGSCode.appendf("\t\t%s = %s[i];\n", + segments->fGSOutputs[i].getName().c_str(), + segments->fGSInputs[i].getName().c_str()); + } + segments->fGSCode.append("\t\tEmitVertex();\n" + "\t}\n" + "\tEndPrimitive();\n" + "}\n"); + } +#endif +} + +const char* GrGLProgram::adjustInColor(const GrStringBuilder& inColor) const { + if (inColor.size()) { + return inColor.c_str(); + } else { + if (ProgramDesc::kSolidWhite_ColorInput == fProgramDesc.fColorInput) { + return all_ones_vec(4); + } else { + return all_zeros_vec(4); + } + } +} + + +bool GrGLProgram::genProgram(const GrGLInterface* gl, + GrGLSLGeneration glslGeneration, + GrGLProgram::CachedData* programData) const { + + ShaderCodeSegments segments; + const uint32_t& layout = fProgramDesc.fVertexLayout; + + programData->fUniLocations.reset(); + +#if GR_GL_EXPERIMENTAL_GS + segments.fUsesGS = fProgramDesc.fExperimentalGS; +#endif + + SkXfermode::Coeff colorCoeff, uniformCoeff; + bool applyColorMatrix = SkToBool(fProgramDesc.fColorMatrixEnabled); + // The rest of transfer mode color filters have not been implemented + if (fProgramDesc.fColorFilterXfermode < SkXfermode::kCoeffModesCnt) { + GR_DEBUGCODE(bool success =) + SkXfermode::ModeAsCoeff(static_cast<SkXfermode::Mode> + (fProgramDesc.fColorFilterXfermode), + &uniformCoeff, &colorCoeff); + GR_DEBUGASSERT(success); + } else { + colorCoeff = SkXfermode::kOne_Coeff; + uniformCoeff = SkXfermode::kZero_Coeff; + } + + // no need to do the color filter / matrix at all if coverage is 0. The + // output color is scaled by the coverage. All the dual source outputs are + // scaled by the coverage as well. + if (ProgramDesc::kTransBlack_ColorInput == fProgramDesc.fCoverageInput) { + colorCoeff = SkXfermode::kZero_Coeff; + uniformCoeff = SkXfermode::kZero_Coeff; + applyColorMatrix = false; + } + + // If we know the final color is going to be all zeros then we can + // simplify the color filter coeffecients. needComputedColor will then + // come out false below. + if (ProgramDesc::kTransBlack_ColorInput == fProgramDesc.fColorInput) { + colorCoeff = SkXfermode::kZero_Coeff; + if (SkXfermode::kDC_Coeff == uniformCoeff || + SkXfermode::kDA_Coeff == uniformCoeff) { + uniformCoeff = SkXfermode::kZero_Coeff; + } else if (SkXfermode::kIDC_Coeff == uniformCoeff || + SkXfermode::kIDA_Coeff == uniformCoeff) { + uniformCoeff = SkXfermode::kOne_Coeff; + } + } + + bool needColorFilterUniform; + bool needComputedColor; + needBlendInputs(uniformCoeff, colorCoeff, + &needColorFilterUniform, &needComputedColor); + + // the dual source output has no canonical var name, have to + // declare an output, which is incompatible with gl_FragColor/gl_FragData. + bool dualSourceOutputWritten = false; + segments.fHeader.printf(GrGetGLSLVersionDecl(gl->fBindingsExported, + glslGeneration)); + + GrGLShaderVar colorOutput; + bool isColorDeclared = GrGLSLSetupFSColorOuput(glslGeneration, + declared_color_output_name(), + &colorOutput); + if (isColorDeclared) { + segments.fFSOutputs.push_back(colorOutput); + } + +#if GR_GL_ATTRIBUTE_MATRICES + segments.fVSAttrs.push_back().set(GrGLShaderVar::kMat33f_Type, + GrGLShaderVar::kAttribute_TypeModifier, VIEW_MATRIX_NAME); + programData->fUniLocations.fViewMatrixUni = kSetAsAttribute; +#else + segments.fVSUnis.push_back().set(GrGLShaderVar::kMat33f_Type, + GrGLShaderVar::kUniform_TypeModifier, VIEW_MATRIX_NAME); + programData->fUniLocations.fViewMatrixUni = kUseUniform; +#endif + segments.fVSAttrs.push_back().set(GrGLShaderVar::kVec2f_Type, + GrGLShaderVar::kAttribute_TypeModifier, POS_ATTR_NAME); + + segments.fVSCode.append( + "void main() {\n" + "\tvec3 pos3 = " VIEW_MATRIX_NAME " * vec3("POS_ATTR_NAME", 1);\n" + "\tgl_Position = vec4(pos3.xy, 0, pos3.z);\n"); + + // incoming color to current stage being processed. + GrStringBuilder inColor; + + if (needComputedColor) { + genInputColor((ProgramDesc::ColorInput) fProgramDesc.fColorInput, + programData, &segments, &inColor); + } + + // we output point size in the GS if present + if (fProgramDesc.fEmitsPointSize && !segments.fUsesGS){ + segments.fVSCode.append("\tgl_PointSize = 1.0;\n"); + } + + segments.fFSCode.append("void main() {\n"); + + // add texture coordinates that are used to the list of vertex attr decls + GrStringBuilder texCoordAttrs[GrDrawState::kMaxTexCoords]; + for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) { + if (GrDrawTarget::VertexUsesTexCoordIdx(t, layout)) { + tex_attr_name(t, texCoordAttrs + t); + segments.fVSAttrs.push_back().set(GrGLShaderVar::kVec2f_Type, + GrGLShaderVar::kAttribute_TypeModifier, + texCoordAttrs[t].c_str()); + } + } + + /////////////////////////////////////////////////////////////////////////// + // compute the final color + + // if we have color stages string them together, feeding the output color + // of each to the next and generating code for each stage. + if (needComputedColor) { + GrStringBuilder outColor; + for (int s = 0; s < fProgramDesc.fFirstCoverageStage; ++s) { + if (fProgramDesc.fStages[s].isEnabled()) { + // create var to hold stage result + outColor = "color"; + outColor.appendS32(s); + segments.fFSCode.appendf("\tvec4 %s;\n", outColor.c_str()); + + const char* inCoords; + // figure out what our input coords are + if (GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(s) & + layout) { + inCoords = POS_ATTR_NAME; + } else { + int tcIdx = GrDrawTarget::VertexTexCoordsForStage(s, layout); + // we better have input tex coordinates if stage is enabled. + GrAssert(tcIdx >= 0); + GrAssert(texCoordAttrs[tcIdx].size()); + inCoords = texCoordAttrs[tcIdx].c_str(); + } + + this->genStageCode(gl, + s, + fProgramDesc.fStages[s], + inColor.size() ? inColor.c_str() : NULL, + outColor.c_str(), + inCoords, + &segments, + &programData->fUniLocations.fStages[s]); + inColor = outColor; + } + } + } + + // if have all ones or zeros for the "dst" input to the color filter then we + // may be able to make additional optimizations. + if (needColorFilterUniform && needComputedColor && !inColor.size()) { + GrAssert(ProgramDesc::kSolidWhite_ColorInput == fProgramDesc.fColorInput); + bool uniformCoeffIsZero = SkXfermode::kIDC_Coeff == uniformCoeff || + SkXfermode::kIDA_Coeff == uniformCoeff; + if (uniformCoeffIsZero) { + uniformCoeff = SkXfermode::kZero_Coeff; + bool bogus; + needBlendInputs(SkXfermode::kZero_Coeff, colorCoeff, + &needColorFilterUniform, &bogus); + } + } + if (needColorFilterUniform) { + segments.fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type, + GrGLShaderVar::kUniform_TypeModifier, + COL_FILTER_UNI_NAME); + programData->fUniLocations.fColorFilterUni = kUseUniform; + } + bool wroteFragColorZero = false; + if (SkXfermode::kZero_Coeff == uniformCoeff && + SkXfermode::kZero_Coeff == colorCoeff && + !applyColorMatrix) { + segments.fFSCode.appendf("\t%s = %s;\n", + colorOutput.getName().c_str(), + all_zeros_vec(4)); + wroteFragColorZero = true; + } else if (SkXfermode::kDst_Mode != fProgramDesc.fColorFilterXfermode) { + segments.fFSCode.appendf("\tvec4 filteredColor;\n"); + const char* color = adjustInColor(inColor); + addColorFilter(&segments.fFSCode, "filteredColor", uniformCoeff, + colorCoeff, color); + inColor = "filteredColor"; + } + if (applyColorMatrix) { + segments.fFSUnis.push_back().set(GrGLShaderVar::kMat44f_Type, + GrGLShaderVar::kUniform_TypeModifier, + COL_MATRIX_UNI_NAME); + segments.fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type, + GrGLShaderVar::kUniform_TypeModifier, + COL_MATRIX_VEC_UNI_NAME); + programData->fUniLocations.fColorMatrixUni = kUseUniform; + programData->fUniLocations.fColorMatrixVecUni = kUseUniform; + segments.fFSCode.appendf("\tvec4 matrixedColor;\n"); + const char* color = adjustInColor(inColor); + addColorMatrix(&segments.fFSCode, "matrixedColor", color); + inColor = "matrixedColor"; + } + + /////////////////////////////////////////////////////////////////////////// + // compute the partial coverage (coverage stages and edge aa) + + GrStringBuilder inCoverage; + bool coverageIsZero = ProgramDesc::kTransBlack_ColorInput == + fProgramDesc.fCoverageInput; + // we don't need to compute coverage at all if we know the final shader + // output will be zero and we don't have a dual src blend output. + if (!wroteFragColorZero || + ProgramDesc::kNone_DualSrcOutput != fProgramDesc.fDualSrcOutput) { + + if (!coverageIsZero) { + this->genEdgeCoverage(gl, + layout, + programData, + &inCoverage, + &segments); + + switch (fProgramDesc.fCoverageInput) { + case ProgramDesc::kSolidWhite_ColorInput: + // empty string implies solid white + break; + case ProgramDesc::kAttribute_ColorInput: + genAttributeCoverage(&segments, &inCoverage); + break; + case ProgramDesc::kUniform_ColorInput: + genUniformCoverage(&segments, programData, &inCoverage); + break; + default: + GrCrash("Unexpected input coverage."); + } + + GrStringBuilder outCoverage; + const int& startStage = fProgramDesc.fFirstCoverageStage; + for (int s = startStage; s < GrDrawState::kNumStages; ++s) { + if (fProgramDesc.fStages[s].isEnabled()) { + // create var to hold stage output + outCoverage = "coverage"; + outCoverage.appendS32(s); + segments.fFSCode.appendf("\tvec4 %s;\n", + outCoverage.c_str()); + + const char* inCoords; + // figure out what our input coords are + if (GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(s) & + layout) { + inCoords = POS_ATTR_NAME; + } else { + int tcIdx = + GrDrawTarget::VertexTexCoordsForStage(s, layout); + // we better have input tex coordinates if stage is + // enabled. + GrAssert(tcIdx >= 0); + GrAssert(texCoordAttrs[tcIdx].size()); + inCoords = texCoordAttrs[tcIdx].c_str(); + } + + genStageCode(gl, s, + fProgramDesc.fStages[s], + inCoverage.size() ? inCoverage.c_str() : NULL, + outCoverage.c_str(), + inCoords, + &segments, + &programData->fUniLocations.fStages[s]); + inCoverage = outCoverage; + } + } + } + if (ProgramDesc::kNone_DualSrcOutput != fProgramDesc.fDualSrcOutput) { + segments.fFSOutputs.push_back().set(GrGLShaderVar::kVec4f_Type, + GrGLShaderVar::kOut_TypeModifier, + dual_source_output_name()); + bool outputIsZero = coverageIsZero; + GrStringBuilder coeff; + if (!outputIsZero && + ProgramDesc::kCoverage_DualSrcOutput != + fProgramDesc.fDualSrcOutput && !wroteFragColorZero) { + if (!inColor.size()) { + outputIsZero = true; + } else { + if (fProgramDesc.fDualSrcOutput == + ProgramDesc::kCoverageISA_DualSrcOutput) { + coeff.printf("(1 - %s.a)", inColor.c_str()); + } else { + coeff.printf("(vec4(1,1,1,1) - %s)", inColor.c_str()); + } + } + } + if (outputIsZero) { + segments.fFSCode.appendf("\t%s = %s;\n", + dual_source_output_name(), + all_zeros_vec(4)); + } else { + modulate_helper(dual_source_output_name(), + coeff.c_str(), + inCoverage.c_str(), + &segments.fFSCode); + } + dualSourceOutputWritten = true; + } + } + + /////////////////////////////////////////////////////////////////////////// + // combine color and coverage as frag color + + if (!wroteFragColorZero) { + if (coverageIsZero) { + segments.fFSCode.appendf("\t%s = %s;\n", + colorOutput.getName().c_str(), + all_zeros_vec(4)); + } else { + modulate_helper(colorOutput.getName().c_str(), + inColor.c_str(), + inCoverage.c_str(), + &segments.fFSCode); + } + if (ProgramDesc::kNo_OutputPM == fProgramDesc.fOutputPM) { + segments.fFSCode.appendf("\t%s = %s.a <= 0.0 ? vec4(0,0,0,0) : vec4(%s.rgb / %s.a, %s.a);\n", + colorOutput.getName().c_str(), + colorOutput.getName().c_str(), + colorOutput.getName().c_str(), + colorOutput.getName().c_str(), + colorOutput.getName().c_str()); + } + } + + segments.fVSCode.append("}\n"); + segments.fFSCode.append("}\n"); + + /////////////////////////////////////////////////////////////////////////// + // insert GS +#if GR_DEBUG + this->genGeometryShader(gl, glslGeneration, &segments); +#endif + + /////////////////////////////////////////////////////////////////////////// + // compile and setup attribs and unis + + if (!CompileShaders(gl, glslGeneration, segments, programData)) { + return false; + } + + if (!this->bindOutputsAttribsAndLinkProgram(gl, texCoordAttrs, + isColorDeclared, + dualSourceOutputWritten, + programData)) { + return false; + } + + this->getUniformLocationsAndInitCache(gl, programData); + + return true; +} + +namespace { + +inline void expand_decls(const VarArray& vars, + const GrGLInterface* gl, + GrStringBuilder* string, + GrGLSLGeneration gen) { + const int count = vars.count(); + for (int i = 0; i < count; ++i) { + vars[i].appendDecl(gl, string, gen); + } +} + +inline void print_shader(int stringCnt, + const char** strings, + int* stringLengths) { + for (int i = 0; i < stringCnt; ++i) { + if (NULL == stringLengths || stringLengths[i] < 0) { + GrPrintf(strings[i]); + } else { + GrPrintf("%.*s", stringLengths[i], strings[i]); + } + } +} + +typedef SkTArray<const char*, true> StrArray; +#define PREALLOC_STR_ARRAY(N) SkSTArray<(N), const char*, true> + +typedef SkTArray<int, true> LengthArray; +#define PREALLOC_LENGTH_ARRAY(N) SkSTArray<(N), int, true> + +// these shouldn't relocate +typedef GrTAllocator<GrStringBuilder> TempArray; +#define PREALLOC_TEMP_ARRAY(N) GrSTAllocator<(N), GrStringBuilder> + +inline void append_string(const GrStringBuilder& str, + StrArray* strings, + LengthArray* lengths) { + int length = (int) str.size(); + if (length) { + strings->push_back(str.c_str()); + lengths->push_back(length); + } + GrAssert(strings->count() == lengths->count()); +} + +inline void append_decls(const VarArray& vars, + const GrGLInterface* gl, + StrArray* strings, + LengthArray* lengths, + TempArray* temp, + GrGLSLGeneration gen) { + expand_decls(vars, gl, &temp->push_back(), gen); + append_string(temp->back(), strings, lengths); +} + +} + +bool GrGLProgram::CompileShaders(const GrGLInterface* gl, + GrGLSLGeneration glslGeneration, + const ShaderCodeSegments& segments, + CachedData* programData) { + enum { kPreAllocStringCnt = 8 }; + + PREALLOC_STR_ARRAY(kPreAllocStringCnt) strs; + PREALLOC_LENGTH_ARRAY(kPreAllocStringCnt) lengths; + PREALLOC_TEMP_ARRAY(kPreAllocStringCnt) temps; + + GrStringBuilder unis; + GrStringBuilder inputs; + GrStringBuilder outputs; + + append_string(segments.fHeader, &strs, &lengths); + append_decls(segments.fVSUnis, gl, &strs, &lengths, &temps, glslGeneration); + append_decls(segments.fVSAttrs, gl, &strs, &lengths, + &temps, glslGeneration); + append_decls(segments.fVSOutputs, gl, &strs, &lengths, + &temps, glslGeneration); + append_string(segments.fVSCode, &strs, &lengths); + +#if PRINT_SHADERS + print_shader(strs.count(), &strs[0], &lengths[0]); + GrPrintf("\n"); +#endif + + programData->fVShaderID = + CompileShader(gl, GR_GL_VERTEX_SHADER, strs.count(), + &strs[0], &lengths[0]); + + if (!programData->fVShaderID) { + return false; + } + if (segments.fUsesGS) { + strs.reset(); + lengths.reset(); + temps.reset(); + append_string(segments.fHeader, &strs, &lengths); + append_string(segments.fGSHeader, &strs, &lengths); + append_decls(segments.fGSInputs, gl, &strs, &lengths, + &temps, glslGeneration); + append_decls(segments.fGSOutputs, gl, &strs, &lengths, + &temps, glslGeneration); + append_string(segments.fGSCode, &strs, &lengths); +#if PRINT_SHADERS + print_shader(strs.count(), &strs[0], &lengths[0]); + GrPrintf("\n"); +#endif + programData->fGShaderID = + CompileShader(gl, GR_GL_GEOMETRY_SHADER, strs.count(), + &strs[0], &lengths[0]); + } else { + programData->fGShaderID = 0; + } + + strs.reset(); + lengths.reset(); + temps.reset(); + + append_string(segments.fHeader, &strs, &lengths); + GrStringBuilder precisionStr(GrGetGLSLShaderPrecisionDecl(gl->fBindingsExported)); + append_string(precisionStr, &strs, &lengths); + append_decls(segments.fFSUnis, gl, &strs, &lengths, &temps, glslGeneration); + append_decls(segments.fFSInputs, gl, &strs, &lengths, + &temps, glslGeneration); + // We