aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/effects/GrCircleBlurFragmentProcessor.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/effects/GrCircleBlurFragmentProcessor.cpp')
-rw-r--r--src/effects/GrCircleBlurFragmentProcessor.cpp595
1 files changed, 276 insertions, 319 deletions
diff --git a/src/effects/GrCircleBlurFragmentProcessor.cpp b/src/effects/GrCircleBlurFragmentProcessor.cpp
index d99f0c78ba..b5cb961d5e 100644
--- a/src/effects/GrCircleBlurFragmentProcessor.cpp
+++ b/src/effects/GrCircleBlurFragmentProcessor.cpp
@@ -1,359 +1,316 @@
/*
- * Copyright 2015 Google Inc.
+ * Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
+/*
+ * This file was autogenerated from GrCircleBlurFragmentProcessor.fp; do not modify.
+ */
#include "GrCircleBlurFragmentProcessor.h"
-
#if SK_SUPPORT_GPU
-#include "GrContext.h"
-#include "GrResourceProvider.h"
-#include "glsl/GrGLSLFragmentProcessor.h"
-#include "glsl/GrGLSLFragmentShaderBuilder.h"
-#include "glsl/GrGLSLProgramDataManager.h"
-#include "glsl/GrGLSLUniformHandler.h"
-
-#include "SkFixed.h"
-
-class GrCircleBlurFragmentProcessor::GLSLProcessor : public GrGLSLFragmentProcessor {
-public:
- void emitCode(EmitArgs&) override;
-
-protected:
- void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override;
-
-private:
- GrGLSLProgramDataManager::UniformHandle fDataUniform;
-
- typedef GrGLSLFragmentProcessor INHERITED;
-};
-
-void GrCircleBlurFragmentProcessor::GLSLProcessor::emitCode(EmitArgs& args) {
- const char *dataName;
-
- // The data is formatted as:
- // x,y - the center of the circle
- // z - inner radius that should map to 0th entry in the texture.
- // w - the inverse of the distance over which the texture is stretched.
- fDataUniform = args.fUniformHandler->addUniform(kFragment_GrShaderFlag,
- kVec4f_GrSLType,
- kDefault_GrSLPrecision,
- "data",
- &dataName);
-
- GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
-
- if (args.fInputColor) {
- fragBuilder->codeAppendf("vec4 src=%s;", args.fInputColor);
- } else {
- fragBuilder->codeAppendf("vec4 src=vec4(1);");
- }
-
- // We just want to compute "(length(vec) - %s.z + 0.5) * %s.w" but need to rearrange
- // for precision.
- fragBuilder->codeAppendf("vec2 vec = vec2( (sk_FragCoord.x - %s.x) * %s.w, "
- "(sk_FragCoord.y - %s.y) * %s.w );",
- dataName, dataName, dataName, dataName);
- fragBuilder->codeAppendf("float dist = length(vec) + (0.5 - %s.z) * %s.w;",
- dataName, dataName);
-
- fragBuilder->codeAppendf("float intensity = ");
- fragBuilder->appendTextureLookup(args.fTexSamplers[0], "vec2(dist, 0.5)");
- fragBuilder->codeAppend(".a;");
-
- fragBuilder->codeAppendf("%s = src * intensity;\n", args.fOutputColor );
-}
-
-void GrCircleBlurFragmentProcessor::GLSLProcessor::onSetData(const GrGLSLProgramDataManager& pdman,
- const GrFragmentProcessor& proc) {
- const GrCircleBlurFragmentProcessor& cbfp = proc.cast<GrCircleBlurFragmentProcessor>();
- const SkRect& circle = cbfp.fCircle;
-
- // The data is formatted as:
- // x,y - the center of the circle
- // z - inner radius that should map to 0th entry in the texture.
- // w - the inverse of the distance over which the profile texture is stretched.
