aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkSmallAllocator.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/SkSmallAllocator.h')
-rw-r--r--src/core/SkSmallAllocator.h166
1 files changed, 77 insertions, 89 deletions
diff --git a/src/core/SkSmallAllocator.h b/src/core/SkSmallAllocator.h
index cc50323c3a..13b1505821 100644
--- a/src/core/SkSmallAllocator.h
+++ b/src/core/SkSmallAllocator.h
@@ -8,144 +8,132 @@
#ifndef SkSmallAllocator_DEFINED
#define SkSmallAllocator_DEFINED
-#include "SkTArray.h"
+#include "SkTDArray.h"
#include "SkTypes.h"
-#include <functional>
+#include <new>
#include <utility>
-
-// max_align_t is needed to calculate the alignment for createWithIniterT when the T used is an
-// abstract type. The complication with max_align_t is that it is defined differently for
-// different builds.
-namespace {
-#if defined(SK_BUILD_FOR_WIN32) || defined(SK_BUILD_FOR_MAC)
- // Use std::max_align_t for compiles that follow the standard.
- #include <cstddef>
- using SystemAlignment = std::max_align_t;
-#else
- // Ubuntu compiles don't have std::max_align_t defined, but MSVC does not define max_align_t.
- #include <stddef.h>
- using SystemAlignment = max_align_t;
-#endif
-}
-
/*
* Template class for allocating small objects without additional heap memory
- * allocations.
+ * allocations. kMaxObjects is a hard limit on the number of objects that can
+ * be allocated using this class. After that, attempts to create more objects
+ * with this class will assert and return nullptr.
*
* kTotalBytes is the total number of bytes provided for storage for all
* objects created by this allocator. If an object to be created is larger
* than the storage (minus storage already used), it will be allocated on the
* heap. This class's destructor will handle calling the destructor for each
* object it allocated and freeing its memory.
+ *
+ * Current the class always aligns each allocation to 16-bytes to be safe, but future
+ * may reduce this to only the alignment that is required per alloc.
*/
-template<uint32_t kExpectedObjects, size_t kTotalBytes>
+template<uint32_t kMaxObjects, size_t kTotalBytes>
class SkSmallAllocator : SkNoncopyable {
public:
+ SkSmallAllocator()
+ : fStorageUsed(0)
+ , fNumObjects(0)
+ {}
+
~SkSmallAllocator() {
// Destruct in reverse order, in case an earlier object points to a
// later object.
- while (fRecs.count() > 0) {
- this->deleteLast();
+ while (fNumObjects > 0) {
+ fNumObjects--;
+ Rec* rec = &fRecs[fNumObjects];
+ rec->fKillProc(rec->fObj);
+ // Safe to do if fObj is in fStorage, since fHeapStorage will
+ // point to nullptr.
+ sk_free(rec->fHeapStorage);
}
}
/*
* Create a new object of type T. Its lifetime will be handled by this
* SkSmallAllocator.
+ * Note: If kMaxObjects have been created by this SkSmallAllocator, nullptr
+ * will be returned.
*/
template<typename T, typename... Args>
T* createT(Args&&... args) {
- void* buf = this->reserve(sizeof(T), DefaultDestructor<T>);
+ void* buf = this->reserveT<T>();
+ if (nullptr == buf) {
+ return nullptr;
+ }
return new (buf) T(std::forward<Args>(args)...);
}
/*
- * Create a new object of size using initer to initialize the memory. The initer function has
- * the signature T* initer(void* storage). If initer is unable to initialize the memory it
- * should return nullptr where SkSmallAllocator will free the memory.
+ * Reserve a specified amount of space (must be enough space for one T).
+ * The space will be in fStorage if there is room, or on the heap otherwise.
+ * Either way, this class will call ~T() in its destructor and free the heap
+ * allocation if necessary.
+ * Unlike createT(), this method will not call the constructor of T.
*/
- template <typename Initer>
- auto createWithIniter(size_t size, Initer initer) -> decltype(initer(nullptr)) {
- using ReturnType = decltype(initer(nullptr));
- SkASSERT(size >= sizeof(ReturnType));
-
- void* storage = this->reserve(size, DefaultDestructor<ReturnType>);
- auto candidate = initer(storage);
- if (!candidate) {
- // Initializing didn't workout so free the memory.
