aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkPathMeasure.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/SkPathMeasure.cpp')
-rw-r--r--src/core/SkPathMeasure.cpp598
1 files changed, 598 insertions, 0 deletions
diff --git a/src/core/SkPathMeasure.cpp b/src/core/SkPathMeasure.cpp
new file mode 100644
index 0000000000..ec1510df32
--- /dev/null
+++ b/src/core/SkPathMeasure.cpp
@@ -0,0 +1,598 @@
+/*
+ * Copyright (C) 2006-2008 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "SkPathMeasure.h"
+#include "SkGeometry.h"
+#include "SkPath.h"
+#include "SkTSearch.h"
+
+// these must be 0,1,2 since they are in our 2-bit field
+enum {
+ kLine_SegType,
+ kCloseLine_SegType,
+ kQuad_SegType,
+ kCubic_SegType
+};
+
+#define kMaxTValue 32767
+
+static inline SkScalar tValue2Scalar(int t) {
+ SkASSERT((unsigned)t <= kMaxTValue);
+
+#ifdef SK_SCALAR_IS_FLOAT
+ return t * 3.05185e-5f; // t / 32767
+#else
+ return (t + (t >> 14)) << 1;
+#endif
+}
+
+SkScalar SkPathMeasure::Segment::getScalarT() const {
+ return tValue2Scalar(fTValue);
+}
+
+const SkPathMeasure::Segment* SkPathMeasure::NextSegment(const Segment* seg) {
+ unsigned ptIndex = seg->fPtIndex;
+
+ do {
+ ++seg;
+ } while (seg->fPtIndex == ptIndex);
+ return seg;
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+static inline int tspan_big_enough(int tspan) {
+ SkASSERT((unsigned)tspan <= kMaxTValue);
+ return tspan >> 10;
+}
+
+#if 0
+static inline bool tangents_too_curvy(const SkVector& tan0, SkVector& tan1) {
+ static const SkScalar kFlatEnoughTangentDotProd = SK_Scalar1 * 99 / 100;
+
+ SkASSERT(kFlatEnoughTangentDotProd > 0 &&
+ kFlatEnoughTangentDotProd < SK_Scalar1);
+
+ return SkPoint::DotProduct(tan0, tan1) < kFlatEnoughTangentDotProd;
+}
+#endif
+
+// can't use tangents, since we need [0..1..................2] to be seen
+// as definitely not a line (it is when drawn, but not parametrically)
+// so we compare midpoints
+#define CHEAP_DIST_LIMIT (SK_Scalar1/2) // just made this value up
+
+static bool quad_too_curvy(const SkPoint pts[3]) {
+ // diff = (a/4 + b/2 + c/4) - (a/2 + c/2)
+ // diff = -a/4 + b/2 - c/4
+ SkScalar dx = SkScalarHalf(pts[1].fX) -
+ SkScalarHalf(SkScalarHalf(pts[0].fX + pts[2].fX));
+ SkScalar dy = SkScalarHalf(pts[1].fY) -
+ SkScalarHalf(SkScalarHalf(pts[0].fY + pts[2].fY));
+
+ SkScalar dist = SkMaxScalar(SkScalarAbs(dx), SkScalarAbs(dy));
+ return dist > CHEAP_DIST_LIMIT;
+}
+
+static bool cheap_dist_exceeds_limit(const SkPoint& pt,
+ SkScalar x, SkScalar y) {
+ SkScalar dist = SkMaxScalar(SkScalarAbs(x - pt.fX), SkScalarAbs(y - pt.fY));
+ // just made up the 1/2
+ return dist > CHEAP_DIST_LIMIT;
+}
+
+static bool cubic_too_curvy(const SkPoint pts[4]) {
+ return cheap_dist_exceeds_limit(pts[1],
+ SkScalarInterp(pts[0].fX, pts[3].fX, SK_Scalar1/3),
+ SkScalarInterp(pts[0].fY, pts[3].fY, SK_Scalar1/3))
+ ||
+ cheap_dist_exceeds_limit(pts[2],
+ SkScalarInterp(pts[0].fX, pts[3].fX, SK_Scalar1*2/3),
+ SkScalarInterp(pts[0].fY, pts[3].fY, SK_Scalar1*2/3));
+}
+
+SkScalar SkPathMeasure::compute_quad_segs(const SkPoint pts[3],
+ SkScalar distance, int mint, int maxt, int ptIndex) {
+ if (tspan_big_enough(maxt - mint) && quad_too_curvy(pts)) {
+ SkPoint tmp[5];
+ int halft = (mint + maxt) >> 1;
+
+ SkChopQuadAtHalf(pts, tmp);
+ distance = this->compute_quad_segs(tmp, distance, mint, halft, ptIndex);
