aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkColorData.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/SkColorData.h')
-rw-r--r--src/core/SkColorData.h1027
1 files changed, 1027 insertions, 0 deletions
diff --git a/src/core/SkColorData.h b/src/core/SkColorData.h
new file mode 100644
index 0000000000..a6aa8c8df4
--- /dev/null
+++ b/src/core/SkColorData.h
@@ -0,0 +1,1027 @@
+/*
+ * Copyright 2006 The Android Open Source Project
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef SkColorData_DEFINED
+#define SkColorData_DEFINED
+
+// turn this own for extra debug checking when blending onto 565
+#ifdef SK_DEBUG
+ #define CHECK_FOR_565_OVERFLOW
+#endif
+
+#include "SkColor.h"
+#include "SkColorPriv.h"
+#include "SkMath.h"
+
+//////////////////////////////////////////////////////////////////////////////
+
+#define SkASSERT_IS_BYTE(x) SkASSERT(0 == ((x) & ~0xFF))
+
+/*
+ * Skia's 32bit backend only supports 1 sizzle order at a time (compile-time).
+ * This is specified by 4 defines SK_A32_SHIFT, SK_R32_SHIFT, ... for G and B.
+ *
+ * For easier compatibility with Skia's GPU backend, we further restrict these
+ * to either (in memory-byte-order) RGBA or BGRA. Note that this "order" does
+ * not directly correspond to the same shift-order, since we have to take endianess
+ * into account.
+ *
+ * Here we enforce this constraint.
+ */
+
+#ifdef SK_CPU_BENDIAN
+ #define SK_RGBA_R32_SHIFT 24
+ #define SK_RGBA_G32_SHIFT 16
+ #define SK_RGBA_B32_SHIFT 8
+ #define SK_RGBA_A32_SHIFT 0
+
+ #define SK_BGRA_B32_SHIFT 24
+ #define SK_BGRA_G32_SHIFT 16
+ #define SK_BGRA_R32_SHIFT 8
+ #define SK_BGRA_A32_SHIFT 0
+#else
+ #define SK_RGBA_R32_SHIFT 0
+ #define SK_RGBA_G32_SHIFT 8
+ #define SK_RGBA_B32_SHIFT 16
+ #define SK_RGBA_A32_SHIFT 24
+
+ #define SK_BGRA_B32_SHIFT 0
+ #define SK_BGRA_G32_SHIFT 8
+ #define SK_BGRA_R32_SHIFT 16
+ #define SK_BGRA_A32_SHIFT 24
+#endif
+
+#if defined(SK_PMCOLOR_IS_RGBA) && defined(SK_PMCOLOR_IS_BGRA)
+ #error "can't define PMCOLOR to be RGBA and BGRA"
+#endif
+
+#define LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_RGBA \
+ (SK_A32_SHIFT == SK_RGBA_A32_SHIFT && \
+ SK_R32_SHIFT == SK_RGBA_R32_SHIFT && \
+ SK_G32_SHIFT == SK_RGBA_G32_SHIFT && \
+ SK_B32_SHIFT == SK_RGBA_B32_SHIFT)
+
+#define LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_BGRA \
+ (SK_A32_SHIFT == SK_BGRA_A32_SHIFT && \
+ SK_R32_SHIFT == SK_BGRA_R32_SHIFT && \
+ SK_G32_SHIFT == SK_BGRA_G32_SHIFT && \
+ SK_B32_SHIFT == SK_BGRA_B32_SHIFT)
+
+
+#define SK_A_INDEX (SK_A32_SHIFT/8)
+#define SK_R_INDEX (SK_R32_SHIFT/8)
+#define SK_G_INDEX (SK_G32_SHIFT/8)
+#define SK_B_INDEX (SK_B32_SHIFT/8)
+
+#if defined(SK_PMCOLOR_IS_RGBA) && !LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_RGBA
+ #error "SK_PMCOLOR_IS_RGBA does not match SK_*32_SHIFT values"
+#endif
+
+#if defined(SK_PMCOLOR_IS_BGRA) && !LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_BGRA
+ #error "SK_PMCOLOR_IS_BGRA does not match SK_*32_SHIFT values"
+#endif
+
+#if !defined(SK_PMCOLOR_IS_RGBA) && !defined(SK_PMCOLOR_IS_BGRA)
+ // deduce which to define from the _SHIFT defines
+
+ #if LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_RGBA
+ #define SK_PMCOLOR_IS_RGBA
+ #elif LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_BGRA
+ #define SK_PMCOLOR_IS_BGRA
+ #else
+ #error "need 32bit packing to be either RGBA or BGRA"
+ #endif
+#endif
+
+// hide these now that we're done
+#undef LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_RGBA
+#undef LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_BGRA
+
+//////////////////////////////////////////////////////////////////////////////
+
+// Reverse the bytes coorsponding to RED and BLUE in a packed pixels. Note the
+// pair of them are in the same 2 slots in both RGBA and BGRA, thus there is
+// no need to pass in the colortype to this function.