- pdman.set4f(fDataUniform, circle.centerX(), circle.centerY(), cbfp.fSolidRadius,
- 1.f / cbfp.fTextureRadius);
-}
-
-///////////////////////////////////////////////////////////////////////////////
-
-GrCircleBlurFragmentProcessor::GrCircleBlurFragmentProcessor(const SkRect& circle,
- float textureRadius,
- float solidRadius,
- sk_sp<GrTextureProxy> blurProfile)
- : INHERITED(kCompatibleWithCoverageAsAlpha_OptimizationFlag)
- , fCircle(circle)
- , fSolidRadius(solidRadius)
- , fTextureRadius(textureRadius)
- , fBlurProfileSampler(std::move(blurProfile), GrSamplerParams::kBilerp_FilterMode) {
- this->initClassID<GrCircleBlurFragmentProcessor>();
- this->addTextureSampler(&fBlurProfileSampler);
-}
-
-GrGLSLFragmentProcessor* GrCircleBlurFragmentProcessor::onCreateGLSLInstance() const {
- return new GLSLProcessor;
-}
-
-void GrCircleBlurFragmentProcessor::onGetGLSLProcessorKey(const GrShaderCaps& caps,
- GrProcessorKeyBuilder* b) const {
- // The code for this processor is always the same so there is nothing to add to the key.
- return;
-}
-
-// Computes an unnormalized half kernel (right side). Returns the summation of all the half kernel
-// values.
-static float make_unnormalized_half_kernel(float* halfKernel, int halfKernelSize, float sigma) {
- const float invSigma = 1.f / sigma;
- const float b = -0.5f * invSigma * invSigma;
- float tot = 0.0f;
- // Compute half kernel values at half pixel steps out from the center.
- float t = 0.5f;
- for (int i = 0; i < halfKernelSize; ++i) {
- float value = expf(t * t * b);
- tot += value;
- halfKernel[i] = value;
- t += 1.f;
+ #include "GrResourceProvider.h"
+
+
+
+ static float make_unnormalized_half_kernel(float* halfKernel, int halfKernelSize, float sigma) {
+ const float invSigma = 1.f / sigma;
+ const float b = -0.5f * invSigma * invSigma;
+ float tot = 0.0f;
+
+ float t = 0.5f;
+ for (int i = 0; i < halfKernelSize; ++i) {
+ float value = expf(t * t * b);
+ tot += value;
+ halfKernel[i] = value;
+ t += 1.f;
+ }
+ return tot;
}
- return tot;
-}
-// Create a Gaussian half-kernel (right side) and a summed area table given a sigma and number of
-// discrete steps. The half kernel is normalized to sum to 0.5.
-static void make_half_kernel_and_summed_table(float* halfKernel, float* summedHalfKernel,
- int halfKernelSize, float sigma) {
- // The half kernel should sum to 0.5 not 1.0.
- const float tot = 2.f * make_unnormalized_half_kernel(halfKernel, halfKernelSize, sigma);
- float sum = 0.f;
- for (int i = 0; i < halfKernelSize; ++i) {
- halfKernel[i] /= tot;
- sum += halfKernel[i];
- summedHalfKernel[i] = sum;
+
+
+ static void make_half_kernel_and_summed_table(float* halfKernel, float* summedHalfKernel,
+ int halfKernelSize, float sigma) {
+
+ const float tot = 2.f * make_unnormalized_half_kernel(halfKernel, halfKernelSize, sigma);
+ float sum = 0.f;
+ for (int i = 0; i < halfKernelSize; ++i) {
+ halfKernel[i] /= tot;
+ sum += halfKernel[i];
+ summedHalfKernel[i] = sum;
+ }
}
-}
-// Applies the 1D half kernel vertically at points along the x axis to a circle centered at the
-// origin with radius circleR.
-void apply_kernel_in_y(float* results, int numSteps, float firstX, float circleR,
- int halfKernelSize, const float* summedHalfKernelTable) {
- float x = firstX;
- for (int i = 0; i < numSteps; ++i, x += 1.f) {
- if (x < -circleR || x > circleR) {
- results[i] = 0;
- continue;
- }
- float y = sqrtf(circleR * circleR - x * x);
- // In the column at x we exit the circle at +y and -y
- // The summed table entry j is actually reflects an offset of j + 0.5.