+ distance = this->compute_quad_segs(&tmp[2], distance, halft, maxt, ptIndex);
+ } else {
+ SkScalar d = SkPoint::Distance(pts[0], pts[2]);
+ SkASSERT(d >= 0);
+ if (!SkScalarNearlyZero(d)) {
+ distance += d;
+ Segment* seg = fSegments.append();
+ seg->fDistance = distance;
+ seg->fPtIndex = ptIndex;
+ seg->fType = kQuad_SegType;
+ seg->fTValue = maxt;
+ }
+ }
+ return distance;
+}
+
+SkScalar SkPathMeasure::compute_cubic_segs(const SkPoint pts[4],
+ SkScalar distance, int mint, int maxt, int ptIndex) {
+ if (tspan_big_enough(maxt - mint) && cubic_too_curvy(pts)) {
+ SkPoint tmp[7];
+ int halft = (mint + maxt) >> 1;
+
+ SkChopCubicAtHalf(pts, tmp);
+ distance = this->compute_cubic_segs(tmp, distance, mint, halft, ptIndex);
+ distance = this->compute_cubic_segs(&tmp[3], distance, halft, maxt, ptIndex);
+ } else {
+ SkScalar d = SkPoint::Distance(pts[0], pts[3]);
+ SkASSERT(d >= 0);
+ if (!SkScalarNearlyZero(d)) {
+ distance += d;
+ Segment* seg = fSegments.append();
+ seg->fDistance = distance;
+ seg->fPtIndex = ptIndex;
+ seg->fType = kCubic_SegType;
+ seg->fTValue = maxt;
+ }
+ }
+ return distance;
+}
+
+void SkPathMeasure::buildSegments() {
+ SkPoint pts[4];
+ int ptIndex = fFirstPtIndex;
+ SkScalar d, distance = 0;
+ bool isClosed = fForceClosed;
+ bool firstMoveTo = ptIndex < 0;
+ Segment* seg;
+
+ fSegments.reset();
+ for (;;) {
+ switch (fIter.next(pts)) {
+ case SkPath::kMove_Verb:
+ if (!firstMoveTo) {
+ goto DONE;
+ }
+ ptIndex += 1;
+ firstMoveTo = false;
+ break;
+
+ case SkPath::kLine_Verb:
+ d = SkPoint::Distance(pts[0], pts[1]);
+ SkASSERT(d >= 0);
+ if (!SkScalarNearlyZero(d)) {
+ distance += d;
+ seg = fSegments.append();
+ seg->fDistance = distance;
+ seg->fPtIndex = ptIndex;
+ seg->fType = fIter.isCloseLine() ?
+ kCloseLine_SegType : kLine_SegType;
+ seg->fTValue = kMaxTValue;
+ }
+ ptIndex += !fIter.isCloseLine();
+ break;
+
+ case SkPath::kQuad_Verb:
+ distance = this->compute_quad_segs(pts, distance, 0,
+ kMaxTValue, ptIndex);
+ ptIndex += 2;
+ break;
+
+ case SkPath::kCubic_Verb:
+ distance = this->compute_cubic_segs(pts, distance, 0,
+ kMaxTValue, ptIndex);
+ ptIndex += 3;
+ break;
+
+ case SkPath::kClose_Verb:
+ isClosed = true;
+ break;
+
+ case SkPath::kDone_Verb:
+ goto DONE;
+ }
+ }
+DONE:
+ fLength = distance;
+ fIsClosed = isClosed;
+ fFirstPtIndex = ptIndex + 1;
+
+#ifdef SK_DEBUG
+ {
+ const Segment* seg = fSegments.begin();
+ const Segment* stop = fSegments.end();
+ unsigned ptIndex = 0;
+ SkScalar distance = 0;
+
+ while (seg < stop) {
+ SkASSERT(seg->fDistance > distance);
+ SkASSERT(seg->fPtIndex >= ptIndex);
+ SkASSERT(seg->fTValue > 0);
+
+ const Segment* s = seg;
+ while (s < stop - 1 && s[0].fPtIndex == s[1].fPtIndex) {
+ SkASSERT(s[0].fType == s[1].fType);
+ SkASSERT(s[0].fTValue < s[1].fTValue);
+ s += 1;
+ }
+
+ distance = seg->fDistance;
+ ptIndex = seg->fPtIndex;
+ seg += 1;
+ }
+ // SkDebugf("\n");
+ }
+#endif
+}
+
+// marked as a friend in SkPath.h
+const SkPoint* sk_get_path_points(const SkPath& path, int index) {
+ return &path.fPts[index];
+}
+
+static void compute_pos_tan(const SkPath& path, int firstPtIndex, int ptIndex,
+ int segType, SkScalar t, SkPoint* pos, SkVector* tangent) {
+ const SkPoint* pts = sk_get_path_points(path, ptIndex);
+
+ switch (segType) {
+ case kLine_SegType:
+ case kCloseLine_SegType: {
+ const SkPoint* endp = (segType == kLine_SegType) ?