+static inline uint32_t SkSwizzle_RB(uint32_t c) {
+ static const uint32_t kRBMask = (0xFF << SK_R32_SHIFT) | (0xFF << SK_B32_SHIFT);
+
+ unsigned c0 = (c >> SK_R32_SHIFT) & 0xFF;
+ unsigned c1 = (c >> SK_B32_SHIFT) & 0xFF;
+ return (c & ~kRBMask) | (c0 << SK_B32_SHIFT) | (c1 << SK_R32_SHIFT);
+}
+
+static inline uint32_t SkPackARGB_as_RGBA(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
+ SkASSERT_IS_BYTE(a);
+ SkASSERT_IS_BYTE(r);
+ SkASSERT_IS_BYTE(g);
+ SkASSERT_IS_BYTE(b);
+ return (a << SK_RGBA_A32_SHIFT) | (r << SK_RGBA_R32_SHIFT) |
+ (g << SK_RGBA_G32_SHIFT) | (b << SK_RGBA_B32_SHIFT);
+}
+
+static inline uint32_t SkPackARGB_as_BGRA(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
+ SkASSERT_IS_BYTE(a);
+ SkASSERT_IS_BYTE(r);
+ SkASSERT_IS_BYTE(g);
+ SkASSERT_IS_BYTE(b);
+ return (a << SK_BGRA_A32_SHIFT) | (r << SK_BGRA_R32_SHIFT) |
+ (g << SK_BGRA_G32_SHIFT) | (b << SK_BGRA_B32_SHIFT);
+}
+
+static inline SkPMColor SkSwizzle_RGBA_to_PMColor(uint32_t c) {
+#ifdef SK_PMCOLOR_IS_RGBA
+ return c;
+#else
+ return SkSwizzle_RB(c);
+#endif
+}
+
+static inline SkPMColor SkSwizzle_BGRA_to_PMColor(uint32_t c) {
+#ifdef SK_PMCOLOR_IS_BGRA
+ return c;
+#else
+ return SkSwizzle_RB(c);
+#endif
+}
+
+//////////////////////////////////////////////////////////////////////////////
+
+///@{
+/** See ITU-R Recommendation BT.709 at http://www.itu.int/rec/R-REC-BT.709/ .*/
+#define SK_ITU_BT709_LUM_COEFF_R (0.2126f)
+#define SK_ITU_BT709_LUM_COEFF_G (0.7152f)
+#define SK_ITU_BT709_LUM_COEFF_B (0.0722f)
+///@}
+
+///@{
+/** A float value which specifies this channel's contribution to luminance. */
+#define SK_LUM_COEFF_R SK_ITU_BT709_LUM_COEFF_R
+#define SK_LUM_COEFF_G SK_ITU_BT709_LUM_COEFF_G
+#define SK_LUM_COEFF_B SK_ITU_BT709_LUM_COEFF_B
+///@}
+
+/** Computes the luminance from the given r, g, and b in accordance with
+ SK_LUM_COEFF_X. For correct results, r, g, and b should be in linear space.
+*/
+static inline U8CPU SkComputeLuminance(U8CPU r, U8CPU g, U8CPU b) {
+ //The following is
+ //r * SK_LUM_COEFF_R + g * SK_LUM_COEFF_G + b * SK_LUM_COEFF_B
+ //with SK_LUM_COEFF_X in 1.8 fixed point (rounding adjusted to sum to 256).
+ return (r * 54 + g * 183 + b * 19) >> 8;
+}
+
+/**
+ * Turn a 0..255 value into a 0..256 value, rounding up if the value is >= 0x80.
+ * This is slightly more accurate than SkAlpha255To256.
+ */
+static inline unsigned Sk255To256(U8CPU value) {
+ SkASSERT(SkToU8(value) == value);
+ return value + (value >> 7);
+}
+
+/** Multiplify value by 0..256, and shift the result down 8
+ (i.e. return (value * alpha256) >> 8)
+ */
+#define SkAlphaMul(value, alpha256) (((value) * (alpha256)) >> 8)
+
+/** Calculates 256 - (value * alpha256) / 255 in range [0,256],
+ * for [0,255] value and [0,256] alpha256.
+ */
+static inline U16CPU SkAlphaMulInv256(U16CPU value, U16CPU alpha256) {
+ unsigned prod = 0xFFFF - value * alpha256;
+ return (prod + (prod >> 8)) >> 8;
+}
+
+// The caller may want negative values, so keep all params signed (int)
+// so we don't accidentally slip into unsigned math and lose the sign
+// extension when we shift (in SkAlphaMul)
+static inline int SkAlphaBlend(int src, int dst, int scale256) {
+ SkASSERT((unsigned)scale256 <= 256);
+ return dst + SkAlphaMul(src - dst, scale256);
+}
+
+/**
+ * Returns (src * alpha + dst * (255 - alpha)) / 255
+ *
+ * This is more accurate than SkAlphaBlend, but slightly slower
+ */
+static inline int SkAlphaBlend255(S16CPU src, S16CPU dst, U8CPU alpha) {
+ SkASSERT((int16_t)src == src);
+ SkASSERT((int16_t)dst == dst);
+ SkASSERT((uint8_t)alpha == alpha);
+
+ int prod = (src - dst) * alpha + 128;
+ prod = (prod + (prod >> 8)) >> 8;
+ return dst + prod;
+}
+
+static inline U8CPU SkUnitScalarClampToByte(SkScalar x) {
+ return static_cast<U8CPU>(SkScalarPin(x, 0, 1) * 255 + 0.5);
+}
+
+#define SK_R16_BITS 5
+#define SK_G16_BITS 6
+#define SK_B16_BITS 5
+
+#define SK_R16_SHIFT (SK_B16_BITS + SK_G16_BITS)
+#define SK_G16_SHIFT (SK_B16_BITS)
+#define SK_B16_SHIFT 0
+
+#define SK_R16_MASK ((1 << SK_R16_BITS) - 1)
+#define SK_G16_MASK ((1 << SK_G16_BITS) - 1)
+#define SK_B16_MASK ((1 << SK_B16_BITS) - 1)
+
+#define SkGetPackedR16(color) (((unsigned)(color) >> SK_R16_SHIFT) & SK_R16_MASK)
+#define SkGetPackedG16(color) (((unsigned)(color) >> SK_G16_SHIFT) & SK_G16_MASK)
+#define SkGetPackedB16(color) (((unsigned)(color) >> SK_B16_SHIFT) & SK_B16_MASK)
+
+#define SkR16Assert(r) SkASSERT((unsigned)(r) <= SK_R16_MASK)
+#define SkG16Assert(g) SkASSERT((unsigned)(g) <= SK_G16_MASK)
+#define SkB16Assert(b) SkASSERT((unsigned)(b) <= SK_B16_MASK)
+
+static inline uint16_t SkPackRGB16(unsigned r, unsigned g, unsigned b) {
+ SkASSERT(r <= SK_R16_MASK);
+ SkASSERT(g <= SK_G16_MASK);
+ SkASSERT(b <= SK_B16_MASK);
+
+ return SkToU16((r << SK_R16_SHIFT) | (g << SK_G16_SHIFT) | (b << SK_B16_SHIFT));
+}
+
+#define SK_R16_MASK_IN_PLACE (SK_R16_MASK << SK_R16_SHIFT)
+#define SK_G16_MASK_IN_PLACE (SK_G16_MASK << SK_G16_SHIFT)
+#define SK_B16_MASK_IN_PLACE (SK_B16_MASK << SK_B16_SHIFT)
+
+/** Expand the 16bit color into a 32bit value that can be scaled all at once
+ by a value up to 32. Used in conjunction with SkCompact_rgb_16.
