aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/ccpr/GrCCPRCoverageProcessor_GSImpl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/gpu/ccpr/GrCCPRCoverageProcessor_GSImpl.cpp')
-rw-r--r--src/gpu/ccpr/GrCCPRCoverageProcessor_GSImpl.cpp284
1 files changed, 179 insertions, 105 deletions
diff --git a/src/gpu/ccpr/GrCCPRCoverageProcessor_GSImpl.cpp b/src/gpu/ccpr/GrCCPRCoverageProcessor_GSImpl.cpp
index 60928b6afc..a832f625c2 100644
--- a/src/gpu/ccpr/GrCCPRCoverageProcessor_GSImpl.cpp
+++ b/src/gpu/ccpr/GrCCPRCoverageProcessor_GSImpl.cpp
@@ -10,6 +10,8 @@
#include "GrMesh.h"
#include "glsl/GrGLSLVertexGeoBuilder.h"
+using InputType = GrGLSLGeometryBuilder::InputType;
+using OutputType = GrGLSLGeometryBuilder::OutputType;
using Shader = GrCCPRCoverageProcessor::Shader;
/**
@@ -46,9 +48,6 @@ protected:
void emitGeometryShader(const GrCCPRCoverageProcessor& proc,
GrGLSLVaryingHandler* varyingHandler, GrGLSLGeometryBuilder* g,
const char* rtAdjust) const {
- using InputType = GrGLSLGeometryBuilder::InputType;
- using OutputType = GrGLSLGeometryBuilder::OutputType;
-
int numInputPoints = proc.numInputPoints();
SkASSERT(3 == numInputPoints || 4 == numInputPoints);
@@ -83,16 +82,11 @@ protected:
#endif
g->defineConstant("bloat", bloat);
- Shader::GeometryVars vars;
- fShader->emitSetupCode(g, "pts", "sk_InvocationID", wind.c_str(), &vars);
- int maxPoints = this->onEmitGeometryShader(g, wind, emitVertexFn.c_str(), vars);
- g->configure(InputType::kLines, OutputType::kTriangleStrip, maxPoints,
- fShader->getNumSegments());
+ this->onEmitGeometryShader(g, wind, emitVertexFn.c_str());
}
- virtual int onEmitGeometryShader(GrGLSLGeometryBuilder*, const GrShaderVar& wind,
- const char* emitVertexFn,
- const Shader::GeometryVars&) const = 0;
+ virtual void onEmitGeometryShader(GrGLSLGeometryBuilder*, const GrShaderVar& wind,
+ const char* emitVertexFn) const = 0;
virtual ~GSImpl() {}
@@ -101,100 +95,166 @@ protected:
typedef GrGLSLGeometryProcessor INHERITED;
};
-class GSHullImpl : public GrCCPRCoverageProcessor::GSImpl {
+/**
+ * Generates a conservative raster hull around a triangle. (See comments for RenderPass)
+ */
+class GSHull3Impl : public GrCCPRCoverageProcessor::GSImpl {
public:
- GSHullImpl(std::unique_ptr<Shader> shader) : GSImpl(std::move(shader)) {}
+ GSHull3Impl(std::unique_ptr<Shader> shader) : GSImpl(std::move(shader)) {}
- int onEmitGeometryShader(GrGLSLGeometryBuilder* g, const GrShaderVar& wind,
- const char* emitVertexFn,
- const Shader::GeometryVars& vars) const override {
- int numSides = fShader->getNumSegments();
- SkASSERT(numSides >= 3);
+ void onEmitGeometryShader(GrGLSLGeometryBuilder* g, const GrShaderVar& wind,
+ const char* emitVertexFn) const override {
+ Shader::GeometryVars vars;
+ fShader->emitSetupCode(g, "pts", nullptr, wind.c_str(), &vars);
const char* hullPts = vars.fHullVars.fAlternatePoints;
if (!hullPts) {
hullPts = "pts";
}
- const char* midpoint = vars.fHullVars.fAlternateMidpoint;
- if (!midpoint) {
- g->codeAppendf("float2 midpoint = %s * float%i(%f);", hullPts, numSides, 1.0/numSides);
- midpoint = "midpoint";
- }
+ // Visualize the input triangle as upright and equilateral, with a flat base. Paying special
+ // attention to wind, we can identify the points as top, bottom-left, and bottom-right.