- y -= 0.5f;
- int yInt = SkScalarFloorToInt(y);
- SkASSERT(yInt >= -1);
- if (y < 0) {
- results[i] = (y + 0.5f) * summedHalfKernelTable[0];
- } else if (yInt >= halfKernelSize - 1) {
- results[i] = 0.5f;
- } else {
- float yFrac = y - yInt;
- results[i] = (1.f - yFrac) * summedHalfKernelTable[yInt] +
- yFrac * summedHalfKernelTable[yInt + 1];
+
+
+ void apply_kernel_in_y(float* results, int numSteps, float firstX, float circleR,
+ int halfKernelSize, const float* summedHalfKernelTable) {
+ float x = firstX;
+ for (int i = 0; i < numSteps; ++i, x += 1.f) {
+ if (x < -circleR || x > circleR) {
+ results[i] = 0;
+ continue;
+ }
+ float y = sqrtf(circleR * circleR - x * x);
+
+
+ y -= 0.5f;
+ int yInt = SkScalarFloorToInt(y);
+ SkASSERT(yInt >= -1);
+ if (y < 0) {
+ results[i] = (y + 0.5f) * summedHalfKernelTable[0];
+ } else if (yInt >= halfKernelSize - 1) {
+ results[i] = 0.5f;
+ } else {
+ float yFrac = y - yInt;
+ results[i] = (1.f - yFrac) * summedHalfKernelTable[yInt] +
+ yFrac * summedHalfKernelTable[yInt + 1];
+ }
}
}
-}
-
-// Apply a Gaussian at point (evalX, 0) to a circle centered at the origin with radius circleR.
-// This relies on having a half kernel computed for the Gaussian and a table of applications of
-// the half kernel in y to columns at (evalX - halfKernel, evalX - halfKernel + 1, ..., evalX +
-// halfKernel) passed in as yKernelEvaluations.
-static uint8_t eval_at(float evalX, float circleR, const float* halfKernel, int halfKernelSize,
- const float* yKernelEvaluations) {
- float acc = 0;
- float x = evalX - halfKernelSize;
- for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
- if (x < -circleR || x > circleR) {
- continue;
+
+
+
+
+ static uint8_t eval_at(float evalX, float circleR, const float* halfKernel, int halfKernelSize,
+ const float* yKernelEvaluations) {
+ float acc = 0;
+
+ float x = evalX - halfKernelSize;
+ for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
+ if (x < -circleR || x > circleR) {
+ continue;
+ }
+ float verticalEval = yKernelEvaluations[i];
+ acc += verticalEval * halfKernel[halfKernelSize - i - 1];
}
- float verticalEval = yKernelEvaluations[i];
- acc += verticalEval * halfKernel[halfKernelSize - i - 1];
- }
- for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
- if (x < -circleR || x > circleR) {
- continue;
+ for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
+ if (x < -circleR || x > circleR) {
+ continue;
+ }
+ float verticalEval = yKernelEvaluations[i + halfKernelSize];
+ acc += verticalEval * halfKernel[i];
}
- float verticalEval = yKernelEvaluations[i + halfKernelSize];
- acc += verticalEval * halfKernel[i];
+
+
+ return SkUnitScalarClampToByte(2.f * acc);
}
- // Since we applied a half kernel in y we multiply acc by 2 (the circle is symmetric about the
- // x axis).
- return SkUnitScalarClampToByte(2.f * acc);
-}
-
-// This function creates a profile of a blurred circle. It does this by computing a kernel for
-// half the Gaussian and a matching summed area table. The summed area table is used to compute
-// an array of vertical applications of the half kernel to the circle along the x axis. The table
-// of y evaluations has 2 * k + n entries where k is the size of the half kernel and n is the size
-// of the profile being computed. Then for each of the n profile entries we walk out k steps in each
-// horizontal direction multiplying the corresponding y evaluation by the half kernel entry and
-// sum these values to compute the profile entry.
-static uint8_t* create_circle_profile(float sigma, float circleR, int profileTextureWidth) {
- const int numSteps = profileTextureWidth;
- uint8_t* weights = new uint8_t[numSteps];
-
- // The full kernel is 6 sigmas wide.
- int halfKernelSize = SkScalarCeilToInt(6.0f*sigma);
- // round up to next multiple of 2 and then divide by 2
- halfKernelSize = ((halfKernelSize + 1) & ~1) >> 1;
-
- // Number of x steps at which to apply kernel in y to cover all the profile samples in x.