shouldn't have declared outputs on 1.10 + GrAssert(k110_GrGLSLGeneration != glslGeneration || + segments.fFSOutputs.empty()); + append_decls(segments.fFSOutputs, gl, &strs, &lengths, + &temps, glslGeneration); + append_string(segments.fFSFunctions, &strs, &lengths); + append_string(segments.fFSCode, &strs, &lengths); + +#if PRINT_SHADERS + print_shader(strs.count(), &strs[0], &lengths[0]); + GrPrintf("\n"); +#endif + + programData->fFShaderID = + CompileShader(gl, GR_GL_FRAGMENT_SHADER, strs.count(), + &strs[0], &lengths[0]); + + if (!programData->fFShaderID) { + return false; + } + + return true; +} + +GrGLuint GrGLProgram::CompileShader(const GrGLInterface* gl, + GrGLenum type, + int stringCnt, + const char** strings, + int* stringLengths) { + SK_TRACE_EVENT1("GrGLProgram::CompileShader", + "stringCount", SkStringPrintf("%i", stringCnt).c_str()); + + GrGLuint shader; + GR_GL_CALL_RET(gl, shader, CreateShader(type)); + if (0 == shader) { + return 0; + } + + GrGLint compiled = GR_GL_INIT_ZERO; + GR_GL_CALL(gl, ShaderSource(shader, stringCnt, strings, stringLengths)); + GR_GL_CALL(gl, CompileShader(shader)); + GR_GL_CALL(gl, GetShaderiv(shader, GR_GL_COMPILE_STATUS, &compiled)); + + if (!compiled) { + GrGLint infoLen = GR_GL_INIT_ZERO; + GR_GL_CALL(gl, GetShaderiv(shader, GR_GL_INFO_LOG_LENGTH, &infoLen)); + SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger + if (infoLen > 0) { + // retrieve length even though we don't need it to workaround + // bug in chrome cmd buffer param validation. + GrGLsizei length = GR_GL_INIT_ZERO; + GR_GL_CALL(gl, GetShaderInfoLog(shader, infoLen+1, + &length, (char*)log.get())); + print_shader(stringCnt, strings, stringLengths); + GrPrintf("\n%s", log.get()); + } + GrAssert(!"Shader compilation failed!"); + GR_GL_CALL(gl, DeleteShader(shader)); + return 0; + } + return shader; +} + +bool GrGLProgram::bindOutputsAttribsAndLinkProgram( + const GrGLInterface* gl, + GrStringBuilder texCoordAttrNames[], + bool bindColorOut, + bool bindDualSrcOut, + CachedData* programData) const { + GR_GL_CALL_RET(gl, programData->fProgramID, CreateProgram()); + if (!programData->fProgramID) { + return false; + } + const GrGLint& progID = programData->fProgramID; + + GR_GL_CALL(gl, AttachShader(progID, programData->fVShaderID)); + if (programData->fGShaderID) { + GR_GL_CALL(gl, AttachShader(progID, programData->fGShaderID)); + } + GR_GL_CALL(gl, AttachShader(progID, programData->fFShaderID)); + + if (bindColorOut) { + GR_GL_CALL(gl, BindFragDataLocation(programData->fProgramID, + 0, declared_color_output_name())); + } + if (bindDualSrcOut) { + GR_GL_CALL(gl, BindFragDataLocationIndexed(programData->fProgramID, + 0, 1, dual_source_output_name())); + } + + // Bind the attrib locations to same values for all shaders + GR_GL_CALL(gl, BindAttribLocation(progID, PositionAttributeIdx(), + POS_ATTR_NAME)); + for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) { + if (texCoordAttrNames[t].size()) { + GR_GL_CALL(gl, BindAttribLocation(progID, + TexCoordAttributeIdx(t), + texCoordAttrNames[t].c_str())); + } + } + + if (kSetAsAttribute == programData->fUniLocations.fViewMatrixUni) { + GR_GL_CALL(gl, BindAttribLocation(progID, + ViewMatrixAttributeIdx(), + VIEW_MATRIX_NAME)); + } + + for (int s = 0; s < GrDrawState::kNumStages; ++s) { + const StageUniLocations& unis = programData->fUniLocations.fStages[s]; + if (kSetAsAttribute == unis.fTextureMatrixUni) { + GrStringBuilder matName; + tex_matrix_name(s, &matName); + GR_GL_CALL(gl, BindAttribLocation(progID, + TextureMatrixAttributeIdx(s), + matName.c_str())); + } + } + + GR_GL_CALL(gl, BindAttribLocation(progID, ColorAttributeIdx(), + COL_ATTR_NAME)); + GR_GL_CALL(gl, BindAttribLocation(progID, CoverageAttributeIdx(), + COV_ATTR_NAME)); + GR_GL_CALL(gl, BindAttribLocation(progID, EdgeAttributeIdx(), + EDGE_ATTR_NAME)); + + GR_GL_CALL(gl, LinkProgram(progID)); + + GrGLint linked = GR_GL_INIT_ZERO; + GR_GL_CALL(gl, GetProgramiv(progID, GR_GL_LINK_STATUS, &linked)); + if (!linked) { + GrGLint infoLen = GR_GL_INIT_ZERO; + GR_GL_CALL(gl, GetProgramiv(progID, GR_GL_INFO_LOG_LENGTH, &infoLen)); + SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger + if (infoLen > 0) { + // retrieve length even though we don't need it to workaround + // bug in chrome cmd buffer param validation. + GrGLsizei length = GR_GL_INIT_ZERO; + GR_GL_CALL(gl, GetProgramInfoLog(progID, infoLen+1, + &length, (char*)log.get())); + GrPrintf((char*)log.get()); + } + GrAssert(!"Error linking program"); + GR_GL_CALL(gl, DeleteProgram(progID)); + programData->fProgramID = 0; + return false; + } + return true; +} + +void GrGLProgram::getUniformLocationsAndInitCache(const GrGLInterface* gl, + CachedData* programData) const { + const GrGLint& progID = programData->fProgramID; + + if (kUseUniform == programData->fUniLocations.fViewMatrixUni) { + GR_GL_CALL_RET(gl, programData->fUniLocations.fViewMatrixUni, + GetUniformLocation(progID, VIEW_MATRIX_NAME)); + GrAssert(kUnusedUniform != programData->fUniLocations.fViewMatrixUni); + } + if (kUseUniform == programData->fUniLocations.fColorUni) { + GR_GL_CALL_RET(gl, programData->fUniLocations.fColorUni, + GetUniformLocation(progID, COL_UNI_NAME)); + GrAssert(kUnusedUniform != programData->fUniLocations.fColorUni); + } + if (kUseUniform == programData->fUniLocations.fColorFilterUni) { + GR_GL_CALL_RET(gl, programData->fUniLocations.fColorFilterUni, + GetUniformLocation(progID, COL_FILTER_UNI_NAME)); + GrAssert(kUnusedUniform != programData->fUniLocations.fColorFilterUni); + } + + if (kUseUniform == programData->fUniLocations.fColorMatrixUni) { + GR_GL_CALL_RET(gl, programData->fUniLocations.fColorMatrixUni, + GetUniformLocation(progID, COL_MATRIX_UNI_NAME)); + } + + if (kUseUniform == programData->fUniLocations.fColorMatrixVecUni) { + GR_GL_CALL_RET(gl, programData->fUniLocations.fColorMatrixVecUni, + GetUniformLocation(progID, COL_MATRIX_VEC_UNI_NAME)); + } + if (kUseUniform == programData->fUniLocations.fCoverageUni) { + GR_GL_CALL_RET(gl, programData->fUniLocations.fCoverageUni, + GetUniformLocation(progID, COV_UNI_NAME)); + GrAssert(kUnusedUniform != programData->fUniLocations.fCoverageUni); + } + + if (kUseUniform == programData->fUniLocations.fEdgesUni) { + GR_GL_CALL_RET(gl, programData->fUniLocations.fEdgesUni, + GetUniformLocation(progID, EDGES_UNI_NAME)); + GrAssert(kUnusedUniform != programData->fUniLocations.fEdgesUni); + } else { + programData->fUniLocations.fEdgesUni = kUnusedUniform; + } + + for (int s = 0; s < GrDrawState::kNumStages; ++s) { + StageUniLocations& locations = programData->fUniLocations.fStages[s]; + if (fProgramDesc.fStages[s].isEnabled()) { + if (kUseUniform == locations.fTextureMatrixUni) { + GrStringBuilder texMName; + tex_matrix_name(s, &texMName); + GR_GL_CALL_RET(gl, locations.fTextureMatrixUni, + GetUniformLocation(progID, texMName.c_str())); + GrAssert(kUnusedUniform != locations.fTextureMatrixUni); + } + + if (kUseUniform == locations.fSamplerUni) { + GrStringBuilder samplerName; + sampler_name(s, &samplerName); + GR_GL_CALL_RET(gl, locations.fSamplerUni, + GetUniformLocation(progID,samplerName.c_str())); + GrAssert(kUnusedUniform != locations.fSamplerUni); + } + + if (kUseUniform == locations.fNormalizedTexelSizeUni) { + GrStringBuilder texelSizeName; + normalized_texel_size_name(s, &texelSizeName); + GR_GL_CALL_RET(gl, locations.fNormalizedTexelSizeUni, + GetUniformLocation(progID, texelSizeName.c_str())); + GrAssert(kUnusedUniform != locations.fNormalizedTexelSizeUni); + } + + if (kUseUniform == locations.fRadial2Uni) { + GrStringBuilder radial2ParamName; + radial2_param_name(s, &radial2ParamName); + GR_GL_CALL_RET(gl, locations.fRadial2Uni, + GetUniformLocation(progID, radial2ParamName.c_str())); + GrAssert(kUnusedUniform != locations.fRadial2Uni); + } + + if (kUseUniform == locations.fTexDomUni) { + GrStringBuilder texDomName; + tex_domain_name(s, &texDomName); + GR_GL_CALL_RET(gl, locations.fTexDomUni, + GetUniformLocation(progID, texDomName.c_str())); + GrAssert(kUnusedUniform != locations.fTexDomUni); + } + + GrStringBuilder kernelName, imageIncrementName; + convolve_param_names(s, &kernelName, &imageIncrementName); + if (kUseUniform == locations.fKernelUni) { + GR_GL_CALL_RET(gl, locations.fKernelUni, + GetUniformLocation(progID, kernelName.c_str())); + GrAssert(kUnusedUniform != locations.fKernelUni); + } + + if (kUseUniform == locations.fImageIncrementUni) { + GR_GL_CALL_RET(gl, locations.fImageIncrementUni, + GetUniformLocation(progID, + imageIncrementName.c_str())); + GrAssert(kUnusedUniform != locations.fImageIncrementUni); + } + } + } + GR_GL_CALL(gl, UseProgram(progID)); + + // init sampler unis and set bogus values for state tracking + for (int s = 0; s < GrDrawState::kNumStages; ++s) { + if (kUnusedUniform != programData->fUniLocations.fStages[s].fSamplerUni) { + GR_GL_CALL(gl, Uniform1i(programData->fUniLocations.fStages[s].fSamplerUni, s)); + } + programData->fTextureMatrices[s] = GrMatrix::InvalidMatrix(); + programData->fRadial2CenterX1[s] = GR_ScalarMax; + programData->fRadial2Radius0[s] = -GR_ScalarMax; + programData->fTextureWidth[s] = -1; + programData->fTextureHeight[s] = -1; + } + programData->fViewMatrix = GrMatrix::InvalidMatrix(); + programData->fColor = GrColor_ILLEGAL; + programData->fColorFilterColor = GrColor_ILLEGAL; +} + +//============================================================================ +// Stage code generation +//============================================================================ + +namespace { + +bool isRadialMapping(GrGLProgram::StageDesc::CoordMapping mapping) { + return + (GrGLProgram::StageDesc::kRadial2Gradient_CoordMapping == mapping || + GrGLProgram::StageDesc::kRadial2GradientDegenerate_CoordMapping == mapping); +} + +GrGLShaderVar* genRadialVS(int stageNum, + ShaderCodeSegments* segments, + GrGLProgram::StageUniLocations* locations, + const char** radial2VaryingVSName, + const char** radial2VaryingFSName, + const char* varyingVSName, + int varyingDims, int coordDims) { + + GrGLShaderVar* radial2FSParams = &segments->fFSUnis.push_back(); + radial2FSParams->setType(GrGLShaderVar::kFloat_Type); + radial2FSParams->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier); + radial2FSParams->setArrayCount(6); + radial2_param_name(stageNum, radial2FSParams->accessName()); + segments->fVSUnis.push_back(*radial2FSParams).setEmitPrecision(true); + + locations->fRadial2Uni = kUseUniform; + + // for