+*/
+static inline uint32_t SkExpand_rgb_16(U16CPU c) {
+ SkASSERT(c == (uint16_t)c);
+
+ return ((c & SK_G16_MASK_IN_PLACE) << 16) | (c & ~SK_G16_MASK_IN_PLACE);
+}
+
+/** Compress an expanded value (from SkExpand_rgb_16) back down to a 16bit
+ color value. The computation yields only 16bits of valid data, but we claim
+ to return 32bits, so that the compiler won't generate extra instructions to
+ "clean" the top 16bits. However, the top 16 can contain garbage, so it is
+ up to the caller to safely ignore them.
+*/
+static inline U16CPU SkCompact_rgb_16(uint32_t c) {
+ return ((c >> 16) & SK_G16_MASK_IN_PLACE) | (c & ~SK_G16_MASK_IN_PLACE);
+}
+
+/** Scale the 16bit color value by the 0..256 scale parameter.
+ The computation yields only 16bits of valid data, but we claim
+ to return 32bits, so that the compiler won't generate extra instructions to
+ "clean" the top 16bits.
+*/
+static inline U16CPU SkAlphaMulRGB16(U16CPU c, unsigned scale) {
+ return SkCompact_rgb_16(SkExpand_rgb_16(c) * (scale >> 3) >> 5);
+}
+
+// this helper explicitly returns a clean 16bit value (but slower)
+#define SkAlphaMulRGB16_ToU16(c, s) (uint16_t)SkAlphaMulRGB16(c, s)
+
+/** Blend pre-expanded RGB32 with 16bit color value by the 0..32 scale parameter.
+ The computation yields only 16bits of valid data, but we claim to return
+ 32bits, so that the compiler won't generate extra instructions to "clean"
+ the top 16bits.
+*/
+static inline U16CPU SkBlend32_RGB16(uint32_t src_expand, uint16_t dst, unsigned scale) {
+ uint32_t dst_expand = SkExpand_rgb_16(dst) * scale;
+ return SkCompact_rgb_16((src_expand + dst_expand) >> 5);
+}
+
+/** Blend src and dst 16bit colors by the 0..256 scale parameter.
+ The computation yields only 16bits of valid data, but we claim
+ to return 32bits, so that the compiler won't generate extra instructions to
+ "clean" the top 16bits.
+*/
+static inline U16CPU SkBlendRGB16(U16CPU src, U16CPU dst, int srcScale) {
+ SkASSERT((unsigned)srcScale <= 256);
+
+ srcScale >>= 3;
+
+ uint32_t src32 = SkExpand_rgb_16(src);
+ uint32_t dst32 = SkExpand_rgb_16(dst);
+ return SkCompact_rgb_16(dst32 + ((src32 - dst32) * srcScale >> 5));
+}
+
+static inline void SkBlendRGB16(const uint16_t src[], uint16_t dst[],
+ int srcScale, int count) {
+ SkASSERT(count > 0);
+ SkASSERT((unsigned)srcScale <= 256);
+
+ srcScale >>= 3;
+
+ do {
+ uint32_t src32 = SkExpand_rgb_16(*src++);
+ uint32_t dst32 = SkExpand_rgb_16(*dst);
+ *dst++ = static_cast<uint16_t>(
+ SkCompact_rgb_16(dst32 + ((src32 - dst32) * srcScale >> 5)));
+ } while (--count > 0);
+}
+
+#ifdef SK_DEBUG
+ static inline U16CPU SkRGB16Add(U16CPU a, U16CPU b) {
+ SkASSERT(SkGetPackedR16(a) + SkGetPackedR16(b) <= SK_R16_MASK);
+ SkASSERT(SkGetPackedG16(a) + SkGetPackedG16(b) <= SK_G16_MASK);
+ SkASSERT(SkGetPackedB16(a) + SkGetPackedB16(b) <= SK_B16_MASK);
+
+ return a + b;
+ }
+#else
+ #define SkRGB16Add(a, b) ((a) + (b))
+#endif
+
+///////////////////////////////////////////////////////////////////////////////
+
+#define SK_R32_BITS 8
+#define SK_G32_BITS 8
+#define SK_B32_BITS 8
+
+#define SK_R32_MASK ((1 << SK_R32_BITS) - 1)
+#define SK_G32_MASK ((1 << SK_G32_BITS) - 1)
+#define SK_B32_MASK ((1 << SK_B32_BITS) - 1)
+
+#define SkR32Assert(r) SkASSERT((unsigned)(r) <= SK_R32_MASK)
+#define SkG32Assert(g) SkASSERT((unsigned)(g) <= SK_G32_MASK)
+#define SkB32Assert(b) SkASSERT((unsigned)(b) <= SK_B32_MASK)
+
+#ifdef SK_DEBUG
+ #define SkPMColorAssert(color_value) \
+ do { \
+ SkPMColor pm_color_value = (color_value); \
+ uint32_t alpha_color_value = SkGetPackedA32(pm_color_value); \
+ SkA32Assert(alpha_color_value); \
+ SkASSERT(SkGetPackedR32(pm_color_value) <= alpha_color_value); \
+ SkASSERT(SkGetPackedG32(pm_color_value) <= alpha_color_value); \
+ SkASSERT(SkGetPackedB32(pm_color_value) <= alpha_color_value); \
+ } while (false)
+#else
+ #define SkPMColorAssert(c)
+#endif
+
+static inline bool SkPMColorValid(SkPMColor c) {
+ auto a = SkGetPackedA32(c);
+ bool valid = a <= SK_A32_MASK
+ && SkGetPackedR32(c) <= a
+ && SkGetPackedG32(c) <= a
+ && SkGetPackedB32(c) <= a;
+ if (valid) {
+ SkPMColorAssert(c); // Make sure we're consistent when it counts.