+ //
+ // NOTE: We generate the hull in 2 independent invocations, so each invocation designates
+ // the corner it will begin with as the top.
+ g->codeAppendf("int i = %s > 0 ? sk_InvocationID : 1 - sk_InvocationID;", wind.c_str());
+ g->codeAppendf("float2 top = %s[i];", hullPts);
+ g->codeAppendf("float2 left = %s[%s > 0 ? (1 - i) * 2 : i + 1];", hullPts, wind.c_str());
+ g->codeAppendf("float2 right = %s[%s > 0 ? i + 1 : (1 - i) * 2];", hullPts, wind.c_str());
+
+ // Determine how much to outset the conservative raster hull from each of the three edges.
+ g->codeAppend ("float2 leftbloat = float2(top.y > left.y ? +bloat : -bloat, "
+ "top.x > left.x ? -bloat : +bloat);");
+ g->codeAppend ("float2 rightbloat = float2(right.y > top.y ? +bloat : -bloat, "
+ "right.x > top.x ? -bloat : +bloat);");
+ g->codeAppend ("float2 downbloat = float2(left.y > right.y ? +bloat : -bloat, "
+ "left.x > right.x ? -bloat : +bloat);");
+
+ // Here we generate the conservative raster geometry. It is the convex hull of 3 pixel-size
+ // boxes centered on the input points, split between two invocations. This translates to a
+ // polygon with either one, two, or three vertices at each input point, depending on how
+ // sharp the corner is. For more details on conservative raster, see:
+ // https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter42.html
+ g->codeAppendf("bool2 left_right_notequal = notEqual(leftbloat, rightbloat);");
+ g->codeAppend ("if (all(left_right_notequal)) {");
+ // The top corner will have three conservative raster vertices. Emit the
+ // middle one first to the triangle strip.
+ g->codeAppendf( "%s(top + float2(-leftbloat.y, leftbloat.x), 1);", emitVertexFn);
+ g->codeAppend ("}");
+ g->codeAppend ("if (any(left_right_notequal)) {");
+ // Second conservative raster vertex for the top corner.
+ g->codeAppendf( "%s(top + rightbloat, 1);", emitVertexFn);
+ g->codeAppend ("}");
- g->codeAppendf("int previdx = (sk_InvocationID + %i) %% %i, "
- "nextidx = (sk_InvocationID + 1) %% %i;",
- numSides - 1, numSides, numSides);
-
- g->codeAppendf("float2 self = %s[sk_InvocationID];"
- "int leftidx = %s > 0 ? previdx : nextidx;"
- "int rightidx = %s > 0 ? nextidx : previdx;",
- hullPts, wind.c_str(), wind.c_str());
-
- // Which quadrant does the vector from self -> right fall into?
- g->codeAppendf("float2 right = %s[rightidx];", hullPts);
- if (3 == numSides) {
- // TODO: evaluate perf gains.
- g->codeAppend ("float2 qsr = sign(right - self);");
- } else {
- SkASSERT(4 == numSides);
- g->codeAppendf("float2 diag = %s[(sk_InvocationID + 2) %% 4];", hullPts);
- g->codeAppend ("float2 qsr = sign((right != self ? right : diag) - self);");
- }
+ // Main interior body of the triangle.
+ g->codeAppendf("%s(top + leftbloat, 1);", emitVertexFn);
+ g->codeAppendf("%s(right + rightbloat, 1);", emitVertexFn);
+
+ // Here the two invocations diverge. We can't symmetrically divide three triangle points
+ // between two invocations, so each does the following:
+ //
+ // sk_InvocationID=0: Finishes the main interior body of the triangle.
+ // sk_InvocationID=1: Remaining two conservative raster vertices for the third corner.
+ g->codeAppendf("bool2 right_down_notequal = notEqual(rightbloat, downbloat);");
+ g->codeAppend ("if (any(right_down_notequal) || 0 == sk_InvocationID) {");
+ g->codeAppendf( "%s(sk_InvocationID == 0 ? left + leftbloat : right + downbloat, 1);",
+ emitVertexFn);
+ g->codeAppend ("}");
+ g->codeAppend ("if (all(right_down_notequal) && 0 != sk_InvocationID) {");
+ g->codeAppendf( "%s(right + float2(-rightbloat.y, rightbloat.x), 1);", emitVertexFn);
+ g->codeAppend ("}");
- // Which quadrant does the vector from left -> self fall into?