+ &pts[1] :
+ sk_get_path_points(path, firstPtIndex);
+
+ if (pos) {
+ pos->set(SkScalarInterp(pts[0].fX, endp->fX, t),
+ SkScalarInterp(pts[0].fY, endp->fY, t));
+ }
+ if (tangent) {
+ tangent->setNormalize(endp->fX - pts[0].fX, endp->fY - pts[0].fY);
+ }
+ break;
+ }
+ case kQuad_SegType:
+ SkEvalQuadAt(pts, t, pos, tangent);
+ if (tangent) {
+ tangent->normalize();
+ }
+ break;
+ case kCubic_SegType:
+ SkEvalCubicAt(pts, t, pos, tangent, NULL);
+ if (tangent) {
+ tangent->normalize();
+ }
+ break;
+ default:
+ SkASSERT(!"unknown segType");
+ }
+}
+
+static void seg_to(const SkPath& src, int firstPtIndex, int ptIndex,
+ int segType, SkScalar startT, SkScalar stopT, SkPath* dst) {
+ SkASSERT(startT >= 0 && startT <= SK_Scalar1);
+ SkASSERT(stopT >= 0 && stopT <= SK_Scalar1);
+ SkASSERT(startT <= stopT);
+
+ if (SkScalarNearlyZero(stopT - startT)) {
+ return;
+ }
+
+ const SkPoint* pts = sk_get_path_points(src, ptIndex);
+ SkPoint tmp0[7], tmp1[7];
+
+ switch (segType) {
+ case kLine_SegType:
+ case kCloseLine_SegType: {
+ const SkPoint* endp = (segType == kLine_SegType) ?
+ &pts[1] :
+ sk_get_path_points(src, firstPtIndex);
+
+ if (stopT == kMaxTValue) {
+ dst->lineTo(*endp);
+ } else {
+ dst->lineTo(SkScalarInterp(pts[0].fX, endp->fX, stopT),
+ SkScalarInterp(pts[0].fY, endp->fY, stopT));
+ }
+ break;
+ }
+ case kQuad_SegType:
+ if (startT == 0) {
+ if (stopT == SK_Scalar1) {
+ dst->quadTo(pts[1], pts[2]);
+ } else {
+ SkChopQuadAt(pts, tmp0, stopT);
+ dst->quadTo(tmp0[1], tmp0[2]);
+ }
+ } else {
+ SkChopQuadAt(pts, tmp0, startT);
+ if (stopT == SK_Scalar1) {
+ dst->quadTo(tmp0[3], tmp0[4]);
+ } else {
+ SkChopQuadAt(&tmp0[2], tmp1, SkScalarDiv(stopT - startT,
+ SK_Scalar1 - startT));
+ dst->quadTo(tmp1[1], tmp1[2]);
+ }
+ }
+ break;
+ case kCubic_SegType:
+ if (startT == 0) {
+ if (stopT == SK_Scalar1) {
+ dst->cubicTo(pts[1], pts[2], pts[3]);
+ } else {
+ SkChopCubicAt(pts, tmp0, stopT);
+ dst->cubicTo(tmp0[1], tmp0[2], tmp0[3]);
+ }
+ } else {
+ SkChopCubicAt(pts, tmp0, startT);
+ if (stopT == SK_Scalar1) {
+ dst->cubicTo(tmp0[4], tmp0[5], tmp0[6]);
+ } else {
+ SkChopCubicAt(&tmp0[3], tmp1, SkScalarDiv(stopT - startT,
+ SK_Scalar1 - startT));
+ dst->cubicTo(tmp1[1], tmp1[2], tmp1[3]);
+ }
+ }
+ break;
+ default:
+ SkASSERT(!"unknown segType");
+ sk_throw();
+ }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////////
+
+SkPathMeasure::SkPathMeasure() {
+ fPath = NULL;
+ fLength = -1; // signal we need to compute it
+ fForceClosed = false;
+ fFirstPtIndex = -1;
+}
+
+SkPathMeasure::SkPathMeasure(const SkPath& path, bool forceClosed) {
+ fPath = &path;
+ fLength = -1; // signal we need to compute it
+ fForceClosed = forceClosed;
+ fFirstPtIndex = -1;
+
+ fIter.setPath(path, forceClosed);
+}
+
+SkPathMeasure::~SkPathMeasure() {}
+
+/** Assign a new path, or null to have none.