- int numYSteps = numSteps + 2 * halfKernelSize;
-
- SkAutoTArray<float> bulkAlloc(halfKernelSize + halfKernelSize + numYSteps);
- float* halfKernel = bulkAlloc.get();
- float* summedKernel = bulkAlloc.get() + halfKernelSize;
- float* yEvals = bulkAlloc.get() + 2 * halfKernelSize;
- make_half_kernel_and_summed_table(halfKernel, summedKernel, halfKernelSize, sigma);
-
- float firstX = -halfKernelSize + 0.5f;
- apply_kernel_in_y(yEvals, numYSteps, firstX, circleR, halfKernelSize, summedKernel);
-
- for (int i = 0; i < numSteps - 1; ++i) {
- float evalX = i + 0.5f;
- weights[i] = eval_at(evalX, circleR, halfKernel, halfKernelSize, yEvals + i);
- }
- // Ensure the tail of the Gaussian goes to zero.
- weights[numSteps - 1] = 0;
- return weights;
-}
-
-static uint8_t* create_half_plane_profile(int profileWidth) {
- SkASSERT(!(profileWidth & 0x1));
- // The full kernel is 6 sigmas wide.
- float sigma = profileWidth / 6.f;
- int halfKernelSize = profileWidth / 2;
- SkAutoTArray<float> halfKernel(halfKernelSize);
- uint8_t* profile = new uint8_t[profileWidth];
-
- // The half kernel should sum to 0.5.
- const float tot = 2.f * make_unnormalized_half_kernel(halfKernel.get(), halfKernelSize, sigma);
- float sum = 0.f;
- // Populate the profile from the right edge to the middle.
- for (int i = 0; i < halfKernelSize; ++i) {
- halfKernel[halfKernelSize - i - 1] /= tot;
- sum += halfKernel[halfKernelSize - i - 1];
- profile[profileWidth - i - 1] = SkUnitScalarClampToByte(sum);
- }
- // Populate the profile from the middle to the left edge (by flipping the half kernel and
- // continuing the summation).
- for (int i = 0; i < halfKernelSize; ++i) {
- sum += halfKernel[i];
- profile[halfKernelSize - i - 1] = SkUnitScalarClampToByte(sum);
+
+
+
+
+
+
+
+ static uint8_t* create_circle_profile(float sigma, float circleR, int profileTextureWidth) {
+ const int numSteps = profileTextureWidth;
+ uint8_t* weights = new uint8_t[numSteps];
+
+
+ int halfKernelSize = SkScalarCeilToInt(6.0f*sigma);
+
+ halfKernelSize = ((halfKernelSize + 1) & ~1) >> 1;
+
+
+ int numYSteps = numSteps + 2 * halfKernelSize;
+
+ SkAutoTArray<float> bulkAlloc(halfKernelSize + halfKernelSize + numYSteps);
+ float* halfKernel = bulkAlloc.get();
+ float* summedKernel = bulkAlloc.get() + halfKernelSize;
+ float* yEvals = bulkAlloc.get() + 2 * halfKernelSize;
+ make_half_kernel_and_summed_table(halfKernel, summedKernel, halfKernelSize, sigma);
+
+ float firstX = -halfKernelSize + 0.5f;
+ apply_kernel_in_y(yEvals, numYSteps, firstX, circleR, halfKernelSize, summedKernel);
+
+ for (int i = 0; i < numSteps - 1; ++i) {
+ float evalX = i + 0.5f;
+ weights[i] = eval_at(evalX, circleR, halfKernel, halfKernelSize, yEvals + i);
+ }
+
+ weights[numSteps - 1] = 0;
+ return weights;
}
- // Ensure tail goes to 0.
- profile[profileWidth - 1] = 0;
- return profile;
-}
-static sk_sp<GrTextureProxy> create_profile_texture(GrResourceProvider* resourceProvider,
- const SkRect& circle,
- float sigma,
- float* solidRadius, float* textureRadius) {
- float circleR = circle.width() / 2.0f;
- // Profile textures are cached by the ratio of sigma to circle radius and by the size of the
- // profile texture (binned by powers of 2).
