aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/effects/gradients/Sk4fGradientBase.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/effects/gradients/Sk4fGradientBase.cpp')
-rw-r--r--src/effects/gradients/Sk4fGradientBase.cpp451
1 files changed, 451 insertions, 0 deletions
diff --git a/src/effects/gradients/Sk4fGradientBase.cpp b/src/effects/gradients/Sk4fGradientBase.cpp
new file mode 100644
index 0000000000..e20f5f4702
--- /dev/null
+++ b/src/effects/gradients/Sk4fGradientBase.cpp
@@ -0,0 +1,451 @@
+/*
+ * Copyright 2016 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "Sk4fGradientBase.h"
+
+#include <functional>
+
+namespace {
+
+Sk4f pack_color(SkColor c, bool premul, const Sk4f& component_scale) {
+ const SkColor4f c4f = SkColor4f::FromColor(c);
+ const Sk4f pm4f = premul
+ ? c4f.premul().to4f()
+ : Sk4f{c4f.fR, c4f.fG, c4f.fB, c4f.fA};
+
+ return pm4f * component_scale;
+}
+
+class IntervalIterator {
+public:
+ IntervalIterator(const SkColor* colors, const SkScalar* pos, int count, bool reverse)
+ : fColors(colors)
+ , fPos(pos)
+ , fCount(count)
+ , fFirstPos(reverse ? SK_Scalar1 : 0)
+ , fBegin(reverse ? count - 1 : 0)
+ , fAdvance(reverse ? -1 : 1) {
+ SkASSERT(colors);
+ SkASSERT(count > 0);
+ }
+
+ void iterate(std::function<void(SkColor, SkColor, SkScalar, SkScalar)> func) const {
+ if (!fPos) {
+ this->iterateImplicitPos(func);
+ return;
+ }
+
+ const int end = fBegin + fAdvance * (fCount - 1);
+ const SkScalar lastPos = 1 - fFirstPos;
+ int prev = fBegin;
+ SkScalar prevPos = fFirstPos;
+
+ do {
+ const int curr = prev + fAdvance;
+ SkASSERT(curr >= 0 && curr < fCount);
+
+ // TODO: this sanitization should be done in SkGradientShaderBase
+ const SkScalar currPos = (fAdvance > 0)
+ ? SkTPin(fPos[curr], prevPos, lastPos)
+ : SkTPin(fPos[curr], lastPos, prevPos);
+
+ if (currPos != prevPos) {
+ SkASSERT((currPos - prevPos > 0) == (fAdvance > 0));
+ func(fColors[prev], fColors[curr], prevPos, currPos);
+ }
+
+ prev = curr;
+ prevPos = currPos;
+ } while (prev != end);
+ }
+
+private:
+ void iterateImplicitPos(std::function<void(SkColor, SkColor, SkScalar, SkScalar)> func) const {
+ // When clients don't provide explicit color stop positions (fPos == nullptr),
+ // the color stops are distributed evenly across the unit interval
+ // (implicit positioning).
+ const SkScalar dt = fAdvance * SK_Scalar1 / (fCount - 1);
+ const int end = fBegin + fAdvance * (fCount - 2);
+ int prev = fBegin;
+ SkScalar prevPos = fFirstPos;
+
+ while (prev != end) {
+ const int curr = prev + fAdvance;
+ SkASSERT(curr >= 0 && curr < fCount);
+
+ const SkScalar currPos = prevPos + dt;
+ func(fColors[prev], fColors[curr], prevPos, currPos);
+ prev = curr;
+ prevPos = currPos;
+ }
+
+ // emit the last interval with a pinned end position, to avoid precision issues
+ func(fColors[prev], fColors[prev + fAdvance], prevPos, 1 - fFirstPos);
+ }
+
+ const SkColor* fColors;
+ const SkScalar* fPos;
+ const int fCount;
+ const SkScalar fFirstPos;
+ const int fBegin;
+ const int fAdvance;
+};
+
+void addMirrorIntervals(const SkColor colors[],
+ const SkScalar pos[], int count,
+ const Sk4f& componentScale,
+ bool premulColors, bool reverse,
+ Sk4fGradientIntervalBuffer::BufferType* buffer) {
+ const IntervalIterator iter(colors, pos, count, reverse);
+ iter.iterate([&] (SkColor c0, SkColor c1, SkScalar t0, SkScalar t1) {
+ SkASSERT(buffer->empty() || buffer->back().fT1 == 2 - t0);
+
+ const auto mirror_t0 = 2 - t0;
+ const auto mirror_t1 = 2 - t1;
+ // mirror_p1 & mirror_p1 may collapse for very small values - recheck to avoid
+ // triggering Interval asserts.