+*/
+void SkPathMeasure::setPath(const SkPath* path, bool forceClosed) {
+ fPath = path;
+ fLength = -1; // signal we need to compute it
+ fForceClosed = forceClosed;
+ fFirstPtIndex = -1;
+
+ if (path) {
+ fIter.setPath(*path, forceClosed);
+ }
+ fSegments.reset();
+}
+
+SkScalar SkPathMeasure::getLength() {
+ if (fPath == NULL) {
+ return 0;
+ }
+ if (fLength < 0) {
+ this->buildSegments();
+ }
+ SkASSERT(fLength >= 0);
+ return fLength;
+}
+
+const SkPathMeasure::Segment* SkPathMeasure::distanceToSegment(
+ SkScalar distance, SkScalar* t) {
+ SkDEBUGCODE(SkScalar length = ) this->getLength();
+ SkASSERT(distance >= 0 && distance <= length);
+
+ const Segment* seg = fSegments.begin();
+ int count = fSegments.count();
+
+ int index = SkTSearch<SkScalar>(&seg->fDistance, count, distance,
+ sizeof(Segment));
+ // don't care if we hit an exact match or not, so we xor index if it is negative
+ index ^= (index >> 31);
+ seg = &seg[index];
+
+ // now interpolate t-values with the prev segment (if possible)
+ SkScalar startT = 0, startD = 0;
+ // check if the prev segment is legal, and references the same set of points
+ if (index > 0) {
+ startD = seg[-1].fDistance;
+ if (seg[-1].fPtIndex == seg->fPtIndex) {
+ SkASSERT(seg[-1].fType == seg->fType);
+ startT = seg[-1].getScalarT();
+ }
+ }
+
+ SkASSERT(seg->getScalarT() > startT);
+ SkASSERT(distance >= startD);
+ SkASSERT(seg->fDistance > startD);
+
+ *t = startT + SkScalarMulDiv(seg->getScalarT() - startT,
+ distance - startD,
+ seg->fDistance - startD);
+ return seg;
+}
+
+bool SkPathMeasure::getPosTan(SkScalar distance, SkPoint* pos,
+ SkVector* tangent) {
+ SkASSERT(fPath);
+ if (fPath == NULL) {
+ EMPTY:
+ return false;
+ }
+
+ SkScalar length = this->getLength(); // call this to force computing it
+ int count = fSegments.count();
+
+ if (count == 0 || length == 0) {
+ goto EMPTY;
+ }
+
+ // pin the distance to a legal range
+ if (distance < 0) {
+ distance = 0;
+ } else if (distance > length) {
+ distance = length;
+ }
+
+ SkScalar t;
+ const Segment* seg = this->distanceToSegment(distance, &t);
+
+ compute_pos_tan(*fPath, fSegments[0].fPtIndex, seg->fPtIndex, seg->fType,
+ t, pos, tangent);
+ return true;
+}
+
+bool SkPathMeasure::getMatrix(SkScalar distance, SkMatrix* matrix,
+ MatrixFlags flags) {
+ SkPoint position;
+ SkVector tangent;
+
+ if (this->getPosTan(distance, &position, &tangent)) {
+ if (matrix) {
+ if (flags & kGetTangent_MatrixFlag) {
+ matrix->setSinCos(tangent.fY, tangent.fX, 0, 0);
+ } else {
+ matrix->reset();
+ }
+ if (flags & kGetPosition_MatrixFlag) {
+ matrix->postTranslate(position.fX, position.fY);
+ }
+ }
+ return true;
+ }
+ return false;
+}
+
+bool SkPathMeasure::getSegment(SkScalar startD, SkScalar stopD, SkPath* dst,