- SkScalar sigmaToCircleRRatio = sigma / circleR;
- // When sigma is really small this becomes a equivalent to convolving a Gaussian with a half-
- // plane. Similarly, in the extreme high ratio cases circle becomes a point WRT to the Guassian
- // and the profile texture is a just a Gaussian evaluation. However, we haven't yet implemented
- // this latter optimization.
- sigmaToCircleRRatio = SkTMin(sigmaToCircleRRatio, 8.f);
- SkFixed sigmaToCircleRRatioFixed;
- static const SkScalar kHalfPlaneThreshold = 0.1f;
- bool useHalfPlaneApprox = false;
- if (sigmaToCircleRRatio <= kHalfPlaneThreshold) {
- useHalfPlaneApprox = true;
- sigmaToCircleRRatioFixed = 0;
- *solidRadius = circleR - 3 * sigma;
- *textureRadius = 6 * sigma;
- } else {
- // Convert to fixed point for the key.
- sigmaToCircleRRatioFixed = SkScalarToFixed(sigmaToCircleRRatio);
- // We shave off some bits to reduce the number of unique entries. We could probably shave
- // off more than we do.
- sigmaToCircleRRatioFixed &= ~0xff;
- sigmaToCircleRRatio = SkFixedToScalar(sigmaToCircleRRatioFixed);
- sigma = circleR * sigmaToCircleRRatio;
- *solidRadius = 0;
- *textureRadius = circleR + 3 * sigma;
+ static uint8_t* create_half_plane_profile(int profileWidth) {
+ SkASSERT(!(profileWidth & 0x1));
+
+ float sigma = profileWidth / 6.f;
+ int halfKernelSize = profileWidth / 2;
+
+ SkAutoTArray<float> halfKernel(halfKernelSize);
+ uint8_t* profile = new uint8_t[profileWidth];
+
+
+ const float tot = 2.f * make_unnormalized_half_kernel(halfKernel.get(), halfKernelSize,
+ sigma);
+ float sum = 0.f;
+
+ for (int i = 0; i < halfKernelSize; ++i) {
+ halfKernel[halfKernelSize - i - 1] /= tot;
+ sum += halfKernel[halfKernelSize - i - 1];
+ profile[profileWidth - i - 1] = SkUnitScalarClampToByte(sum);
+ }
+
+
+ for (int i = 0; i < halfKernelSize; ++i) {
+ sum += halfKernel[i];
+ profile[halfKernelSize - i - 1] = SkUnitScalarClampToByte(sum);
+ }
+
+ profile[profileWidth - 1] = 0;
+ return profile;
}
- static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
- GrUniqueKey key;
- GrUniqueKey::Builder builder(&key, kDomain, 1);
- builder[0] = sigmaToCircleRRatioFixed;
- builder.finish();
-
- sk_sp<GrTextureProxy> blurProfile = resourceProvider->findProxyByUniqueKey(key);
- if (!blurProfile) {
- static constexpr int kProfileTextureWidth = 512;
- GrSurfaceDesc texDesc;
- texDesc.fWidth = kProfileTextureWidth;
- texDesc.fHeight = 1;
- texDesc.fConfig = kAlpha_8_GrPixelConfig;
-
- std::unique_ptr<uint8_t[]> profile(nullptr);
- if (useHalfPlaneApprox) {
- profile.reset(create_half_plane_profile(kProfileTextureWidth));
+ static sk_sp<GrTextureProxy> create_profile_texture(GrResourceProvider* resourceProvider,
+ const SkRect& circle,
+ float sigma,
+ float* solidRadius, float* textureRadius) {
+ float circleR = circle.width() / 2.0f;
+
+
+ SkScalar sigmaToCircleRRatio = sigma / circleR;
+
+
+
+
+ sigmaToCircleRRatio = SkTMin(sigmaToCircleRRatio, 8.f);
+ SkFixed sigmaToCircleRRatioFixed;
+ static const SkScalar kHalfPlaneThreshold = 0.1f;
+ bool useHalfPlaneApprox = false;
+ if (sigmaToCircleRRatio <= kHalfPlaneThreshold) {
+ useHalfPlaneApprox = true;
+ sigmaToCircleRRatioFixed = 0;
+ *solidRadius = circleR - 3 * sigma;
+ *textureRadius = 6 * sigma;
} else {
- // Rescale params to the size of the texture we're creating.