- this->freeLast();
+ template<typename T> void* reserveT(size_t storageRequired = sizeof(T)) {
+ SkASSERT(fNumObjects < kMaxObjects);
+ SkASSERT(storageRequired >= sizeof(T));
+ if (kMaxObjects == fNumObjects) {
+ return nullptr;
}
+ const size_t storageRemaining = sizeof(fStorage) - fStorageUsed;
+ Rec* rec = &fRecs[fNumObjects];
+ if (storageRequired > storageRemaining) {
+ // Allocate on the heap. Ideally we want to avoid this situation.
- return candidate;
+ // With the gm composeshader_bitmap2, storage required is 4476
+ // and storage remaining is 3392. Increasing the base storage
+ // causes google 3 tests to fail.
+
+ rec->fStorageSize = 0;
+ rec->fHeapStorage = sk_malloc_throw(storageRequired);
+ rec->fObj = static_cast<void*>(rec->fHeapStorage);
+ } else {
+ // There is space in fStorage.
+ rec->fStorageSize = storageRequired;
+ rec->fHeapStorage = nullptr;
+ rec->fObj = static_cast<void*>(fStorage + fStorageUsed);
+ fStorageUsed += storageRequired;
+ }
+ rec->fKillProc = DestroyT<T>;
+ fNumObjects++;
+ return rec->fObj;
}
/*
- * Free the last object allocated and call its destructor. This can be called multiple times
- * removing objects from the pool in reverse order.
+ * Free the memory reserved last without calling the destructor.
+ * Can be used in a nested way, i.e. after reserving A and B, calling
+ * freeLast once will free B and calling it again will free A.
*/
- void deleteLast() {
- SkASSERT(fRecs.count() > 0);
- Rec& rec = fRecs.back();
- rec.fDestructor(rec.fObj);
- this->freeLast();
+ void freeLast() {
+ SkASSERT(fNumObjects > 0);
+ Rec* rec = &fRecs[fNumObjects - 1];
+ sk_free(rec->fHeapStorage);
+ fStorageUsed -= rec->fStorageSize;
+
+ fNumObjects--;
}
private:
- using Destructor = void(*)(void*);
struct Rec {
- char* fObj;
- Destructor fDestructor;
+ size_t fStorageSize; // 0 if allocated on heap
+ void* fObj;
+ void* fHeapStorage;
+ void (*fKillProc)(void*);
};
// Used to call the destructor for allocated objects.
template<typename T>
- static void DefaultDestructor(void* ptr) {
+ static void DestroyT(void* ptr) {
static_cast<T*>(ptr)->~T();
}
- static constexpr size_t kAlignment = alignof(SystemAlignment);
-
- static constexpr size_t AlignSize(size_t size) {
- return (size + kAlignment - 1) & ~(kAlignment - 1);
- }
-
- // Reserve storageRequired from fStorage if possible otherwise allocate on the heap.
- void* reserve(size_t storageRequired, Destructor destructor) {
- // Make sure that all allocations stay aligned by rounding the storageRequired up to the
- // aligned value.
- char* objectStart = fStorageEnd;
- char* objectEnd = objectStart + AlignSize(storageRequired);
- Rec& rec = fRecs.push_back();
- if (objectEnd > &fStorage[kTotalBytes]) {
- // Allocate on the heap. Ideally we want to avoid this situation.
- rec.fObj = new char [storageRequired];
- } else {
- // There is space in fStorage.
- rec.fObj = objectStart;
- fStorageEnd = objectEnd;
- }
- rec.fDestructor = destructor;
- return rec.fObj;
- }
-
- void freeLast() {
- Rec& rec = fRecs.back();
- if (std::less<char*>()(rec.fObj, fStorage)
- || !std::less<char*>()(rec.fObj, &fStorage[kTotalBytes])) {
- delete [] rec.fObj;
- } else {
- fStorageEnd = rec.fObj;
- }
- fRecs.pop_back();
- }
-
- SkSTArray<kExpectedObjects, Rec, true> fRecs;
- char* fStorageEnd {fStorage};
- // Since char have an alignment of 1, it should be forced onto an alignment the compiler
- // expects which is the alignment of std::max_align_t.
- alignas (kAlignment) char fStorage[kTotalBytes];
+ alignas(16) char fStorage[kTotalBytes];
+ size_t fStorageUsed; // Number of bytes used so far.
+ uint32_t fNumObjects;
+ Rec fRecs[kMaxObjects];
};
#endif // SkSmallAllocator_DEFINED