- g->codeAppendf("float2 qls = sign(self - %s[leftidx]);", hullPts);
-
- // d2 just helps us reduce triangle counts with orthogonal, axis-aligned lines.
- // TODO: evaluate perf gains.
- const char* dr2 = "dr";
- if (3 == numSides) {
- // TODO: evaluate perf gains.
- g->codeAppend ("float2 dr = float2(qsr.y != 0 ? +qsr.y : +qsr.x, "
- "qsr.x != 0 ? -qsr.x : +qsr.y);");
- g->codeAppend ("float2 dr2 = float2(qsr.y != 0 ? +qsr.y : -qsr.x, "
- "qsr.x != 0 ? -qsr.x : -qsr.y);");
- g->codeAppend ("float2 dl = float2(qls.y != 0 ? +qls.y : +qls.x, "
- "qls.x != 0 ? -qls.x : +qls.y);");
- dr2 = "dr2";
- } else {
- g->codeAppend ("float2 dr = float2(qsr.y != 0 ? +qsr.y : 1, "
- "qsr.x != 0 ? -qsr.x : 1);");
- g->codeAppend ("float2 dl = (qls == float2(0)) ? dr : "
- "float2(qls.y != 0 ? +qls.y : 1, qls.x != 0 ? -qls.x : 1);");
+ g->configure(InputType::kLines, OutputType::kTriangleStrip, 6, 2);
+ }
+};
+
+/**
+ * Generates a conservative raster hull around a convex quadrilateral. (See comments for RenderPass)
+ */
+class GSHull4Impl : public GrCCPRCoverageProcessor::GSImpl {
+public:
+ GSHull4Impl(std::unique_ptr<Shader> shader) : GSImpl(std::move(shader)) {}
+
+ void onEmitGeometryShader(GrGLSLGeometryBuilder* g, const GrShaderVar& wind,
+ const char* emitVertexFn) const override {
+ Shader::GeometryVars vars;
+ fShader->emitSetupCode(g, "pts", nullptr, wind.c_str(), &vars);
+
+ const char* hullPts = vars.fHullVars.fAlternatePoints;
+ if (!hullPts) {
+ hullPts = "pts";
}
- g->codeAppendf("bool2 dnotequal = notEqual(%s, dl);", dr2);
-
- // Emit one third of what is the convex hull of pixel-size boxes centered on the vertices.
- // Each invocation emits a different third.
- g->codeAppendf("%s(right + bloat * dr, 1);", emitVertexFn);
- g->codeAppendf("%s(%s, 1);", emitVertexFn, midpoint);
- g->codeAppendf("%s(self + bloat * %s, 1);", emitVertexFn, dr2);
- g->codeAppend ("if (any(dnotequal)) {");
- g->codeAppendf( "%s(self + bloat * dl, 1);", emitVertexFn);
+
+ // Visualize the input (convex) quadrilateral as a square. Paying special attention to wind,
+ // we can identify the points by their corresponding corner.
+ //
+ // NOTE: We split the square down the diagonal from top-right to bottom-left, and generate
+ // the hull in two independent invocations. Each invocation designates the corner it will
+ // begin with as top-left.
+ g->codeAppend ("int i = sk_InvocationID * 2;");
+ g->codeAppendf("float2 topleft = %s[i];", hullPts);
+ g->codeAppendf("float2 topright = %s[%s > 0 ? i + 1 : 3 - i];", hullPts, wind.c_str());
+ g->codeAppendf("float2 bottomleft = %s[%s > 0 ? 3 - i : i + 1];", hullPts, wind.c_str());
+ g->codeAppendf("float2 bottomright = %s[2 - i];", hullPts);
+
+ // Determine how much to outset the conservative raster hull from the relevant edges.