+ bool startWithMoveTo) {
+ SkASSERT(dst);
+
+ SkScalar length = this->getLength(); // ensure we have built our segments
+
+ if (startD < 0) {
+ startD = 0;
+ }
+ if (stopD > length) {
+ stopD = length;
+ }
+ if (startD >= stopD) {
+ return false;
+ }
+
+ SkPoint p;
+ SkScalar startT, stopT;
+ const Segment* seg = this->distanceToSegment(startD, &startT);
+ const Segment* stopSeg = this->distanceToSegment(stopD, &stopT);
+ SkASSERT(seg <= stopSeg);
+
+ if (startWithMoveTo) {
+ compute_pos_tan(*fPath, fSegments[0].fPtIndex, seg->fPtIndex,
+ seg->fType, startT, &p, NULL);
+ dst->moveTo(p);
+ }
+
+ if (seg->fPtIndex == stopSeg->fPtIndex) {
+ seg_to(*fPath, fSegments[0].fPtIndex, seg->fPtIndex, seg->fType,
+ startT, stopT, dst);
+ } else {
+ do {
+ seg_to(*fPath, fSegments[0].fPtIndex, seg->fPtIndex, seg->fType,
+ startT, SK_Scalar1, dst);
+ seg = SkPathMeasure::NextSegment(seg);
+ startT = 0;
+ } while (seg->fPtIndex < stopSeg->fPtIndex);
+ seg_to(*fPath, fSegments[0].fPtIndex, seg->fPtIndex, seg->fType,
+ 0, stopT, dst);
+ }
+ return true;
+}
+
+bool SkPathMeasure::isClosed() {
+ (void)this->getLength();
+ return fIsClosed;
+}
+
+/** Move to the next contour in the path. Return true if one exists, or false if
+ we're done with the path.
+*/
+bool SkPathMeasure::nextContour() {
+ fLength = -1;
+ return this->getLength() > 0;
+}
+
+///////////////////////////////////////////////////////////////////////////////
+///////////////////////////////////////////////////////////////////////////////
+
+#ifdef SK_DEBUG
+
+void SkPathMeasure::dump() {
+ SkDebugf("pathmeas: length=%g, segs=%d\n", fLength, fSegments.count());
+
+ for (int i = 0; i < fSegments.count(); i++) {
+ const Segment* seg = &fSegments[i];
+ SkDebugf("pathmeas: seg[%d] distance=%g, point=%d, t=%g, type=%d\n",
+ i, seg->fDistance, seg->fPtIndex, seg->getScalarT(),
+ seg->fType);
+ }
+}
+
+void SkPathMeasure::UnitTest() {
+#ifdef SK_SUPPORT_UNITTEST
+ SkPath path;
+
+ path.moveTo(0, 0);
+ path.lineTo(SK_Scalar1, 0);
+ path.lineTo(SK_Scalar1, SK_Scalar1);
+ path.lineTo(0, SK_Scalar1);
+
+ SkPathMeasure meas(path, true);
+ SkScalar length = meas.getLength();
+ SkASSERT(length == SK_Scalar1*4);
+
+ path.reset();
+ path.moveTo(0, 0);
+ path.lineTo(SK_Scalar1*3, SK_Scalar1*4);
+ meas.setPath(&path, false);
+ length = meas.getLength();
+ SkASSERT(length == SK_Scalar1*5);
+
+ path.reset();
+ path.addCircle(0, 0, SK_Scalar1);
+ meas.setPath(&path, true);
+ length = meas.getLength();
+ SkDebugf("circle arc-length = %g\n", length);
+
+ for (int i = 0; i < 8; i++) {
+ SkScalar d = length * i / 8;
+ SkPoint p;
+ SkVector v;
+ meas.getPosTan(d, &p, &v);
+ SkDebugf("circle arc-length=%g, pos[%g %g] tan[%g %g]\n",
+ d, p.fX, p.fY, v.fX, v.fY);
+ }
+#endif
+}
+
+#endif