diff options
Diffstat (limited to 'include/private')
-rw-r--r-- | include/private/SkFloatBits.h | 132 | ||||
-rw-r--r-- | include/private/SkFloatingPoint.h | 170 | ||||
-rw-r--r-- | include/private/SkWeakRefCnt.h | 159 |
3 files changed, 461 insertions, 0 deletions
diff --git a/include/private/SkFloatBits.h b/include/private/SkFloatBits.h new file mode 100644 index 0000000000..3ddb9ef564 --- /dev/null +++ b/include/private/SkFloatBits.h @@ -0,0 +1,132 @@ + +/* + * Copyright 2008 The Android Open Source Project + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + + +#ifndef SkFloatBits_DEFINED +#define SkFloatBits_DEFINED + +#include "SkTypes.h" + +/** Convert a sign-bit int (i.e. float interpreted as int) into a 2s compliement + int. This also converts -0 (0x80000000) to 0. Doing this to a float allows + it to be compared using normal C operators (<, <=, etc.) +*/ +static inline int32_t SkSignBitTo2sCompliment(int32_t x) { + if (x < 0) { + x &= 0x7FFFFFFF; + x = -x; + } + return x; +} + +/** Convert a 2s compliment int to a sign-bit (i.e. int interpreted as float). + This undoes the result of SkSignBitTo2sCompliment(). + */ +static inline int32_t Sk2sComplimentToSignBit(int32_t x) { + int sign = x >> 31; + // make x positive + x = (x ^ sign) - sign; + // set the sign bit as needed + x |= sign << 31; + return x; +} + +/** Given the bit representation of a float, return its value cast to an int. + If the value is out of range, or NaN, return return +/- SK_MaxS32 +*/ +int32_t SkFloatBits_toIntCast(int32_t floatBits); + +/** Given the bit representation of a float, return its floor as an int. + If the value is out of range, or NaN, return return +/- SK_MaxS32 + */ +SK_API int32_t SkFloatBits_toIntFloor(int32_t floatBits); + +/** Given the bit representation of a float, return it rounded to an int. + If the value is out of range, or NaN, return return +/- SK_MaxS32 + */ +SK_API int32_t SkFloatBits_toIntRound(int32_t floatBits); + +/** Given the bit representation of a float, return its ceiling as an int. + If the value is out of range, or NaN, return return +/- SK_MaxS32 + */ +SK_API int32_t SkFloatBits_toIntCeil(int32_t floatBits); + + +union SkFloatIntUnion { + float fFloat; + int32_t fSignBitInt; +}; + +// Helper to see a float as its bit pattern (w/o aliasing warnings) +static inline int32_t SkFloat2Bits(float x) { + SkFloatIntUnion data; + data.fFloat = x; + return data.fSignBitInt; +} + +// Helper to see a bit pattern as a float (w/o aliasing warnings) +static inline float SkBits2Float(int32_t floatAsBits) { + SkFloatIntUnion data; + data.fSignBitInt = floatAsBits; + return data.fFloat; +} + +/** Return the float as a 2s compliment int. Just to be used to compare floats + to each other or against positive float-bit-constants (like 0). This does + not return the int equivalent of the float, just something cheaper for + compares-only. + */ +static inline int32_t SkFloatAs2sCompliment(float x) { + return SkSignBitTo2sCompliment(SkFloat2Bits(x)); +} + +/** Return the 2s compliment int as a float. This undos the result of + SkFloatAs2sCompliment + */ +static inline float Sk2sComplimentAsFloat(int32_t x) { + return SkBits2Float(Sk2sComplimentToSignBit(x)); +} + +/** Return x cast to a float (i.e. (float)x) +*/ +float SkIntToFloatCast(int x); + +/** Return the float cast to an int. + If the value is out of range, or NaN, return +/- SK_MaxS32 +*/ +static inline int32_t SkFloatToIntCast(float x) { + return SkFloatBits_toIntCast(SkFloat2Bits(x)); +} + +/** Return the floor of the float as an int. + If the value is out of range, or NaN, return +/- SK_MaxS32 +*/ +static inline int32_t SkFloatToIntFloor(float x) { + return SkFloatBits_toIntFloor(SkFloat2Bits(x)); +} + +/** Return the float rounded to an int. + If the value is out of range, or NaN, return +/- SK_MaxS32 +*/ +static inline int32_t SkFloatToIntRound(float x) { + return SkFloatBits_toIntRound(SkFloat2Bits(x)); +} + +/** Return the ceiling