aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/codec/SkPngFilters.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/codec/SkPngFilters.cpp')
-rw-r--r--src/codec/SkPngFilters.cpp168
1 files changed, 168 insertions, 0 deletions
diff --git a/src/codec/SkPngFilters.cpp b/src/codec/SkPngFilters.cpp
new file mode 100644
index 0000000000..115810ea7c
--- /dev/null
+++ b/src/codec/SkPngFilters.cpp
@@ -0,0 +1,168 @@
+/*
+ * Copyright 2016 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "SkPngFilters.h"
+#include "SkTypes.h"
+
+// Functions in this file look at most 3 pixels (a,b,c) to predict the fourth (d).
+// They're positioned like this:
+// prev: c b
+// row: a d
+// The Sub filter predicts d=a, Avg d=(a+b)/2, and Paeth predicts d to be whichever
+// of a, b, or c is closest to p=a+b-c. (Up also exists, predicting d=b.)
+
+#if defined(__SSE2__)
+
+ template <int bpp>
+ static __m128i load(const void* p) {
+ static_assert(bpp <= 4, "");
+
+ uint32_t packed;
+ memcpy(&packed, p, bpp);
+ return _mm_cvtsi32_si128(packed);
+ }
+
+ template <int bpp>
+ static void store(void* p, __m128i v) {
+ static_assert(bpp <= 4, "");
+
+ uint32_t packed = _mm_cvtsi128_si32(v);
+ memcpy(p, &packed, bpp);
+ }
+
+ template <int bpp>
+ static void sk_sub_sse2(png_row_infop row_info, png_bytep row, png_const_bytep) {
+ // The Sub filter predicts each pixel as the previous pixel, a.
+ // There is no pixel to the left of the first pixel. It's encoded directly.
+ // That works with our main loop if we just say that left pixel was zero.
+ __m128i a, d = _mm_setzero_si128();
+
+ int rb = row_info->rowbytes;
+ while (rb > 0) {
+ a = d; d = load<bpp>(row);
+ d = _mm_add_epi8(d, a);
+ store<bpp>(row, d);
+
+ row += bpp;
+ rb -= bpp;
+ }
+ }
+
+ template <int bpp>
+ void sk_avg_sse2(png_row_infop row_info, png_bytep row, png_const_bytep prev) {
+ // The Avg filter predicts each pixel as the (truncated) average of a and b.
+ // There's no pixel to the left of the first pixel. Luckily, it's
+ // predicted to be half of the pixel above it. So again, this works
+ // perfectly with our loop if we make sure a starts at zero.
+ const __m128i zero = _mm_setzero_si128();
+ __m128i b;
+ __m128i a, d = zero;
+
+ int rb = row_info->rowbytes;
+ while (rb > 0) {
+ b = load<bpp>(prev);
+ a = d; d = load<bpp>(row );
+
+ // PNG requires a truncating average here, so sadly we can't just use _mm_avg_epu8...
+ __m128i avg = _mm_avg_epu8(a,b);
+ // ...but we can fix it up by subtracting off 1 if it rounded up.
+ avg = _mm_sub_epi8(avg, _mm_and_si128(_mm_xor_si128(a,b), _mm_set1_epi8(1)));
+
+ d = _mm_add_epi8(d, avg);
+ store<bpp>(row, d);
+
+ prev += bpp;
+ row += bpp;
+ rb -= bpp;
+ }
+ }
+
+ // Returns bytewise |x-y|.
+ static __m128i absdiff_u8(__m128i x, __m128i y) {
+ // One of these two saturated subtractions will be the answer, the other zero.
+ return _mm_or_si128(_mm_subs_epu8(x,y), _mm_subs_epu8(y,x));
+ }
+
+ // Bytewise c ? t : e.
+ static __m128i if_then_else(__m128i c, __m128i t, __m128i e) {
+ // SSE 4.1+ would be: return _mm_blendv_epi8(e,t,c);
+ return _mm_or_si128(_mm_and_si128(c, t), _mm_andnot_si128(c, e));
+ }
+
+ template <int bpp>
+ void sk_paeth_sse2(png_row_infop row_info, png_bytep row, png_const_bytep prev) {
+ // Paeth tries to predict pixel d using the pixel to the left of it, a,
+ // and two pixels from the previous row, b and c:
+ // prev: c b
+ // row: a d
+ // The Paeth function predicts d to be whichever of a, b, or c is nearest to p=a+b-c.
+
+ // The first pixel has no left context, and so uses an Up filter, p = b.
+ // This works naturally with our main loop's p = a+b-c if we force a and c to zero.
+ // Here we zero b and d, which become c and a respectively at the start of the loop.
+ __m128i c, b = _mm_setzero_si128(),
+ a, d = _mm_setzero_si128();
+
+ int rb = row_info->rowbytes;
+ while (rb > 0) {
+ c = b; b = load<bpp>(prev);
+ a = d; d = load<bpp>(row );
+
+ // We can't express p in 8 bits, but luckily we can use this faux p instead.
+ // (I have no deep insight here... I just proved this with brute force.)
+ __m128i min = _mm_min_epu8(a,b),
+ max = _mm_max_epu8(a,b),
+ faux_p = _mm_adds_epu8(min, _mm_subs_epu8(max, c));
+
+ // We could use faux_p for calculating all three of pa, pb, and pc,
+ // but it's a little quicker to calculate the correct pa and pb directly,
+ // and the predictor remains the same. (Again, brute force.)
+ __m128i pa = absdiff_u8(b,c), // |a+b-c - a| == |b-c|
+ pb = absdiff_u8(a,c), // |a+b-c - b| == |a-c|
+ faux_pc = absdiff_u8(faux_p, c);
+
+ // From here, things are straightforward. Find the smallest distance to p...
+ __m128i smallest = _mm_min_epu8(_mm_min_epu8(pa, pb), faux_pc);
+
+ // ... then the predictor is the input corresponding to that smallest distance,
+ // breaking ties in favor of a over b over c.
+ __m128i nearest = if_then_else(_mm_cmpeq_epi8(smallest, pa), a,
+ if_then_else(_mm_cmpeq_epi8(smallest, pb), b,
+ c));
+
+ // We've reconstructed d! Leave it for next round to become a, and write it out.
+ d = _mm_add_epi8(d, nearest);
+ store<bpp>(row, d);
+
+ prev += bpp;
+ row += bpp;
+ rb -= bpp;
+ }
+ }
+
+ void sk_sub3_sse2(png_row_infop row_info, png_bytep row, png_const_bytep prev) {
+ sk_sub_sse2<3>(row_info, row, prev);
+ }
+ void sk_sub4_sse2(png_row_infop row_info, png_bytep row, png_const_bytep prev) {
+ sk_sub_sse2<4>(row_info, row, prev);
+ }
+
+ void sk_avg3_sse2(png_row_infop row_info, png_bytep row, png_const_bytep prev) {
+ sk_avg_sse2<3>(row_info, row, prev);
+ }
+ void sk_avg4_sse2(png_row_infop row_info, png_bytep row, png_const_bytep prev) {
+ sk_avg_sse2<4>(row_info, row, prev);
+ }
+
+ void sk_paeth3_sse2(png_row_infop row_info, png_bytep row, png_const_bytep prev) {
+ sk_paeth_sse2<3>(row_info, row, prev);
+ }
+ void sk_paeth4_sse2(png_row_infop row_info, png_bytep row, png_const_bytep prev) {
+ sk_paeth_sse2<4>(row_info, row, prev);
+ }
+
+#endif