+ g->codeAppend ("float2 leftbloat = float2(topleft.y > bottomleft.y ? +bloat : -bloat, "
+ "topleft.x > bottomleft.x ? -bloat : bloat);");
+ g->codeAppend ("float2 upbloat = float2(topright.y > topleft.y ? +bloat : -bloat, "
+ "topright.x > topleft.x ? -bloat : +bloat);");
+ g->codeAppend ("float2 rightbloat = float2(bottomright.y > topright.y ? +bloat : -bloat, "
+ "bottomright.x > topright.x ? -bloat : +bloat);");
+
+ // Here we generate the conservative raster geometry. It is the convex hull of 4 pixel-size
+ // boxes centered on the input points, split evenly between two invocations. This translates
+ // to a polygon with either one, two, or three vertices at each input point, depending on
+ // how sharp the corner is. For more details on conservative raster, see:
+ // https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter42.html
+ g->codeAppendf("bool2 left_up_notequal = notEqual(leftbloat, upbloat);");
+ g->codeAppend ("if (all(left_up_notequal)) {");
+ // The top-left corner will have three conservative raster vertices.
+ // Emit the middle one first to the triangle strip.
+ g->codeAppendf( "%s(topleft + float2(-leftbloat.y, leftbloat.x), 1);",
+ emitVertexFn);
+ g->codeAppend ("}");
+ g->codeAppend ("if (any(left_up_notequal)) {");
+ // Second conservative raster vertex for the top-left corner.
+ g->codeAppendf( "%s(topleft + leftbloat, 1);", emitVertexFn);
+ g->codeAppend ("}");
+
+ // Main interior body of this invocation's half of the hull.
+ g->codeAppendf("%s(topleft + upbloat, 1);", emitVertexFn);
+ g->codeAppendf("%s(bottomleft + leftbloat, 1);", emitVertexFn);
+ g->codeAppendf("%s(topright + upbloat, 1);", emitVertexFn);
+
+ // Remaining two conservative raster vertices for the top-right corner.
+ g->codeAppendf("bool2 up_right_notequal = notEqual(upbloat, rightbloat);");
+ g->codeAppend ("if (any(up_right_notequal)) {");
+ g->codeAppendf( "%s(topright + rightbloat, 1);", emitVertexFn);
g->codeAppend ("}");
- g->codeAppend ("if (all(dnotequal)) {");
- g->codeAppendf( "%s(self + bloat * float2(-dl.y, dl.x), 1);", emitVertexFn);
+ g->codeAppend ("if (all(up_right_notequal)) {");
+ g->codeAppendf( "%s(topright + float2(-upbloat.y, upbloat.x), 1);",
+ emitVertexFn);
g->codeAppend ("}");
- g->endPrimitive();
- return 5;
+ g->configure(InputType::kLines, OutputType::kTriangleStrip, 7, 2);
}
};
+/**
+ * Generates conservatives around each edge of a triangle. (See comments for RenderPass)
+ */
class GSEdgeImpl : public GrCCPRCoverageProcessor::GSImpl {
public:
GSEdgeImpl(std::unique_ptr<Shader> shader) : GSImpl(std::move(shader)) {}
- int onEmitGeometryShader(GrGLSLGeometryBuilder* g, const GrShaderVar& wind,
- const char* emitVertexFn,
- const Shader::GeometryVars&) const override {
- int numSides = fShader->getNumSegments();
+ void onEmitGeometryShader(GrGLSLGeometryBuilder* g, const GrShaderVar& wind,
+ const char* emitVertexFn) const override {
+ fShader->emitSetupCode(g, "pts", "sk_InvocationID", wind.c_str(), nullptr);
- g->codeAppendf("int nextidx = (sk_InvocationID + 1) %% %i;", numSides);
- g->codeAppendf("float2 left = pts[%s > 0 ? sk_InvocationID : nextidx], "
- "right = pts[%s > 0 ? nextidx : sk_InvocationID];",
- wind.c_str(), wind.c_str());
+ g->codeAppend ("int nextidx = 2 != sk_InvocationID ? sk_InvocationID + 1 : 0;");
+ g->codeAppendf("float2 left = pts[%s > 0 ? sk_InvocationID : nextidx];", wind.c_str());
+ g->codeAppendf("float2 right = pts[%s > 0 ? nextidx : sk_InvocationID];", wind.c_str());