+ }
+ return valid;
+}
+
+static inline uint32_t SkPackPMColor_as_RGBA(SkPMColor c) {
+ return SkPackARGB_as_RGBA(SkGetPackedA32(c), SkGetPackedR32(c),
+ SkGetPackedG32(c), SkGetPackedB32(c));
+}
+
+static inline uint32_t SkPackPMColor_as_BGRA(SkPMColor c) {
+ return SkPackARGB_as_BGRA(SkGetPackedA32(c), SkGetPackedR32(c),
+ SkGetPackedG32(c), SkGetPackedB32(c));
+}
+
+/**
+ * Abstract 4-byte interpolation, implemented on top of SkPMColor
+ * utility functions. Third parameter controls blending of the first two:
+ * (src, dst, 0) returns dst
+ * (src, dst, 0xFF) returns src
+ * srcWeight is [0..256], unlike SkFourByteInterp which takes [0..255]
+ */
+static inline SkPMColor SkFourByteInterp256(SkPMColor src, SkPMColor dst,
+ unsigned scale) {
+ unsigned a = SkAlphaBlend(SkGetPackedA32(src), SkGetPackedA32(dst), scale);
+ unsigned r = SkAlphaBlend(SkGetPackedR32(src), SkGetPackedR32(dst), scale);
+ unsigned g = SkAlphaBlend(SkGetPackedG32(src), SkGetPackedG32(dst), scale);
+ unsigned b = SkAlphaBlend(SkGetPackedB32(src), SkGetPackedB32(dst), scale);
+
+ return SkPackARGB32(a, r, g, b);
+}
+
+/**
+ * Abstract 4-byte interpolation, implemented on top of SkPMColor
+ * utility functions. Third parameter controls blending of the first two:
+ * (src, dst, 0) returns dst
+ * (src, dst, 0xFF) returns src
+ */
+static inline SkPMColor SkFourByteInterp(SkPMColor src, SkPMColor dst,
+ U8CPU srcWeight) {
+ unsigned scale = SkAlpha255To256(srcWeight);
+ return SkFourByteInterp256(src, dst, scale);
+}
+
+/**
+ * 0xAARRGGBB -> 0x00AA00GG, 0x00RR00BB
+ */
+static inline void SkSplay(uint32_t color, uint32_t* ag, uint32_t* rb) {
+ const uint32_t mask = 0x00FF00FF;
+ *ag = (color >> 8) & mask;
+ *rb = color & mask;
+}
+
+/**
+ * 0xAARRGGBB -> 0x00AA00GG00RR00BB
+ * (note, ARGB -> AGRB)
+ */
+static inline uint64_t SkSplay(uint32_t color) {
+ const uint32_t mask = 0x00FF00FF;
+ uint64_t agrb = (color >> 8) & mask; // 0x0000000000AA00GG
+ agrb <<= 32; // 0x00AA00GG00000000
+ agrb |= color & mask; // 0x00AA00GG00RR00BB
+ return agrb;
+}
+
+/**
+ * 0xAAxxGGxx, 0xRRxxBBxx-> 0xAARRGGBB
+ */
+static inline uint32_t SkUnsplay(uint32_t ag, uint32_t rb) {
+ const uint32_t mask = 0xFF00FF00;
+ return (ag & mask) | ((rb & mask) >> 8);
+}
+
+/**
+ * 0xAAxxGGxxRRxxBBxx -> 0xAARRGGBB
+ * (note, AGRB -> ARGB)
+ */
+static inline uint32_t SkUnsplay(uint64_t agrb) {
+ const uint32_t mask = 0xFF00FF00;
+ return SkPMColor(
+ ((agrb & mask) >> 8) | // 0x00RR00BB
+ ((agrb >> 32) & mask)); // 0xAARRGGBB
+}
+
+static inline SkPMColor SkFastFourByteInterp256_32(SkPMColor src, SkPMColor dst, unsigned scale) {
+ SkASSERT(scale <= 256);
+
+ // Two 8-bit blends per two 32-bit registers, with space to make sure the math doesn't collide.
+ uint32_t src_ag, src_rb, dst_ag, dst_rb;
+ SkSplay(src, &src_ag, &src_rb);
+ SkSplay(dst, &dst_ag, &dst_rb);
+
+ const uint32_t ret_ag = src_ag * scale + (256 - scale) * dst_ag;
+ const uint32_t ret_rb = src_rb * scale + (256 - scale) * dst_rb;
+
+ return SkUnsplay(ret_ag, ret_rb);
+}
+
+static inline SkPMColor SkFastFourByteInterp256_64(SkPMColor src, SkPMColor dst, unsigned scale) {
+ SkASSERT(scale <= 256);
+ // Four 8-bit blends in one 64-bit register, with space to make sure the math doesn't collide.
+ return SkUnsplay(SkSplay(src) * scale + (256-scale) * SkSplay(dst));
+}
+
+// TODO(mtklein): Replace slow versions with fast versions, using scale + (scale>>7) everywhere.
+
+/**
+ * Same as SkFourByteInterp256, but faster.
+ */
+static inline SkPMColor SkFastFourByteInterp256(SkPMColor src, SkPMColor dst, unsigned scale) {
+ // On a 64-bit machine, _64 is about 10% faster than _32, but ~40% slower on a 32-bit machine.
+ if (sizeof(void*) == 4) {
+ return SkFastFourByteInterp256_32(src, dst, scale);
+ } else {
+ return SkFastFourByteInterp256_64(src, dst, scale);
+ }
+}
+
+/**
+ * Nearly the same as SkFourByteInterp, but faster and a touch more accurate, due to better
+ * srcWeight scaling to [0, 256].
+ */
+static inline SkPMColor SkFastFourByteInterp(SkPMColor src,
+ SkPMColor dst,
+ U8CPU srcWeight) {
+ SkASSERT(srcWeight <= 255);
+ // scale = srcWeight + (srcWeight >> 7) is more accurate than
+ // scale = srcWeight + 1, but 7% slower
+ return SkFastFourByteInterp256(src, dst, srcWeight + (srcWeight >> 7));
+}
+
+static inline
+SkPMColor SkPremultiplyARGBInline(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
+ SkA32Assert(a);
+ SkR32Assert(r);
+ SkG32Assert(g);
+ SkB32Assert(b);
+
+ if (a != 255) {
+ r = SkMulDiv255Round(r, a);
+ g = SkMulDiv255Round(g, a);
+ b = SkMulDiv255Round(b, a);
+ }
+ return SkPackARGB32(a, r, g, b);
+}
+
+/**
+ * Interpolates between colors src and dst using [0,256] scale.