- SkScalar scale = kProfileTextureWidth / *textureRadius;
- profile.reset(create_circle_profile(sigma * scale, circleR * scale,
- kProfileTextureWidth));
+
+ sigmaToCircleRRatioFixed = SkScalarToFixed(sigmaToCircleRRatio);
+
+
+ sigmaToCircleRRatioFixed &= ~0xff;
+ sigmaToCircleRRatio = SkFixedToScalar(sigmaToCircleRRatioFixed);
+ sigma = circleR * sigmaToCircleRRatio;
+ *solidRadius = 0;
+ *textureRadius = circleR + 3 * sigma;
}
- blurProfile = GrSurfaceProxy::MakeDeferred(resourceProvider,
- texDesc, SkBudgeted::kYes, profile.get(), 0);
+ static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
+ GrUniqueKey key;
+ GrUniqueKey::Builder builder(&key, kDomain, 1);
+ builder[0] = sigmaToCircleRRatioFixed;
+ builder.finish();
+
+ sk_sp<GrTextureProxy> blurProfile = resourceProvider->findProxyByUniqueKey(key);
if (!blurProfile) {
- return nullptr;
+ static constexpr int kProfileTextureWidth = 512;
+ GrSurfaceDesc texDesc;
+ texDesc.fWidth = kProfileTextureWidth;
+ texDesc.fHeight = 1;
+ texDesc.fConfig = kAlpha_8_GrPixelConfig;
+
+ std::unique_ptr<uint8_t[]> profile(nullptr);
+ if (useHalfPlaneApprox) {
+ profile.reset(create_half_plane_profile(kProfileTextureWidth));
+ } else {
+
+ SkScalar scale = kProfileTextureWidth / *textureRadius;
+ profile.reset(create_circle_profile(sigma * scale, circleR * scale,
+ kProfileTextureWidth));
+ }
+
+ blurProfile = GrSurfaceProxy::MakeDeferred(resourceProvider,
+ texDesc, SkBudgeted::kYes, profile.get(), 0);
+ if (!blurProfile) {
+ return nullptr;
+ }
+
+ resourceProvider->assignUniqueKeyToProxy(key, blurProfile.get());
}
- resourceProvider->assignUniqueKeyToProxy(key, blurProfile.get());
+ return blurProfile;
}
- return blurProfile;
-}
-
-//////////////////////////////////////////////////////////////////////////////
-
-sk_sp<GrFragmentProcessor> GrCircleBlurFragmentProcessor::Make(GrResourceProvider* resourceProvider,
- const SkRect& circle, float sigma) {
- float solidRadius;
- float textureRadius;
- sk_sp<GrTextureProxy> profile(create_profile_texture(resourceProvider, circle, sigma,
- &solidRadius, &textureRadius));
- if (!profile) {
- return nullptr;
+ sk_sp<GrFragmentProcessor> GrCircleBlurFragmentProcessor::Make(
+ GrResourceProvider* resourceProvider,
+ const SkRect& circle,
+ float sigma) {
+ float solidRadius;
+ float textureRadius;
+ sk_sp<GrTextureProxy> profile(create_profile_texture(resourceProvider, circle, sigma,
+ &solidRadius, &textureRadius));
+ if (!profile) {
+ return nullptr;
+ }
+ return sk_sp<GrFragmentProcessor>(new GrCircleBlurFragmentProcessor(circle,
+ textureRadius,
+ solidRadius,
+ std::move(profile),
+ resourceProvider));
+ }
+#include "glsl/GrGLSLColorSpaceXformHelper.h"
+#include "glsl/GrGLSLFragmentProcessor.h"
+#include "glsl/GrGLSLFragmentShaderBuilder.h"
+#include "glsl/GrGLSLProgramBuilder.h"
+#include "SkSLCPP.h"
+#include "SkSLUtil.h"
+class GrGLSLCircleBlurFragmentProcessor : public GrGLSLFragmentProcessor {
+public:
+ GrGLSLCircleBlurFragmentProcessor() {}
+ void emitCode(EmitArgs& args) override {
+ GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
+ const GrCircleBlurFragmentProcessor& _outer = args.fFp.cast<GrCircleBlurFragmentProcessor>();
+ (void) _outer;