Shader::EmitEdgeDistanceEquation(g, "left", "right", "float3 edge_distance_equation");
@@ -225,19 +285,24 @@ public:
g->codeAppend ("if (!aligned) {");
g->codeAppendf( "%s(outer_pts[1], outer_coverage[1]);", emitVertexFn);
g->codeAppend ("}");
- g->endPrimitive();
- return 6;
+ g->configure(InputType::kLines, OutputType::kTriangleStrip, 6, 3);
}
};
+/**
+ * Generates conservatives around corners. (See comments for RenderPass)
+ */
class GSCornerImpl : public GrCCPRCoverageProcessor::GSImpl {
public:
- GSCornerImpl(std::unique_ptr<Shader> shader) : GSImpl(std::move(shader)) {}
+ GSCornerImpl(std::unique_ptr<Shader> shader, int numCorners)
+ : GSImpl(std::move(shader)), fNumCorners(numCorners) {}
+
+ void onEmitGeometryShader(GrGLSLGeometryBuilder* g, const GrShaderVar& wind,
+ const char* emitVertexFn) const override {
+ Shader::GeometryVars vars;
+ fShader->emitSetupCode(g, "pts", "sk_InvocationID", wind.c_str(), &vars);
- int onEmitGeometryShader(GrGLSLGeometryBuilder* g, const GrShaderVar& wind,
- const char* emitVertexFn,
- const Shader::GeometryVars& vars) const override {
const char* corner = vars.fCornerVars.fPoint;
SkASSERT(corner);
@@ -245,10 +310,12 @@ public:
g->codeAppendf("%s(%s + float2(-bloat, +bloat), 1);", emitVertexFn, corner);
g->codeAppendf("%s(%s + float2(+bloat, -bloat), 1);", emitVertexFn, corner);
g->codeAppendf("%s(%s + float2(+bloat, +bloat), 1);", emitVertexFn, corner);
- g->endPrimitive();
- return 4;
+ g->configure(InputType::kLines, OutputType::kTriangleStrip, 4, fNumCorners);
}
+
+private:
+ const int fNumCorners;
};
void GrCCPRCoverageProcessor::initGS() {
@@ -262,21 +329,8 @@ void GrCCPRCoverageProcessor::initGS() {
this->setWillUseGeoShader();
}
-GrGLSLPrimitiveProcessor* GrCCPRCoverageProcessor::CreateGSImpl(std::unique_ptr<Shader> shader) {
- switch (shader->getGeometryType()) {
- case Shader::GeometryType::kHull:
- return new GSHullImpl(std::move(shader));
- case Shader::GeometryType::kEdges:
- return new GSEdgeImpl(std::move(shader));
- case Shader::GeometryType::kCorners:
- return new GSCornerImpl(std::move(shader));
- }
- SK_ABORT("Unexpected Shader::GeometryType.");
- return nullptr;
-}
-
void GrCCPRCoverageProcessor::appendGSMesh(GrBuffer* instanceBuffer, int instanceCount,
- int baseInstance, SkTArray<GrMesh, true>* out) {
+ int baseInstance, SkTArray<GrMesh, true>* out) const {
// GSImpl doesn't actually make instanced draw calls. Instead, we feed transposed x,y point
// values to the GPU in a regular vertex array and draw kLines (see initGS). Then, each vertex
// invocation receives either the shape's x or y values as inputs, which it forwards to the
@@ -285,3 +339,23 @@ void GrCCPRCoverageProcessor::appendGSMesh(GrBuffer* instanceBuffer, int instanc
mesh.setNonIndexedNonInstanced(instanceCount * 2);
mesh.setVertexData(instanceBuffer, baseInstance * 2);
}
+
+GrGLSLPrimitiveProcessor*
+GrCCPRCoverageProcessor::createGSImpl(std::unique_ptr<Shader> shader) const {
+ switch (fRenderPass) {
+ case RenderPass::kTriangleHulls:
+ return new GSHull3Impl(std::move(shader));
+ case RenderPass::kQuadraticHulls:
+ case RenderPass::kCubicHulls:
+ return new GSHull4Impl(std::move(shader));
+ case RenderPass::kTriangleEdges:
+ return new GSEdgeImpl(std::move(shader));
+ case RenderPass::kTriangleCorners:
+ return new GSCornerImpl(std::move(shader), 3);
+ case RenderPass::kQuadraticCorners:
+ case RenderPass::kCubicCorners:
+ return new GSCornerImpl(std::move(shader), 2);
+ }
+ SK_ABORT("Invalid RenderPass");
+ return nullptr;
+}