radial grads without perspective we can pass the linear + // part of the quadratic as a varying. + if (varyingDims == coordDims) { + GrAssert(2 == coordDims); + append_varying(GrGLShaderVar::kFloat_Type, + "Radial2BCoeff", + stageNum, + segments, + radial2VaryingVSName, + radial2VaryingFSName); + + GrStringBuilder radial2p2; + GrStringBuilder radial2p3; + radial2FSParams->appendArrayAccess(2, &radial2p2); + radial2FSParams->appendArrayAccess(3, &radial2p3); + + // r2Var = 2 * (r2Parm[2] * varCoord.x - r2Param[3]) + const char* r2ParamName = radial2FSParams->getName().c_str(); + segments->fVSCode.appendf("\t%s = 2.0 *(%s * %s.x - %s);\n", + *radial2VaryingVSName, radial2p2.c_str(), + varyingVSName, radial2p3.c_str()); + } + + return radial2FSParams; +} + +bool genRadial2GradientCoordMapping(int stageNum, + ShaderCodeSegments* segments, + const char* radial2VaryingFSName, + GrGLShaderVar* radial2Params, + GrStringBuilder& sampleCoords, + GrStringBuilder& fsCoordName, + int varyingDims, + int coordDims) { + GrStringBuilder cName("c"); + GrStringBuilder ac4Name("ac4"); + GrStringBuilder rootName("root"); + + cName.appendS32(stageNum); + ac4Name.appendS32(stageNum); + rootName.appendS32(stageNum); + + GrStringBuilder radial2p0; + GrStringBuilder radial2p1; + GrStringBuilder radial2p2; + GrStringBuilder radial2p3; + GrStringBuilder radial2p4; + GrStringBuilder radial2p5; + radial2Params->appendArrayAccess(0, &radial2p0); + radial2Params->appendArrayAccess(1, &radial2p1); + radial2Params->appendArrayAccess(2, &radial2p2); + radial2Params->appendArrayAccess(3, &radial2p3); + radial2Params->appendArrayAccess(4, &radial2p4); + radial2Params->appendArrayAccess(5, &radial2p5); + + // if we were able to interpolate the linear component bVar is the varying + // otherwise compute it + GrStringBuilder bVar; + if (coordDims == varyingDims) { + bVar = radial2VaryingFSName; + GrAssert(2 == varyingDims); + } else { + GrAssert(3 == varyingDims); + bVar = "b"; + bVar.appendS32(stageNum); + segments->fFSCode.appendf("\tfloat %s = 2.0 * (%s * %s.x - %s);\n", + bVar.c_str(), radial2p2.c_str(), + fsCoordName.c_str(), radial2p3.c_str()); + } + + // c = (x^2)+(y^2) - params[4] + segments->fFSCode.appendf("\tfloat %s = dot(%s, %s) - %s;\n", + cName.c_str(), fsCoordName.c_str(), + fsCoordName.c_str(), + radial2p4.c_str()); + // ac4 = 4.0 * params[0] * c + segments->fFSCode.appendf("\tfloat %s = %s * 4.0 * %s;\n", + ac4Name.c_str(), radial2p0.c_str(), + cName.c_str()); + + // root = sqrt(b^2-4ac) + // (abs to avoid exception due to fp precision) + segments->fFSCode.appendf("\tfloat %s = sqrt(abs(%s*%s - %s));\n", + rootName.c_str(), bVar.c_str(), bVar.c_str(), + ac4Name.c_str()); + + // x coord is: (-b + params[5] * sqrt(b^2-4ac)) * params[1] + // y coord is 0.5 (texture is effectively 1D) + sampleCoords.printf("vec2((-%s + %s * %s) * %s, 0.5)", + bVar.c_str(), radial2p5.c_str(), + rootName.c_str(), radial2p1.c_str()); + return true; +} + +bool genRadial2GradientDegenerateCoordMapping(int stageNum, + ShaderCodeSegments* segments, + const char* radial2VaryingFSName, + GrGLShaderVar* radial2Params, + GrStringBuilder& sampleCoords, + GrStringBuilder& fsCoordName, + int varyingDims, + int coordDims) { + GrStringBuilder cName("c"); + + cName.appendS32(stageNum); + + GrStringBuilder radial2p2; + GrStringBuilder radial2p3; + GrStringBuilder radial2p4; + radial2Params->appendArrayAccess(2, &radial2p2); + radial2Params->appendArrayAccess(3, &radial2p3); + radial2Params->appendArrayAccess(4, &radial2p4); + + // if we were able to interpolate the linear component bVar is the varying + // otherwise compute it + GrStringBuilder bVar; + if (coordDims == varyingDims) { + bVar = radial2VaryingFSName; + GrAssert(2 == varyingDims); + } else { + GrAssert(3 == varyingDims); + bVar = "b"; + bVar.appendS32(stageNum); + segments->fFSCode.appendf("\tfloat %s = 2.0 * (%s * %s.x - %s);\n", + bVar.c_str(), radial2p2.c_str(), + fsCoordName.c_str(), radial2p3.c_str()); + } + + // c = (x^2)+(y^2) - params[4] + segments->fFSCode.appendf("\tfloat %s = dot(%s, %s) - %s;\n", + cName.c_str(), fsCoordName.c_str(), + fsCoordName.c_str(), + radial2p4.c_str()); + + // x coord is: -c/b + // y coord is 0.5 (texture is effectively 1D) + sampleCoords.printf("vec2((-%s / %s), 0.5)", cName.c_str(), bVar.c_str()); + return true; +} + +void gen2x2FS(int stageNum, + ShaderCodeSegments* segments, + GrGLProgram::StageUniLocations* locations, + GrStringBuilder* sampleCoords, + const char* samplerName, + const char* texelSizeName, + const char* swizzle, + const char* fsOutColor, + GrStringBuilder& texFunc, + GrStringBuilder& modulate, + bool complexCoord, + int coordDims) { + locations->fNormalizedTexelSizeUni = kUseUniform; + if (complexCoord) { + // assign the coord to a var rather than compute 4x. + GrStringBuilder coordVar("tCoord"); + coordVar.appendS32(stageNum); + segments->fFSCode.appendf("\t%s %s = %s;\n", + float_vector_type_str(coordDims), + coordVar.c_str(), sampleCoords->c_str()); + *sampleCoords = coordVar; + } + GrAssert(2 == coordDims); + GrStringBuilder accumVar("accum"); + accumVar.appendS32(stageNum); + segments->fFSCode.appendf("\tvec4 %s = %s(%s, %s + vec2(-%s.x,-%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle); + segments->fFSCode.appendf("\t%s += %s(%s, %s + vec2(+%s.x,-%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle); + segments->fFSCode.appendf("\t%s += %s(%s, %s + vec2(-%s.x,+%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle); + segments->fFSCode.appendf("\t%s += %s(%s, %s + vec2(+%s.x,+%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle); + segments->fFSCode.appendf("\t%s = .25 * %s%s;\n", fsOutColor, accumVar.c_str(), modulate.c_str()); + +} + +void genConvolutionVS(int stageNum, + const StageDesc& desc, + ShaderCodeSegments* segments, + GrGLProgram::StageUniLocations* locations, + GrGLShaderVar** kernel, + const char** imageIncrementName, + const char* varyingVSName) { + //GrGLShaderVar* kernel = &segments->fFSUnis.push_back(); + *kernel = &segments->fFSUnis.push_back(); + (*kernel)->setType(GrGLShaderVar::kFloat_Type); + (*kernel)->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier); + (*kernel)->setArrayCount(desc.fKernelWidth); + GrGLShaderVar* imgInc = &segments->fFSUnis.push_back(); + imgInc->setType(GrGLShaderVar::kVec2f_Type); + imgInc->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier); + + convolve_param_names(stageNum, + (*kernel)->accessName(), + imgInc->accessName()); + *imageIncrementName = imgInc->getName().c_str(); + + // need image increment in both VS and FS + segments->fVSUnis.push_back(*imgInc).setEmitPrecision(true); + + locations->fKernelUni = kUseUniform; + locations->fImageIncrementUni = kUseUniform; + float scale = (desc.fKernelWidth - 1) * 0.5f; + segments->fVSCode.appendf("\t%s -= vec2(%g, %g) * %s;\n", + varyingVSName, scale, scale, + *imageIncrementName); +} + +void genConvolutionFS(int stageNum, + const StageDesc& desc, + ShaderCodeSegments* segments, + const char* samplerName, + GrGLShaderVar* kernel, + const char* swizzle, + const char* imageIncrementName, + const char* fsOutColor, + GrStringBuilder& sampleCoords, + GrStringBuilder& texFunc, + GrStringBuilder& modulate) { + GrStringBuilder sumVar("sum"); + sumVar.appendS32(stageNum); + GrStringBuilder coordVar("coord"); + coordVar.appendS32(stageNum); + + GrStringBuilder kernelIndex; + kernel->appendArrayAccess("i", &kernelIndex); + + segments->fFSCode.appendf("\tvec4 %s = vec4(0, 0, 0, 0);\n", + sumVar.c_str()); + segments->fFSCode.appendf("\tvec2 %s = %s;\n", + coordVar.c_str(), + sampleCoords.c_str()); + segments->fFSCode.appendf("\tfor (int i = 0; i < %d; i++) {\n", + desc.fKernelWidth); + segments->fFSCode.appendf("\t\t%s += %s(%s, %s)%s * %s;\n", + sumVar.c_str(), texFunc.c_str(), + samplerName, coordVar.c_str(), swizzle, + kernelIndex.c_str()); + segments->fFSCode.appendf("\t\t%s += %s;\n", + coordVar.c_str(), + imageIncrementName); + segments->fFSCode.appendf("\t}\n"); + segments->fFSCode.appendf("\t%s = %s%s;\n", fsOutColor, + sumVar.c_str(), modulate.c_str()); +} + +} + +void GrGLProgram::genStageCode(const GrGLInterface* gl, + int stageNum, + const GrGLProgram::StageDesc& desc, + const char* fsInColor, // NULL means no incoming color + const char* fsOutColor, + const char* vsInCoord, + ShaderCodeSegments* segments, + StageUniLocations* locations) const { + + GrAssert(stageNum >= 0 && stageNum <= GrDrawState::kNumStages); + GrAssert((desc.fInConfigFlags & StageDesc::kInConfigBitMask) == + desc.fInConfigFlags); + + // First decide how many coords are needed to access the texture + // Right now it's always 2 but we could start using 1D textures for + // gradients. + static const int coordDims = 2; + int varyingDims; + /// Vertex Shader Stuff + + // decide whether we need a matrix to transform texture coords + // and whether the varying needs a perspective coord. + const char* matName = NULL; + if (desc.fOptFlags & StageDesc::kIdentityMatrix_OptFlagBit) { + varyingDims = coordDims; + } else { + GrGLShaderVar* mat; + #if GR_GL_ATTRIBUTE_MATRICES + mat = &segments->fVSAttrs.push_back(); + mat->setTypeModifier(GrGLShaderVar::kAttribute_TypeModifier); + locations->fTextureMatrixUni = kSetAsAttribute; + #else + mat = &segments->fVSUnis.push_back(); + mat->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier); + locations->fTextureMatrixUni = kUseUniform; + #endif + tex_matrix_name(stageNum, mat->accessName()); + mat->setType(GrGLShaderVar::kMat33f_Type); + matName = mat->getName().c_str(); + + if (desc.fOptFlags & StageDesc::kNoPerspective_OptFlagBit) { + varyingDims = coordDims; + } else { + varyingDims = coordDims + 1; + } + } + + segments->fFSUnis.push_back().set(GrGLShaderVar::kSampler2D_Type, + GrGLShaderVar::kUniform_TypeModifier, ""); + sampler_name(stageNum, segments->fFSUnis.back().accessName()); + locations->fSamplerUni = kUseUniform; + const char* samplerName = segments->fFSUnis.back().getName().c_str(); + + const char* texelSizeName = NULL; + if (StageDesc::k2x2_FetchMode == desc.fFetchMode) { + segments->fFSUnis.push_back().set(GrGLShaderVar::kVec2f_Type, + GrGLShaderVar::kUniform_TypeModifier, ""); + normalized_texel_size_name(stageNum, segments->fFSUnis.back().accessName()); + texelSizeName = segments->fFSUnis.back().getName().c_str(); + } + + const char *varyingVSName, *varyingFSName; + append_varying(float_vector_type(varyingDims), + "Stage", + stageNum, + segments, + &varyingVSName, + &varyingFSName); + + if (!matName) { + GrAssert(varyingDims == coordDims); + segments->fVSCode.appendf("\t%s = %s;\n", varyingVSName, vsInCoord); + } else { + // varying = texMatrix * texCoord + segments->fVSCode.appendf("\t%s = (%s * vec3(%s, 1))%s;\n", + varyingVSName, matName, vsInCoord, + vector_all_coords(varyingDims)); + } + + GrGLShaderVar* radial2Params = NULL; + const char* radial2VaryingVSName = NULL; + const char* radial2VaryingFSName = NULL; + + if (isRadialMapping((StageDesc::CoordMapping) desc.fCoordMapping)) { + radial2Params = genRadialVS(stageNum, segments, + locations, + &radial2VaryingVSName, + &radial2VaryingFSName, + varyingVSName, + varyingDims, coordDims); + } + + GrGLShaderVar* kernel = NULL; + const char* imageIncrementName = NULL; + if (StageDesc::kConvolution_FetchMode == desc.fFetchMode) { + genConvolutionVS(stageNum, desc, segments, locations, + &kernel, &imageIncrementName, varyingVSName); + } + + /// Fragment Shader Stuff + GrStringBuilder fsCoordName; + // function used to access the shader, may be made projective + GrStringBuilder texFunc("texture2D"); + if (desc.fOptFlags & (StageDesc::kIdentityMatrix_OptFlagBit | + StageDesc::kNoPerspective_OptFlagBit)) { + GrAssert(varyingDims == coordDims); + fsCoordName = varyingFSName; + } else { + // if we have to do some special op on the varyings to get + // our final tex coords then when in perspective we have to + // do an explicit divide. Otherwise, we can use a Proj func. + if (StageDesc::kIdentity_CoordMapping == desc.fCoordMapping && + StageDesc::kSingle_FetchMode == desc.fFetchMode) { + texFunc.append("Proj"); + fsCoordName = varyingFSName; + } else { + fsCoordName = "inCoord"; + fsCoordName.appendS32(stageNum); + segments->fFSCode.appendf("\t%s %s = %s%s / %s%s;\n", + GrGLShaderVar::TypeString(float_vector_type(coordDims)), + fsCoordName.c_str(), + varyingFSName, + vector_nonhomog_coords(varyingDims), + varyingFSName, + vector_homog_coord(varyingDims)); + } + } + + GrStringBuilder sampleCoords; + bool complexCoord = false; + switch (desc.fCoordMapping) { + case StageDesc::kIdentity_CoordMapping: + sampleCoords = fsCoordName; + break; + case StageDesc::kSweepGradient_CoordMapping: + sampleCoords.printf("vec2(atan(- %s.y, - %s.x) * 0.1591549430918 + 0.5, 0.5)", fsCoordName.c_str(), fsCoordName.c_str()); + complexCoord = true; + break; + case StageDesc::kRadialGradient_CoordMapping: + sampleCoords.printf("vec2(length(%s.xy), 0.5)", fsCoordName.c_str()); + complexCoord = true; + break; + case StageDesc::kRadial2Gradient_CoordMapping: + complexCoord = genRadial2GradientCoordMapping( + stageNum, segments, + radial2VaryingFSName, radial2Params, + sampleCoords, fsCoordName, + varyingDims, coordDims); + + break; + case StageDesc::kRadial2GradientDegenerate_CoordMapping: + complexCoord = genRadial2GradientDegenerateCoordMapping( + stageNum, segments, + radial2VaryingFSName, radial2Params, + sampleCoords, fsCoordName, + varyingDims, coordDims); + break; + + }; + + const char* swizzle = ""; + if (desc.fInConfigFlags & StageDesc::kSwapRAndB_InConfigFlag) { + GrAssert(!(desc.fInConfigFlags & StageDesc::kSmearAlpha_InConfigFlag)); + swizzle = ".bgra"; + } else if (desc.fInConfigFlags & StageDesc::kSmearAlpha_InConfigFlag) { + GrAssert(!(desc.fInConfigFlags & + StageDesc::kMulRGBByAlpha_InConfigFlag)); + swizzle = ".aaaa"; + } + + GrStringBuilder modulate; + if (NULL != fsInColor) { + modulate.printf(" * %s", fsInColor); + } + + if (desc.fOptFlags & + StageDesc::kCustomTextureDomain_OptFlagBit) { + GrStringBuilder texDomainName; + tex_domain_name(stageNum, &texDomainName); + segments->fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type, + GrGLShaderVar::kUniform_TypeModifier, texDomainName); + GrStringBuilder coordVar("clampCoord"); + segments->fFSCode.appendf("\t%s %s = clamp(%s, %s.xy, %s.zw);\n", + float_vector_type_str(coordDims), + coordVar.c_str(), + sampleCoords.c_str(), + texDomainName.c_str(), + texDomainName.c_str()); + sampleCoords = coordVar; + locations->fTexDomUni = kUseUniform; + } + + switch (desc.fFetchMode) { + case StageDesc::k2x2_FetchMode: + GrAssert(!(desc.fInConfigFlags & + StageDesc::kMulRGBByAlpha_InConfigFlag)); + gen2x2FS(stageNum, segments, locations, &sampleCoords, + samplerName, texelSizeName, swizzle, fsOutColor, + texFunc, modulate, complexCoord, coordDims); + break; + case StageDesc::kConvolution_FetchMode: + GrAssert(!(desc.fInConfigFlags & + StageDesc::kMulRGBByAlpha_InConfigFlag)); + genConvolutionFS(stageNum, desc, segments, + samplerName, kernel, swizzle, imageIncrementName, fsOutColor, + sampleCoords, texFunc, modulate); + break; + default: + if (desc.fInConfigFlags & StageDesc::kMulRGBByAlpha_InConfigFlag) { + GrAssert(!(desc.fInConfigFlags & + StageDesc::kSmearAlpha_InConfigFlag)); + segments->fFSCode.appendf("\t%s = %s(%s, %s)%s;\n", + fsOutColor, texFunc.c_str(), + samplerName, sampleCoords.c_str(), + swizzle); + segments->fFSCode.appendf("\t%s = vec4(%s.rgb*%s.a,%s.a)%s;\n", + fsOutColor, fsOutColor, fsOutColor, + fsOutColor, modulate.c_str()); + } else { + segments->fFSCode.appendf("\t%s = %s(%s, %s)%s%s;\n", + fsOutColor, texFunc.c_str(), + samplerName, sampleCoords.c_str(), + swizzle, modulate.c_str()); + } + } +} + + |