+ */
+static inline SkPMColor SkPMLerp(SkPMColor src, SkPMColor dst, unsigned scale) {
+ return SkFastFourByteInterp256(src, dst, scale);
+}
+
+static inline SkPMColor SkBlendARGB32(SkPMColor src, SkPMColor dst, U8CPU aa) {
+ SkASSERT((unsigned)aa <= 255);
+
+ unsigned src_scale = SkAlpha255To256(aa);
+ unsigned dst_scale = SkAlphaMulInv256(SkGetPackedA32(src), src_scale);
+
+ const uint32_t mask = 0xFF00FF;
+
+ uint32_t src_rb = (src & mask) * src_scale;
+ uint32_t src_ag = ((src >> 8) & mask) * src_scale;
+
+ uint32_t dst_rb = (dst & mask) * dst_scale;
+ uint32_t dst_ag = ((dst >> 8) & mask) * dst_scale;
+
+ return (((src_rb + dst_rb) >> 8) & mask) | ((src_ag + dst_ag) & ~mask);
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////
+// Convert a 32bit pixel to a 16bit pixel (no dither)
+
+#define SkR32ToR16_MACRO(r) ((unsigned)(r) >> (SK_R32_BITS - SK_R16_BITS))
+#define SkG32ToG16_MACRO(g) ((unsigned)(g) >> (SK_G32_BITS - SK_G16_BITS))
+#define SkB32ToB16_MACRO(b) ((unsigned)(b) >> (SK_B32_BITS - SK_B16_BITS))
+
+#ifdef SK_DEBUG
+ static inline unsigned SkR32ToR16(unsigned r) {
+ SkR32Assert(r);
+ return SkR32ToR16_MACRO(r);
+ }
+ static inline unsigned SkG32ToG16(unsigned g) {
+ SkG32Assert(g);
+ return SkG32ToG16_MACRO(g);
+ }
+ static inline unsigned SkB32ToB16(unsigned b) {
+ SkB32Assert(b);
+ return SkB32ToB16_MACRO(b);
+ }
+#else
+ #define SkR32ToR16(r) SkR32ToR16_MACRO(r)
+ #define SkG32ToG16(g) SkG32ToG16_MACRO(g)
+ #define SkB32ToB16(b) SkB32ToB16_MACRO(b)
+#endif
+
+#define SkPacked32ToR16(c) (((unsigned)(c) >> (SK_R32_SHIFT + SK_R32_BITS - SK_R16_BITS)) & SK_R16_MASK)
+#define SkPacked32ToG16(c) (((unsigned)(c) >> (SK_G32_SHIFT + SK_G32_BITS - SK_G16_BITS)) & SK_G16_MASK)
+#define SkPacked32ToB16(c) (((unsigned)(c) >> (SK_B32_SHIFT + SK_B32_BITS - SK_B16_BITS)) & SK_B16_MASK)
+
+static inline U16CPU SkPixel32ToPixel16(SkPMColor c) {
+ unsigned r = ((c >> (SK_R32_SHIFT + (8 - SK_R16_BITS))) & SK_R16_MASK) << SK_R16_SHIFT;
+ unsigned g = ((c >> (SK_G32_SHIFT + (8 - SK_G16_BITS))) & SK_G16_MASK) << SK_G16_SHIFT;
+ unsigned b = ((c >> (SK_B32_SHIFT + (8 - SK_B16_BITS))) & SK_B16_MASK) << SK_B16_SHIFT;
+ return r | g | b;
+}
+
+static inline U16CPU SkPack888ToRGB16(U8CPU r, U8CPU g, U8CPU b) {
+ return (SkR32ToR16(r) << SK_R16_SHIFT) |
+ (SkG32ToG16(g) << SK_G16_SHIFT) |
+ (SkB32ToB16(b) << SK_B16_SHIFT);
+}
+
+#define SkPixel32ToPixel16_ToU16(src) SkToU16(SkPixel32ToPixel16(src))
+
+/////////////////////////////////////////////////////////////////////////////////////////
+// Fast dither from 32->16
+
+#define SkShouldDitherXY(x, y) (((x) ^ (y)) & 1)
+
+static inline uint16_t SkDitherPack888ToRGB16(U8CPU r, U8CPU g, U8CPU b) {
+ r = ((r << 1) - ((r >> (8 - SK_R16_BITS) << (8 - SK_R16_BITS)) | (r >> SK_R16_BITS))) >> (8 - SK_R16_BITS);
+ g = ((g << 1) - ((g >> (8 - SK_G16_BITS) << (8 - SK_G16_BITS)) | (g >> SK_G16_BITS))) >> (8 - SK_G16_BITS);
+ b = ((b << 1) - ((b >> (8 - SK_B16_BITS) << (8 - SK_B16_BITS)) | (b >> SK_B16_BITS))) >> (8 - SK_B16_BITS);
+
+ return SkPackRGB16(r, g, b);
+}
+
+static inline uint16_t SkDitherPixel32ToPixel16(SkPMColor c) {
+ return SkDitherPack888ToRGB16(SkGetPackedR32(c), SkGetPackedG32(c), SkGetPackedB32(c));
+}
+
+/* Return c in expanded_rgb_16 format, but also scaled up by 32 (5 bits)
+ It is now suitable for combining with a scaled expanded_rgb_16 color
+ as in SkSrcOver32To16().
+ We must do this 565 high-bit replication, in order for the subsequent add
+ to saturate properly (and not overflow). If we take the 8 bits as is, it is
+ possible to overflow.
+*/
+static inline uint32_t SkPMColorToExpanded16x5(SkPMColor c) {
+ unsigned sr = SkPacked32ToR16(c);
+ unsigned sg = SkPacked32ToG16(c);
+ unsigned sb = SkPacked32ToB16(c);
+
+ sr = (sr << 5) | sr;
+ sg = (sg << 5) | (sg >> 1);
+ sb = (sb << 5) | sb;
+ return (sr << 11) | (sg << 21) | (sb << 0);
+}
+
+/* SrcOver the 32bit src color with the 16bit dst, returning a 16bit value
+ (with dirt in the high 16bits, so caller beware).