of the float as an int. + If the value is out of range, or NaN, return +/- SK_MaxS32 +*/ +static inline int32_t SkFloatToIntCeil(float x) { + return SkFloatBits_toIntCeil(SkFloat2Bits(x)); +} + +// Scalar wrappers for float-bit routines + +#define SkScalarAs2sCompliment(x) SkFloatAs2sCompliment(x) +#define Sk2sComplimentAsScalar(x) Sk2sComplimentAsFloat(x) + +#endif diff --git a/include/private/SkFloatingPoint.h b/include/private/SkFloatingPoint.h new file mode 100644 index 0000000000..f7ee816b12 --- /dev/null +++ b/include/private/SkFloatingPoint.h @@ -0,0 +1,170 @@ + +/* + * Copyright 2006 The Android Open Source Project + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + + +#ifndef SkFloatingPoint_DEFINED +#define SkFloatingPoint_DEFINED + +#include "SkTypes.h" + +#include <math.h> +#include <float.h> + +// For _POSIX_VERSION +#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) +#include <unistd.h> +#endif + +#include "SkFloatBits.h" + +// C++98 cmath std::pow seems to be the earliest portable way to get float pow. +// However, on Linux including cmath undefines isfinite. +// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14608 +static inline float sk_float_pow(float base, float exp) { + return powf(base, exp); +} + +static inline float sk_float_copysign(float x, float y) { +// c++11 contains a 'float copysign(float, float)' function in <cmath>. +// clang-cl reports __cplusplus for clang, not the __cplusplus vc++ version _MSC_VER would report. +#if (defined(_MSC_VER) && defined(__clang__)) +# define SK_BUILD_WITH_CLANG_CL 1 +#else +# define SK_BUILD_WITH_CLANG_CL 0 +#endif +#if (!SK_BUILD_WITH_CLANG_CL && __cplusplus >= 201103L) || (_MSC_VER >= 1800) + return copysignf(x, y); + +// Posix has demanded 'float copysignf(float, float)' (from C99) since Issue 6. +#elif defined(_POSIX_VERSION) && _POSIX_VERSION >= 200112L + return copysignf(x, y); + +// Visual studio prior to 13 only has 'double _copysign(double, double)'. +#elif defined(_MSC_VER) + return (float)_copysign(x, y); + +// Otherwise convert to bits and extract sign. +#else + int32_t xbits = SkFloat2Bits(x); + int32_t ybits = SkFloat2Bits(y); + return SkBits2Float((xbits & 0x7FFFFFFF) | (ybits & 0x80000000)); +#endif +} + +#define sk_float_sqrt(x) sqrtf(x) +#define sk_float_sin(x) sinf(x) +#define sk_float_cos(x) cosf(x) +#define sk_float_tan(x) tanf(x) +#define sk_float_floor(x) floorf(x) +#define sk_float_ceil(x) ceilf(x) +#ifdef SK_BUILD_FOR_MAC +# define sk_float_acos(x) static_cast<float>(acos(x)) +# define sk_float_asin(x) static_cast<float>(asin(x)) +#else +# define sk_float_acos(x) acosf(x) +# define sk_float_asin(x) asinf(x) +#endif +#define sk_float_atan2(y,x) atan2f(y,x) +#define sk_float_abs(x) fabsf(x) +#define sk_float_mod(x,y) fmodf(x,y) +#define sk_float_exp(x) expf(x) +#define sk_float_log(x) logf(x) + +#define sk_float_round(x) sk_float_floor((x) + 0.5f) + +// can't find log2f on android, but maybe that just a tool bug? +#ifdef SK_BUILD_FOR_ANDROID + static inline float sk_float_log2(float x) { + const double inv_ln_2 = 1.44269504088896; + return (float)(log(x) * inv_ln_2); + } +#else + #define sk_float_log2(x) log2f(x) +#endif + +#ifdef SK_BUILD_FOR_WIN + #define sk_float_isfinite(x) _finite(x) + #define sk_float_isnan(x) _isnan(x) + static inline int sk_float_isinf(float x) { + int32_t bits = SkFloat2Bits(x); + return (bits << 1) == (0xFF << 24); + } +#else + #define sk_float_isfinite(x) isfinite(x) + #define sk_float_isnan(x) isnan(x) + #define sk_float_isinf(x) isinf(x) +#endif + +#define sk_double_isnan(a) sk_float_isnan(a) + +#ifdef SK_USE_FLOATBITS + #define sk_float_floor2int(x) SkFloatToIntFloor(x) + #define sk_float_round2int(x) SkFloatToIntRound(x) + #define sk_float_ceil2int(x) SkFloatToIntCeil(x) +#else + #define sk_float_floor2int(x) (int)sk_float_floor(x) + #define sk_float_round2int(x) (int)sk_float_floor((x) + 0.5f) + #define sk_float_ceil2int(x) (int)sk_float_ceil(x) +#endif + +#define sk_double_floor(x) floor(x) +#define sk_double_round(x) floor((x) + 0.5) +#define sk_double_ceil(x) ceil(x) +#define sk_double_floor2int(x) (int)floor(x) +#define sk_double_round2int(x) (int)floor((x) + 0.5f) +#define sk_double_ceil2int(x) (int)ceil(x) + +extern const uint32_t gIEEENotANumber; +extern const uint32_t gIEEEInfinity; +extern const uint32_t gIEEENegativeInfinity; + +#define SK_FloatNaN (*SkTCast<const float*>(&gIEEENotANumber)) +#define SK_FloatInfinity (*SkTCast<const float*>(&gIEEEInfinity)) +#define SK_FloatNegativeInfinity (*SkTCast<const float*>(&gIEEENegativeInfinity)) + +// We forward declare this to break an #include cycle. +// (SkScalar -> SkFloatingPoint -> SkOpts.h -> SkXfermode -> SkColor -> SkScalar) +namespace SkOpts { extern float (*rsqrt)(float); } + +// Fast, approximate inverse square root. +// Compare to name-brand "1.0f / sk_float_sqrt(x)". Should be around 10x faster on SSE, 2x on NEON. +static inline float sk_float_rsqrt(const float x) { +// We want all this inlined, so we'll inline SIMD and just take the hit when we don't know we've got +// it at compile time. This is going to be too fast to productively hide behind a function pointer. +// +// We do one step of Newton's method to refine the estimates in the NEON and null paths. No +// refinement is faster, but very innacurate. Two steps is more accurate, but slower than 1/sqrt. +// +// Optimized constants in the null path courtesy of http://rrrola.wz.cz/inv_sqrt.html +#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1 + return _mm_cvtss_f32(_mm_rsqrt_ss(_mm_set_ss(x))); +#elif defined(SK_ARM_HAS_NEON) + // Get initial estimate. + const float32x2_t xx = vdup_n_f32(x); // Clever readers will note we're doing everything 2x. + float32x2_t estimate = vrsqrte_f32(xx); + + // One step of Newton's method to refine. + const float32x2_t estimate_sq = vmul_f32(estimate, estimate); + estimate = vmul_f32(estimate, vrsqrts_f32(xx, estimate_sq)); + return vget_lane_f32(estimate, 0); // 1 will work fine too; the answer's in both places. +#else + // Perhaps runtime-detected NEON, or a portable fallback. + return SkOpts::rsqrt(x); +#endif +} + +// This is the number of significant digits we can print in a string such that when we read that +// string back we get the floating point number we expect. The minimum value C requires is 6, but +// most compilers support 9 +#ifdef FLT_DECIMAL_DIG +#define SK_FLT_DECIMAL_DIG FLT_DECIMAL_DIG +#else +#define SK_FLT_DECIMAL_DIG 9 +#endif + +#endif diff --git a/include/private/SkWeakRefCnt.h b/include/private/SkWeakRefCnt.h new file mode 100644 index 0000000000..a550951970 --- /dev/null +++ b/include/private/SkWeakRefCnt.h @@ -0,0 +1,159 @@ +/* + * Copyright 2012 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#ifndef SkWeakRefCnt_DEFINED +#define SkWeakRefCnt_DEFINED + +#include "SkRefCnt.h" +#include "SkAtomics.h" + +/** \class SkWeakRefCnt + + SkWeakRefCnt is the base class for objects that may be shared by multiple + objects. When an existing strong owner wants to share a reference, it calls + ref(). When a strong owner wants to release its reference, it calls + unref(). When the shared object's strong reference count goes to zero as + the result of an unref() call, its (virtual) weak_dispose method is called. + It is an error for the destructor to be called explicitly (or via the + object going out of scope on the stack or calling delete) if + getRefCnt() > 1. + + In addition to strong ownership, an owner may instead obtain a weak + reference by calling weak_ref(). A call to weak_ref() must be balanced by a + call to weak_unref(). To obtain a strong reference from a weak reference, + call try_ref(). If try_ref() returns true, the owner's pointer is now also + a strong reference on which unref() must be called. Note that this does not + affect the original weak reference, weak_unref() must still be called. When + the weak reference count goes to zero, the object is