+ if (mirror_t0 != mirror_t1) {
+ buffer->emplace_back(pack_color(c0, premulColors, componentScale), mirror_t0,
+ pack_color(c1, premulColors, componentScale), mirror_t1);
+ }
+ });
+}
+
+} // anonymous namespace
+
+Sk4fGradientInterval::Sk4fGradientInterval(const Sk4f& c0, SkScalar t0,
+ const Sk4f& c1, SkScalar t1)
+ : fT0(t0)
+ , fT1(t1) {
+ SkASSERT(t0 != t1);
+ // Either p0 or p1 can be (-)inf for synthetic clamp edge intervals.
+ SkASSERT(SkScalarIsFinite(t0) || SkScalarIsFinite(t1));
+
+ const auto dt = t1 - t0;
+
+ // Clamp edge intervals are always zero-ramp.
+ SkASSERT(SkScalarIsFinite(dt) || (c0 == c1).allTrue());
+ SkASSERT(SkScalarIsFinite(t0) || (c0 == c1).allTrue());
+ const Sk4f dc = SkScalarIsFinite(dt) ? (c1 - c0) / dt : 0;
+ const Sk4f bias = c0 - (SkScalarIsFinite(t0) ? t0 * dc : 0);
+
+ bias.store(&fCb.fVec);
+ dc.store(&fCg.fVec);
+}
+
+void Sk4fGradientIntervalBuffer::init(const SkColor colors[], const SkScalar pos[], int count,
+ SkShader::TileMode tileMode, bool premulColors,
+ SkScalar alpha, bool reverse) {
+ // The main job here is to build a specialized interval list: a different
+ // representation of the color stops data, optimized for efficient scan line
+ // access during shading.
+ //
+ // [{P0,C0} , {P1,C1}) [{P1,C2} , {P2,c3}) ... [{Pn,C2n} , {Pn+1,C2n+1})
+ //
+ // The list may be inverted when requested (such that e.g. points are sorted
+ // in increasing x order when dx < 0).
+ //
+ // Note: the current representation duplicates pos data; we could refactor to
+ // avoid this if interval storage size becomes a concern.
+ //
+ // Aside from reordering, we also perform two more pre-processing steps at
+ // this stage:
+ //
+ // 1) scale the color components depending on paint alpha and the requested
+ // interpolation space (note: the interval color storage is SkPM4f, but
+ // that doesn't necessarily mean the colors are premultiplied; that
+ // property is tracked in fColorsArePremul)
+ //
+ // 2) inject synthetic intervals to support tiling.
+ //
+ // * for kRepeat, no extra intervals are needed - the iterator just
+ // wraps around at the end:
+ //
+ // ->[P0,P1)->..[Pn-1,Pn)->
+ //
+ // * for kClamp, we add two "infinite" intervals before/after:
+ //
+ // [-/+inf , P0)->[P0 , P1)->..[Pn-1 , Pn)->[Pn , +/-inf)
+ //
+ // (the iterator should never run off the end in this mode)
+ //
+ // * for kMirror, we extend the range to [0..2] and add a flipped
+ // interval series - then the iterator operates just as in the
+ // kRepeat case:
+ //
+ // ->[P0,P1)->..[Pn-1,Pn)->[2 - Pn,2 - Pn-1)->..[2 - P1,2 - P0)->
+ //
+ // TODO: investigate collapsing intervals << 1px.
+
+ SkASSERT(count > 0);
+ SkASSERT(colors);
+
+ fIntervals.reset();
+
+ const Sk4f componentScale = premulColors
+ ? Sk4f(alpha)
+ : Sk4f(1.0f, 1.0f, 1.0f, alpha);
+ const int first_index = reverse ? count - 1 : 0;
+ const int last_index = count - 1 - first_index;
+ const SkScalar first_pos = reverse ? SK_Scalar1 : 0;
+ const SkScalar last_pos = SK_Scalar1 - first_pos;
+
+ if (tileMode == SkShader::kClamp_TileMode) {
+ // synthetic edge interval: -/+inf .. P0
+ const Sk4f clamp_color = pack_color(colors[first_index],
+ premulColors, componentScale);
+ const SkScalar clamp_pos = reverse ? SK_ScalarInfinity : SK_ScalarNegativeInfinity;
+ fIntervals.emplace_back(clamp_color, clamp_pos,
+ clamp_color, first_pos);
+ } else if (tileMode == SkShader::kMirror_TileMode && reverse) {
+ // synthetic mirror intervals injected before main intervals: (2 .. 1]
+ addMirrorIntervals(colors, pos, count, componentScale, premulColors, false, &fIntervals);
+ }
+
+ const IntervalIterator iter(colors, pos, count, reverse);
+ iter.iterate([&] (SkColor c0, SkColor c1, SkScalar t0, SkScalar t1) {
+ SkASSERT(fIntervals.empty() || fIntervals.back().fT1 == t0);
+
+ fIntervals.emplace_back(pack_color(c0, premulColors, componentScale), t0,
+ pack_color(c1, premulColors, componentScale), t1);
+ });
+
+ if (tileMode == SkShader::kClamp_TileMode) {
+ // synthetic edge interval: Pn .. +/-inf
+ const Sk4f clamp_color = pack_color(colors[last_index], premulColors, componentScale);
+ const SkScalar clamp_pos = reverse ? SK_ScalarNegativeInfinity : SK_ScalarInfinity;
+ fIntervals.emplace_back(clamp_color, last_pos,
+ clamp_color, clamp_pos);
+ } else if (tileMode == SkShader::kMirror_TileMode && !reverse) {
+ // synthetic mirror intervals injected after main intervals: [1 .. 2)
+ addMirrorIntervals(colors, pos, count, componentScale, premulColors, true, &fIntervals);
+ }
+}
+
+const Sk4fGradientInterval* Sk4fGradientIntervalBuffer::find(SkScalar t) const {
+ // Binary search.