+*/
+static inline U16CPU SkSrcOver32To16(SkPMColor src, uint16_t dst) {
+ unsigned sr = SkGetPackedR32(src);
+ unsigned sg = SkGetPackedG32(src);
+ unsigned sb = SkGetPackedB32(src);
+
+ unsigned dr = SkGetPackedR16(dst);
+ unsigned dg = SkGetPackedG16(dst);
+ unsigned db = SkGetPackedB16(dst);
+
+ unsigned isa = 255 - SkGetPackedA32(src);
+
+ dr = (sr + SkMul16ShiftRound(dr, isa, SK_R16_BITS)) >> (8 - SK_R16_BITS);
+ dg = (sg + SkMul16ShiftRound(dg, isa, SK_G16_BITS)) >> (8 - SK_G16_BITS);
+ db = (sb + SkMul16ShiftRound(db, isa, SK_B16_BITS)) >> (8 - SK_B16_BITS);
+
+ return SkPackRGB16(dr, dg, db);
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////
+// Convert a 16bit pixel to a 32bit pixel
+
+static inline unsigned SkR16ToR32(unsigned r) {
+ return (r << (8 - SK_R16_BITS)) | (r >> (2 * SK_R16_BITS - 8));
+}
+
+static inline unsigned SkG16ToG32(unsigned g) {
+ return (g << (8 - SK_G16_BITS)) | (g >> (2 * SK_G16_BITS - 8));
+}
+
+static inline unsigned SkB16ToB32(unsigned b) {
+ return (b << (8 - SK_B16_BITS)) | (b >> (2 * SK_B16_BITS - 8));
+}
+
+#define SkPacked16ToR32(c) SkR16ToR32(SkGetPackedR16(c))
+#define SkPacked16ToG32(c) SkG16ToG32(SkGetPackedG16(c))
+#define SkPacked16ToB32(c) SkB16ToB32(SkGetPackedB16(c))
+
+static inline SkPMColor SkPixel16ToPixel32(U16CPU src) {
+ SkASSERT(src == SkToU16(src));
+
+ unsigned r = SkPacked16ToR32(src);
+ unsigned g = SkPacked16ToG32(src);
+ unsigned b = SkPacked16ToB32(src);
+
+ SkASSERT((r >> (8 - SK_R16_BITS)) == SkGetPackedR16(src));
+ SkASSERT((g >> (8 - SK_G16_BITS)) == SkGetPackedG16(src));
+ SkASSERT((b >> (8 - SK_B16_BITS)) == SkGetPackedB16(src));
+
+ return SkPackARGB32(0xFF, r, g, b);
+}
+
+// similar to SkPixel16ToPixel32, but returns SkColor instead of SkPMColor
+static inline SkColor SkPixel16ToColor(U16CPU src) {
+ SkASSERT(src == SkToU16(src));
+
+ unsigned r = SkPacked16ToR32(src);
+ unsigned g = SkPacked16ToG32(src);
+ unsigned b = SkPacked16ToB32(src);
+
+ SkASSERT((r >> (8 - SK_R16_BITS)) == SkGetPackedR16(src));
+ SkASSERT((g >> (8 - SK_G16_BITS)) == SkGetPackedG16(src));
+ SkASSERT((b >> (8 - SK_B16_BITS)) == SkGetPackedB16(src));
+
+ return SkColorSetRGB(r, g, b);
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+typedef uint16_t SkPMColor16;
+
+// Put in OpenGL order (r g b a)
+#define SK_A4444_SHIFT 0
+#define SK_R4444_SHIFT 12
+#define SK_G4444_SHIFT 8
+#define SK_B4444_SHIFT 4
+
+#define SkA32To4444(a) ((unsigned)(a) >> 4)
+#define SkR32To4444(r) ((unsigned)(r) >> 4)
+#define SkG32To4444(g) ((unsigned)(g) >> 4)
+#define SkB32To4444(b) ((unsigned)(b) >> 4)
+
+static inline U8CPU SkReplicateNibble(unsigned nib) {
+ SkASSERT(nib <= 0xF);
+ return (nib << 4) | nib;
+}
+
+#define SkA4444ToA32(a) SkReplicateNibble(a)
+#define SkR4444ToR32(r) SkReplicateNibble(r)
+#define SkG4444ToG32(g) SkReplicateNibble(g)
+#define SkB4444ToB32(b) SkReplicateNibble(b)
+
+#define SkGetPackedA4444(c) (((unsigned)(c) >> SK_A4444_SHIFT) & 0xF)
+#define SkGetPackedR4444(c) (((unsigned)(c) >> SK_R4444_SHIFT) & 0xF)
+#define SkGetPackedG4444(c) (((unsigned)(c) >> SK_G4444_SHIFT) & 0xF)
+#define SkGetPackedB4444(c) (((unsigned)(c) >> SK_B4444_SHIFT) & 0xF)
+
+#define SkPacked4444ToA32(c) SkReplicateNibble(SkGetPackedA4444(c))
+#define SkPacked4444ToR32(c) SkReplicateNibble(SkGetPackedR4444(c))
+#define SkPacked4444ToG32(c) SkReplicateNibble(SkGetPackedG4444(c))
+#define SkPacked4444ToB32(c) SkReplicateNibble(SkGetPackedB4444(c))
+
+#ifdef SK_DEBUG
+static inline void SkPMColor16Assert(U16CPU c) {
+ unsigned a = SkGetPackedA4444(c);
+ unsigned r = SkGetPackedR4444(c);
+ unsigned g = SkGetPackedG4444(c);
+ unsigned b = SkGetPackedB4444(c);
+
+ SkASSERT(a <= 0xF);
+ SkASSERT(r <= a);
+ SkASSERT(g <= a);
+ SkASSERT(b <= a);
+}
+#else
+#define SkPMColor16Assert(c)
+#endif
+
+static inline unsigned SkAlpha15To16(unsigned a) {
+ SkASSERT(a <= 0xF);
+ return a + (a >> 3);
+}
+
+#ifdef SK_DEBUG
+ static inline int SkAlphaMul4(int value, int scale) {
+ SkASSERT((unsigned)scale <= 0x10);
+ return value * scale >> 4;
+ }
+#else
+ #define SkAlphaMul4(value, scale) ((value) * (scale) >> 4)
+#endif
+
+static inline unsigned SkR4444ToR565(unsigned r) {
+ SkASSERT(r <= 0xF);
+ return (r << (SK_R16_BITS - 4)) | (r >> (8 - SK_R16_BITS));
+}
+
+static inline unsigned SkG4444ToG565(unsigned g) {
+ SkASSERT(g <= 0xF);
+ return (g << (SK_G16_BITS - 4)) | (g >> (8 - SK_G16_BITS));
+}
+
+static inline unsigned SkB4444ToB565(unsigned b) {
+ SkASSERT(b <= 0xF);
+ return (b << (SK_B16_BITS - 4)) | (b >> (8 - SK_B16_BITS));
+}
+
+static inline SkPMColor16 SkPackARGB4444(unsigned a, unsigned r,
+ unsigned g, unsigned b) {
+ SkASSERT(a <= 0xF);
+ SkASSERT(r <= a);
+ SkASSERT(g <= a);
+ SkASSERT(b <= a);
+
+ return (SkPMColor16)((a << SK_A4444_SHIFT) | (r << SK_R4444_SHIFT) |
+ (g << SK_G4444_SHIFT) | (b << SK_B4444_SHIFT));
+}
+
+static inline SkPMColor16 SkAlphaMulQ4(SkPMColor16 c, int scale) {
+ SkASSERT(scale <= 16);
+
+ const unsigned mask = 0xF0F; //gMask_0F0F;
+
+#if 0
+ unsigned rb = ((c & mask) * scale) >> 4;
+ unsigned ag = ((c >> 4) & mask) * scale;
+ return (rb & mask) | (ag & ~mask);
+#else
+ unsigned expanded_c = (c & mask) | ((c & (mask << 4)) << 12);
+ unsigned scaled_c = (expanded_c * scale) >> 4;
+ return (scaled_c & mask) | ((scaled_c >> 12) & (mask << 4));
+#endif
+}
+
+/** Expand the SkPMColor16 color into a 32bit value that can be scaled all at
+ once by a value up to 16.