+ fCircleDataVar = args.fUniformHandler->addUniform(kFragment_GrShaderFlag, kVec4f_GrSLType, kDefault_GrSLPrecision, "circleData");
+ fragBuilder->codeAppendf("vec2 vec = vec2((sk_FragCoord.x - %s.x) * %s.w, (sk_FragCoord.y - %s.y) * %s.w);\nfloat dist = length(vec) + (0.5 - %s.z) * %s.w;\n%s = %s * texture(%s, vec2(dist, 0.5));\n", args.fUniformHandler->getUniformCStr(fCircleDataVar), args.fUniformHandler->getUniformCStr(fCircleDataVar), args.fUniformHandler->getUniformCStr(fCircleDataVar), args.fUniformHandler->getUniformCStr(fCircleDataVar), args.fUniformHandler->getUniformCStr(fCircleDataVar), args.fUniformHandler->getUniformCStr(fCircleDataVar), args.fOutputColor, args.fInputColor ? args.fInputColor : "vec4(1)", fragBuilder->getProgramBuilder()->samplerVariable(args.fTexSamplers[0]).c_str());
+ }
+private:
+ void onSetData(const GrGLSLProgramDataManager& data, const GrFragmentProcessor& _proc) override {
+ const GrCircleBlurFragmentProcessor& _outer = _proc.cast<GrCircleBlurFragmentProcessor>();
+ auto circleRect = _outer.circleRect();
+ (void) circleRect;
+ auto textureRadius = _outer.textureRadius();
+ (void) textureRadius;
+ auto solidRadius = _outer.solidRadius();
+ (void) solidRadius;
+ UniformHandle& blurProfileSampler = fBlurProfileSamplerVar;
+ (void) blurProfileSampler;
+ UniformHandle& circleData = fCircleDataVar;
+ (void) circleData;
+
+ data.set4f(circleData, circleRect.centerX(), circleRect.centerY(), solidRadius,
+ 1.f / textureRadius);
}
- return sk_sp<GrFragmentProcessor>(new GrCircleBlurFragmentProcessor(circle,
- textureRadius, solidRadius,
- std::move(profile)));
+ UniformHandle fCircleDataVar;
+ UniformHandle fBlurProfileSamplerVar;
+};
+GrGLSLFragmentProcessor* GrCircleBlurFragmentProcessor::onCreateGLSLInstance() const {
+ return new GrGLSLCircleBlurFragmentProcessor();
+}
+void GrCircleBlurFragmentProcessor::onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const {
+}
+bool GrCircleBlurFragmentProcessor::onIsEqual(const GrFragmentProcessor& other) const {
+ const GrCircleBlurFragmentProcessor& that = other.cast<GrCircleBlurFragmentProcessor>();
+ (void) that;
+ if (fCircleRect != that.fCircleRect) return false;
+ if (fTextureRadius != that.fTextureRadius) return false;
+ if (fSolidRadius != that.fSolidRadius) return false;
+ if (fBlurProfileSampler != that.fBlurProfileSampler) return false;
+ return true;
}
-
-//////////////////////////////////////////////////////////////////////////////
-
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrCircleBlurFragmentProcessor);
-
#if GR_TEST_UTILS
-sk_sp<GrFragmentProcessor> GrCircleBlurFragmentProcessor::TestCreate(GrProcessorTestData* d) {
- SkScalar wh = d->fRandom->nextRangeScalar(100.f, 1000.f);
- SkScalar sigma = d->fRandom->nextRangeF(1.f,10.f);
+sk_sp<GrFragmentProcessor> GrCircleBlurFragmentProcessor::TestCreate(GrProcessorTestData* testData) {
+
+ SkScalar wh = testData->fRandom->nextRangeScalar(100.f, 1000.f);
+ SkScalar sigma = testData->fRandom->nextRangeF(1.f,10.f);
SkRect circle = SkRect::MakeWH(wh, wh);
- return GrCircleBlurFragmentProcessor::Make(d->resourceProvider(), circle, sigma);
+ return GrCircleBlurFragmentProcessor::Make(testData->resourceProvider(), circle, sigma);
}
#endif
-
#endif