+ const auto* i0 = fIntervals.begin();
+ const auto* i1 = fIntervals.end() - 1;
+
+ while (i0 != i1) {
+ SkASSERT(i0 < i1);
+ SkASSERT(t >= i0->fT0 && t <= i1->fT1);
+
+ const auto* i = i0 + ((i1 - i0) >> 1);
+
+ if (t > i->fT1) {
+ i0 = i + 1;
+ } else {
+ i1 = i;
+ }
+ }
+
+ SkASSERT(i0->contains(t));
+ return i0;
+}
+
+const Sk4fGradientInterval* Sk4fGradientIntervalBuffer::findNext(
+ SkScalar t, const Sk4fGradientInterval* prev, bool increasing) const {
+
+ SkASSERT(!prev->contains(t));
+ SkASSERT(prev >= fIntervals.begin() && prev < fIntervals.end());
+ SkASSERT(t >= fIntervals.front().fT0 && t <= fIntervals.back().fT1);
+
+ const auto* i = prev;
+
+ // Use the |increasing| signal to figure which direction we should search for
+ // the next interval, then perform a linear search.
+ if (increasing) {
+ do {
+ i += 1;
+ if (i >= fIntervals.end()) {
+ i = fIntervals.begin();
+ }
+ } while (!i->contains(t));
+ } else {
+ do {
+ i -= 1;
+ if (i < fIntervals.begin()) {
+ i = fIntervals.end() - 1;
+ }
+ } while (!i->contains(t));
+ }
+
+ return i;
+}
+
+SkGradientShaderBase::
+GradientShaderBase4fContext::GradientShaderBase4fContext(const SkGradientShaderBase& shader,
+ const ContextRec& rec)
+ : INHERITED(shader, rec)
+ , fFlags(this->INHERITED::getFlags())
+#ifdef SK_SUPPORT_LEGACY_GRADIENT_DITHERING
+ , fDither(true)
+#else
+ , fDither(rec.fPaint->isDither())
+#endif
+{
+ const SkMatrix& inverse = this->getTotalInverse();
+ fDstToPos.setConcat(shader.fPtsToUnit, inverse);
+ fDstToPosProc = fDstToPos.getMapXYProc();
+ fDstToPosClass = static_cast<uint8_t>(INHERITED::ComputeMatrixClass(fDstToPos));
+
+ if (shader.fColorsAreOpaque && this->getPaintAlpha() == SK_AlphaOPAQUE) {
+ fFlags |= kOpaqueAlpha_Flag;
+ }
+
+ fColorsArePremul =
+ (shader.fGradFlags & SkGradientShader::kInterpolateColorsInPremul_Flag)
+ || shader.fColorsAreOpaque;
+}
+
+bool SkGradientShaderBase::
+GradientShaderBase4fContext::isValid() const {
+ return fDstToPos.isFinite();
+}
+
+void SkGradientShaderBase::
+GradientShaderBase4fContext::shadeSpan(int x, int y, SkPMColor dst[], int count) {
+ if (fColorsArePremul) {
+ this->shadePremulSpan<DstType::L32, ApplyPremul::False>(x, y, dst, count);
+ } else {
+ this->shadePremulSpan<DstType::L32, ApplyPremul::True>(x, y, dst, count);
+ }
+}
+
+void SkGradientShaderBase::
+GradientShaderBase4fContext::shadeSpan4f(int x, int y, SkPM4f dst[], int count) {
+ if (fColorsArePremul) {
+ this->shadePremulSpan<DstType::F32, ApplyPremul::False>(x, y, dst, count);
+ } else {
+ this->shadePremulSpan<DstType::F32, ApplyPremul::True>(x, y, dst, count);
+ }
+}
+
+template<DstType dstType, ApplyPremul premul>
+void SkGradientShaderBase::
+GradientShaderBase4fContext::shadePremulSpan(int x, int y,
+ typename DstTraits<dstType, premul>::Type dst[],
+ int count) const {
+ const SkGradientShaderBase& shader =
+ static_cast<const SkGradientShaderBase&>(fShader);
+
+ switch (shader.fTileMode) {
+ case kClamp_TileMode:
+ this->shadeSpanInternal<dstType,
+ premul,
+ kClamp_TileMode>(x, y, dst, count);