deleted. While the + weak reference count is positive and the strong reference count is zero the + object still exists, but will be in the disposed state. It is up to the + object to define what this means. + + Note that a strong reference implicitly implies a weak reference. As a + result, it is allowable for the owner of a strong ref to call try_ref(). + This will have the same effect as calling ref(), but may be more expensive. + + Example: + + SkWeakRefCnt myRef = strongRef.weak_ref(); + ... // strongRef.unref() may or may not be called + if (myRef.try_ref()) { + ... // use myRef + myRef.unref(); + } else { + // myRef is in the disposed state + } + myRef.weak_unref(); +*/ +class SK_API SkWeakRefCnt : public SkRefCnt { +public: + /** Default construct, initializing the reference counts to 1. + The strong references collectively hold one weak reference. When the + strong reference count goes to zero, the collectively held weak + reference is released. + */ + SkWeakRefCnt() : SkRefCnt(), fWeakCnt(1) {} + + /** Destruct, asserting that the weak reference count is 1. + */ + virtual ~SkWeakRefCnt() { +#ifdef SK_DEBUG + SkASSERT(fWeakCnt == 1); + fWeakCnt = 0; +#endif + } + + /** Return the weak reference count. + */ + int32_t getWeakCnt() const { return fWeakCnt; } + +#ifdef SK_DEBUG + void validate() const { + this->INHERITED::validate(); + SkASSERT(fWeakCnt > 0); + } +#endif + + /** Creates a strong reference from a weak reference, if possible. The + caller must already be an owner. If try_ref() returns true the owner + is in posession of an additional strong reference. Both the original + reference and new reference must be properly unreferenced. If try_ref() + returns false, no strong reference could be created and the owner's + reference is in the same state as before the call. + */ + bool SK_WARN_UNUSED_RESULT try_ref() const { + if (sk_atomic_conditional_inc(&fRefCnt) != 0) { + // Acquire barrier (L/SL), if not provided above. + // Prevents subsequent code from happening before the increment. + sk_membar_acquire__after_atomic_conditional_inc(); + return true; + } + return false; + } + + /** Increment the weak reference count. Must be balanced by a call to + weak_unref(). + */ + void weak_ref() const { + SkASSERT(fRefCnt > 0); + SkASSERT(fWeakCnt > 0); + sk_atomic_inc(&fWeakCnt); // No barrier required. + } + + /** Decrement the weak reference count. If the weak reference count is 1 + before the decrement, then call delete on the object. Note that if this + is the case, then the object needs to have been allocated via new, and + not on the stack. + */ + void weak_unref() const { + SkASSERT(fWeakCnt > 0); + // Release barrier (SL/S), if not provided below. + if (sk_atomic_dec(&fWeakCnt) == 1) { + // Acquire barrier (L/SL), if not provided above. + // Prevents code in destructor from happening before the decrement. + sk_membar_acquire__after_atomic_dec(); +#ifdef SK_DEBUG + // so our destructor won't complain + fWeakCnt = 1; +#endif + this->INHERITED::internal_dispose(); + } + } + + /** Returns true if there are no strong references to the object. When this + is the case all future calls to try_ref() will return false. + */ + bool weak_expired() const { + return fRefCnt == 0; + } + +protected: + /** Called when the strong reference count goes to zero. This allows the + object to free any resources it may be holding. Weak references may + still exist and their level of allowed access to the object is defined + by the object's class. + */ + virtual void weak_dispose() const { + } + +private: + /** Called when the strong reference count goes to zero. Calls weak_dispose + on the object and releases the implicit weak reference held + collectively by the strong references. + */ + void internal_dispose() const override { + weak_dispose(); + weak_unref(); + } + + /* Invariant: fWeakCnt = #weak + (fRefCnt > 0 ? 1 : 0) */ + mutable int32_t fWeakCnt; + + typedef SkRefCnt INHERITED; +}; + +#endif |