+*/
+static inline uint32_t SkExpand_4444(U16CPU c) {
+ SkASSERT(c == (uint16_t)c);
+
+ const unsigned mask = 0xF0F; //gMask_0F0F;
+ return (c & mask) | ((c & ~mask) << 12);
+}
+
+static inline uint16_t SkSrcOver4444To16(SkPMColor16 s, uint16_t d) {
+ unsigned sa = SkGetPackedA4444(s);
+ unsigned sr = SkR4444ToR565(SkGetPackedR4444(s));
+ unsigned sg = SkG4444ToG565(SkGetPackedG4444(s));
+ unsigned sb = SkB4444ToB565(SkGetPackedB4444(s));
+
+ // To avoid overflow, we have to clear the low bit of the synthetic sg
+ // if the src alpha is <= 7.
+ // to see why, try blending 0x4444 on top of 565-white and watch green
+ // overflow (sum == 64)
+ sg &= ~(~(sa >> 3) & 1);
+
+ unsigned scale = SkAlpha15To16(15 - sa);
+ unsigned dr = SkAlphaMul4(SkGetPackedR16(d), scale);
+ unsigned dg = SkAlphaMul4(SkGetPackedG16(d), scale);
+ unsigned db = SkAlphaMul4(SkGetPackedB16(d), scale);
+
+#if 0
+ if (sg + dg > 63) {
+ SkDebugf("---- SkSrcOver4444To16 src=%x dst=%x scale=%d, sg=%d dg=%d\n", s, d, scale, sg, dg);
+ }
+#endif
+ return SkPackRGB16(sr + dr, sg + dg, sb + db);
+}
+
+static inline uint16_t SkBlend4444To16(SkPMColor16 src, uint16_t dst, int scale16) {
+ SkASSERT((unsigned)scale16 <= 16);
+
+ return SkSrcOver4444To16(SkAlphaMulQ4(src, scale16), dst);
+}
+
+static inline SkPMColor SkPixel4444ToPixel32(U16CPU c) {
+ uint32_t d = (SkGetPackedA4444(c) << SK_A32_SHIFT) |
+ (SkGetPackedR4444(c) << SK_R32_SHIFT) |
+ (SkGetPackedG4444(c) << SK_G32_SHIFT) |
+ (SkGetPackedB4444(c) << SK_B32_SHIFT);
+ return d | (d << 4);
+}
+
+static inline SkPMColor16 SkPixel32ToPixel4444(SkPMColor c) {
+ return (((c >> (SK_A32_SHIFT + 4)) & 0xF) << SK_A4444_SHIFT) |
+ (((c >> (SK_R32_SHIFT + 4)) & 0xF) << SK_R4444_SHIFT) |
+ (((c >> (SK_G32_SHIFT + 4)) & 0xF) << SK_G4444_SHIFT) |
+ (((c >> (SK_B32_SHIFT + 4)) & 0xF) << SK_B4444_SHIFT);
+}
+
+// cheap 2x2 dither
+static inline SkPMColor16 SkDitherARGB32To4444(U8CPU a, U8CPU r,
+ U8CPU g, U8CPU b) {
+ // to ensure that we stay a legal premultiplied color, we take the max()
+ // of the truncated and dithered alpha values. If we didn't, cases like
+ // SkDitherARGB32To4444(0x31, 0x2E, ...) would generate SkPackARGB4444(2, 3, ...)
+ // which is not legal premultiplied, since a < color
+ unsigned dithered_a = ((a << 1) - ((a >> 4 << 4) | (a >> 4))) >> 4;
+ a = SkMax32(a >> 4, dithered_a);
+ // these we just dither in place
+ r = ((r << 1) - ((r >> 4 << 4) | (r >> 4))) >> 4;
+ g = ((g << 1) - ((g >> 4 << 4) | (g >> 4))) >> 4;
+ b = ((b << 1) - ((b >> 4 << 4) | (b >> 4))) >> 4;
+
+ return SkPackARGB4444(a, r, g, b);
+}
+
+static inline SkPMColor16 SkDitherPixel32To4444(SkPMColor c) {
+ return SkDitherARGB32To4444(SkGetPackedA32(c), SkGetPackedR32(c),
+ SkGetPackedG32(c), SkGetPackedB32(c));
+}
+
+/* Assumes 16bit is in standard RGBA order.