+ break;
+ case kRepeat_TileMode:
+ this->shadeSpanInternal<dstType,
+ premul,
+ kRepeat_TileMode>(x, y, dst, count);
+ break;
+ case kMirror_TileMode:
+ this->shadeSpanInternal<dstType,
+ premul,
+ kMirror_TileMode>(x, y, dst, count);
+ break;
+ }
+}
+
+template<DstType dstType, ApplyPremul premul, SkShader::TileMode tileMode>
+void SkGradientShaderBase::
+GradientShaderBase4fContext::shadeSpanInternal(int x, int y,
+ typename DstTraits<dstType, premul>::Type dst[],
+ int count) const {
+ static const int kBufSize = 128;
+ SkScalar ts[kBufSize];
+ TSampler<dstType, premul, tileMode> sampler(*this);
+
+ SkASSERT(count > 0);
+ do {
+ const int n = SkTMin(kBufSize, count);
+ this->mapTs(x, y, ts, n);
+ for (int i = 0; i < n; ++i) {
+ const Sk4f c = sampler.sample(ts[i]);
+ DstTraits<dstType, premul>::store(c, dst++);
+ }
+ x += n;
+ count -= n;
+ } while (count > 0);
+}
+
+template<DstType dstType, ApplyPremul premul, SkShader::TileMode tileMode>
+class SkGradientShaderBase::GradientShaderBase4fContext::TSampler {
+public:
+ TSampler(const GradientShaderBase4fContext& ctx)
+ : fCtx(ctx)
+ , fInterval(nullptr) {
+ switch (tileMode) {
+ case kClamp_TileMode:
+ fLargestIntervalValue = SK_ScalarInfinity;
+ break;
+ case kRepeat_TileMode:
+ fLargestIntervalValue = nextafterf(1, 0);
+ break;
+ case kMirror_TileMode:
+ fLargestIntervalValue = nextafterf(2.0f, 0);
+ break;
+ }
+ }
+
+ Sk4f sample(SkScalar t) {
+ const auto tiled_t = tileProc(t);
+
+ if (!fInterval) {
+ // Very first sample => locate the initial interval.
+ // TODO: maybe do this in ctor to remove a branch?
+ fInterval = fCtx.fIntervals.find(tiled_t);
+ this->loadIntervalData(fInterval);
+ } else if (!fInterval->contains(tiled_t)) {
+ fInterval = fCtx.fIntervals.findNext(tiled_t, fInterval, t >= fPrevT);
+ this->loadIntervalData(fInterval);
+ }
+
+ fPrevT = t;
+ return lerp(tiled_t);
+ }
+
+private:
+ SkScalar tileProc(SkScalar t) const {
+ switch (tileMode) {
+ case kClamp_TileMode:
+ // synthetic clamp-mode edge intervals allow for a free-floating t:
+ // [-inf..0)[0..1)[1..+inf)
+ return t;
+ case kRepeat_TileMode:
+ // t % 1 (intervals range: [0..1))
+ // Due to the extra arithmetic, we must clamp to ensure the value remains less than 1.
+ return SkTMin(t - SkScalarFloorToScalar(t), fLargestIntervalValue);
+ case kMirror_TileMode:
+ // t % 2 (synthetic mirror intervals expand the range to [0..2)
+ // Due to the extra arithmetic, we must clamp to ensure the value remains less than 2.
+ return SkTMin(t - SkScalarFloorToScalar(t / 2) * 2, fLargestIntervalValue);
+ }
+
+ SK_ABORT("Unhandled tile mode.");
+ return 0;
+ }
+
+ Sk4f lerp(SkScalar t) {
+ SkASSERT(fInterval->contains(t));
+ return fCb + fCg * t;
+ }
+
+ void loadIntervalData(const Sk4fGradientInterval* i) {
+ fCb = DstTraits<dstType, premul>::load(i->fCb);
+ fCg = DstTraits<dstType, premul>::load(i->fCg);
+ }
+
+ const GradientShaderBase4fContext& fCtx;
+ const Sk4fGradientInterval* fInterval;
+ SkScalar fPrevT;
+ SkScalar fLargestIntervalValue;
+ Sk4f fCb;
+ Sk4f fCg;
+};