+ Transforms a normal ARGB_8888 into the same byte order as
+ expanded ARGB_4444, but keeps each component 8bits
+*/
+static inline uint32_t SkExpand_8888(SkPMColor c) {
+ return (((c >> SK_R32_SHIFT) & 0xFF) << 24) |
+ (((c >> SK_G32_SHIFT) & 0xFF) << 8) |
+ (((c >> SK_B32_SHIFT) & 0xFF) << 16) |
+ (((c >> SK_A32_SHIFT) & 0xFF) << 0);
+}
+
+/* Undo the operation of SkExpand_8888, turning the argument back into
+ a SkPMColor.
+*/
+static inline SkPMColor SkCompact_8888(uint32_t c) {
+ return (((c >> 24) & 0xFF) << SK_R32_SHIFT) |
+ (((c >> 8) & 0xFF) << SK_G32_SHIFT) |
+ (((c >> 16) & 0xFF) << SK_B32_SHIFT) |
+ (((c >> 0) & 0xFF) << SK_A32_SHIFT);
+}
+
+/* Like SkExpand_8888, this transforms a pmcolor into the expanded 4444 format,
+ but this routine just keeps the high 4bits of each component in the low
+ 4bits of the result (just like a newly expanded PMColor16).
+*/
+static inline uint32_t SkExpand32_4444(SkPMColor c) {
+ return (((c >> (SK_R32_SHIFT + 4)) & 0xF) << 24) |
+ (((c >> (SK_G32_SHIFT + 4)) & 0xF) << 8) |
+ (((c >> (SK_B32_SHIFT + 4)) & 0xF) << 16) |
+ (((c >> (SK_A32_SHIFT + 4)) & 0xF) << 0);
+}
+
+// takes two values and alternamtes them as part of a memset16
+// used for cheap 2x2 dithering when the colors are opaque
+void sk_dither_memset16(uint16_t dst[], uint16_t value, uint16_t other, int n);
+
+///////////////////////////////////////////////////////////////////////////////
+
+static inline int SkUpscale31To32(int value) {
+ SkASSERT((unsigned)value <= 31);
+ return value + (value >> 4);
+}
+
+static inline int SkBlend32(int src, int dst, int scale) {
+ SkASSERT((unsigned)src <= 0xFF);
+ SkASSERT((unsigned)dst <= 0xFF);
+ SkASSERT((unsigned)scale <= 32);
+ return dst + ((src - dst) * scale >> 5);
+}
+
+static inline SkPMColor SkBlendLCD16(int srcA, int srcR, int srcG, int srcB,
+ SkPMColor dst, uint16_t mask) {
+ if (mask == 0) {
+ return dst;
+ }
+
+ /* We want all of these in 5bits, hence the shifts in case one of them
+ * (green) is 6bits.
+ */
+ int maskR = SkGetPackedR16(mask) >> (SK_R16_BITS - 5);
+ int maskG = SkGetPackedG16(mask) >> (SK_G16_BITS - 5);
+ int maskB = SkGetPackedB16(mask) >> (SK_B16_BITS - 5);
+
+ // Now upscale them to 0..32, so we can use blend32
+ maskR = SkUpscale31To32(maskR);
+ maskG = SkUpscale31To32(maskG);
+ maskB = SkUpscale31To32(maskB);
+
+ // srcA has been upscaled to 256 before passed into this function
+ maskR = maskR * srcA >> 8;
+ maskG = maskG * srcA >> 8;
+ maskB = maskB * srcA >> 8;
+
+ int dstR = SkGetPackedR32(dst);
+ int dstG = SkGetPackedG32(dst);
+ int dstB = SkGetPackedB32(dst);
+
+ // LCD blitting is only supported if the dst is known/required
+ // to be opaque
+ return SkPackARGB32(0xFF,
+ SkBlend32(srcR, dstR, maskR),
+ SkBlend32(srcG, dstG, maskG),
+ SkBlend32(srcB, dstB, maskB));
+}
+
+static inline SkPMColor SkBlendLCD16Opaque(int srcR, int srcG, int srcB,
+ SkPMColor dst, uint16_t mask,
+ SkPMColor opaqueDst) {
+ if (mask == 0) {
+ return dst;
+ }
+
+ if (0xFFFF == mask) {
+ return opaqueDst;
+ }
+
+ /* We want all of these in 5bits, hence the shifts in case one of them
+ * (green) is 6bits.
+ */
+ int maskR = SkGetPackedR16(mask) >> (SK_R16_BITS - 5);
+ int maskG = SkGetPackedG16(mask) >> (SK_G16_BITS - 5);
+ int maskB = SkGetPackedB16(mask) >> (SK_B16_BITS - 5);
+
+ // Now upscale them to 0..32, so we can use blend32
+ maskR = SkUpscale31To32(maskR);
+ maskG = SkUpscale31To32(maskG);
+ maskB = SkUpscale31To32(maskB);
+
+ int dstR = SkGetPackedR32(dst);
+ int dstG = SkGetPackedG32(dst);
+ int dstB = SkGetPackedB32(dst);
+
+ // LCD blitting is only supported if the dst is known/required
+ // to be opaque
+ return SkPackARGB32(0xFF,
+ SkBlend32(srcR, dstR, maskR),
+ SkBlend32(srcG, dstG, maskG),
+ SkBlend32(srcB, dstB, maskB));
+}
+
+static inline void SkBlitLCD16Row(SkPMColor dst[], const uint16_t mask[],
+ SkColor src, int width, SkPMColor) {
+ int srcA = SkColorGetA(src);
+ int srcR = SkColorGetR(src);
+ int srcG = SkColorGetG(src);
+ int srcB = SkColorGetB(src);
+
+ srcA = SkAlpha255To256(srcA);
+
+ for (int i = 0; i < width; i++) {
+ dst[i] = SkBlendLCD16(srcA, srcR, srcG, srcB, dst[i], mask[i]);
+ }
+}
+
+static inline void SkBlitLCD16OpaqueRow(SkPMColor dst[], const uint16_t mask[],
+ SkColor src, int width,
+ SkPMColor opaqueDst) {
+ int srcR = SkColorGetR(src);
+ int srcG = SkColorGetG(src);
+ int srcB = SkColorGetB(src);
+
+ for (int i = 0; i < width; i++) {
+ dst[i] = SkBlendLCD16Opaque(srcR, srcG, srcB, dst[i], mask[i],
+ opaqueDst);
+ }
+}
+
+#endif