diff options
Diffstat (limited to 'experimental/Intersection/ReduceOrder.cpp')
-rw-r--r-- | experimental/Intersection/ReduceOrder.cpp | 238 |
1 files changed, 0 insertions, 238 deletions
diff --git a/experimental/Intersection/ReduceOrder.cpp b/experimental/Intersection/ReduceOrder.cpp deleted file mode 100644 index e742a265e0..0000000000 --- a/experimental/Intersection/ReduceOrder.cpp +++ /dev/null @@ -1,238 +0,0 @@ -#include "CubicIntersection.h" -#include "Extrema.h" -#include "IntersectionUtilities.h" -#include "LineParameters.h" - -#ifdef MAYBE_USEFUL_IN_THE_FUTURE -static double interp_quad_coords(double a, double b, double c, double t) -{ - double ab = interp(a, b, t); - double bc = interp(b, c, t); - return interp(ab, bc, t); -} -#endif - -static double interp_cubic_coords(const double* src, double t) -{ - double ab = interp(src[0], src[2], t); - double bc = interp(src[2], src[4], t); - double cd = interp(src[4], src[6], t); - double abc = interp(ab, bc, t); - double bcd = interp(bc, cd, t); - return interp(abc, bcd, t); -} - -static int coincident_line(const Cubic& cubic, Cubic& reduction) { - reduction[0] = reduction[1] = cubic[0]; - return 1; -} - -static int vertical_line(const Cubic& cubic, Cubic& reduction) { - double tValues[2]; - reduction[0] = cubic[0]; - reduction[1] = cubic[3]; - int smaller = reduction[1].y > reduction[0].y; - int larger = smaller ^ 1; - int roots = SkFindCubicExtrema(cubic[0].y, cubic[1].y, cubic[2].y, cubic[3].y, tValues); - for (int index = 0; index < roots; ++index) { - double yExtrema = interp_cubic_coords(&cubic[0].y, tValues[index]); - if (reduction[smaller].y > yExtrema) { - reduction[smaller].y = yExtrema; - continue; - } - if (reduction[larger].y < yExtrema) { - reduction[larger].y = yExtrema; - } - } - return 2; -} - -static int horizontal_line(const Cubic& cubic, Cubic& reduction) { - double tValues[2]; - reduction[0] = cubic[0]; - reduction[1] = cubic[3]; - int smaller = reduction[1].x > reduction[0].x; - int larger = smaller ^ 1; - int roots = SkFindCubicExtrema(cubic[0].x, cubic[1].x, cubic[2].x, cubic[3].x, tValues); - for (int index = 0; index < roots; ++index) { - double xExtrema = interp_cubic_coords(&cubic[0].x, tValues[index]); - if (reduction[smaller].x > xExtrema) { - reduction[smaller].x = xExtrema; - continue; - } - if (reduction[larger].x < xExtrema) { - reduction[larger].x = xExtrema; - } - } - return 2; -} - -// check to see if it is a quadratic or a line -static int check_quadratic(const Cubic& cubic, Cubic& reduction, - int minX, int maxX, int minY, int maxY) { - double dx10 = cubic[1].x - cubic[0].x; - double dx23 = cubic[2].x - cubic[3].x; - double midX = cubic[0].x + dx10 * 3 / 2; - if (!approximately_equal(midX - cubic[3].x, dx23 * 3 / 2)) { - return 0; - } - double dy10 = cubic[1].y - cubic[0].y; - double dy23 = cubic[2].y - cubic[3].y; - double midY = cubic[0].y + dy10 * 3 / 2; - if (!approximately_equal(midY - cubic[3].y, dy23 * 3 / 2)) { - return 0; - } - reduction[0] = cubic[0]; - reduction[1].x = midX; - reduction[1].y = midY; - reduction[2] = cubic[3]; - return 3; -} - -static int check_linear(const Cubic& cubic, Cubic& reduction, - int minX, int maxX, int minY, int maxY) { - int startIndex = 0; - int endIndex = 3; - while (cubic[startIndex].approximatelyEqual(cubic[endIndex])) { - --endIndex; - if (endIndex == 0) { - printf("%s shouldn't get here if all four points are about equal", __FUNCTION__); - assert(0); - } - } - LineParameters lineParameters; - lineParameters.cubicEndPoints(cubic, startIndex, endIndex); - double normalSquared = lineParameters.normalSquared(); - double distance[2]; // distance is not normalized - int mask = other_two(startIndex, endIndex); - int inner1 = startIndex ^ mask; - int inner2 = endIndex ^ mask; - lineParameters.controlPtDistance(cubic, inner1, inner2, distance); - double limit = normalSquared * SquaredEpsilon; - int index; - for (index = 0; index < 2; ++index) { - double distSq = distance[index]; - distSq *= distSq; - if (distSq > limit) { - return 0; - } - } - // four are colinear: return line formed by outside - reduction[0] = cubic[0]; - reduction[1] = cubic[3]; - int sameSide1; - int sameSide2; - bool useX = cubic[maxX].x - cubic[minX].x >= cubic[maxY].y - cubic[minY].y; - if (useX) { - sameSide1 = sign(cubic[0].x - cubic[1].x) + sign(cubic[3].x - cubic[1].x); - sameSide2 = sign(cubic[0].x - cubic[2].x) + sign(cubic[3].x - cubic[2].x); - } else { - sameSide1 = sign(cubic[0].y - cubic[1].y) + sign(cubic[3].y - cubic[1].y); - sameSide2 = sign(cubic[0].y - cubic[2].y) + sign(cubic[3].y - cubic[2].y); - } - if (sameSide1 == sameSide2 && (sameSide1 & 3) != 2) { - return 2; - } - double tValues[2]; - int roots; - if (useX) { - roots = SkFindCubicExtrema(cubic[0].x, cubic[1].x, cubic[2].x, cubic[3].x, tValues); - } else { - roots = SkFindCubicExtrema(cubic[0].y, cubic[1].y, cubic[2].y, cubic[3].y, tValues); - } - for (index = 0; index < roots; ++index) { - _Point extrema; - extrema.x = interp_cubic_coords(&cubic[0].x, tValues[index]); - extrema.y = interp_cubic_coords(&cubic[0].y, tValues[index]); - // sameSide > 0 means mid is smaller than either [0] or [3], so replace smaller - int replace; - if (useX) { - if (extrema.x < cubic[0].x ^ extrema.x < cubic[3].x) { - continue; - } - replace = (extrema.x < cubic[0].x | extrema.x < cubic[3].x) - ^ cubic[0].x < cubic[3].x; - } else { - if (extrema.y < cubic[0].y ^ extrema.y < cubic[3].y) { - continue; - } - replace = (extrema.y < cubic[0].y | extrema.y < cubic[3].y) - ^ cubic[0].y < cubic[3].y; - } - reduction[replace] = extrema; - } - return 2; -} - -/* food for thought: -http://objectmix.com/graphics/132906-fast-precision-driven-cubic-quadratic-piecewise-degree-reduction-algos-2-a.html - -Given points c1, c2, c3 and c4 of a cubic Bezier, the points of the -corresponding quadratic Bezier are (given in convex combinations of -points): - -q1 = (11/13)c1 + (3/13)c2 -(3/13)c3 + (2/13)c4 -q2 = -c1 + (3/2)c2 + (3/2)c3 - c4 -q3 = (2/13)c1 - (3/13)c2 + (3/13)c3 + (11/13)c4 - -Of course, this curve does not interpolate the end-points, but it would -be interesting to see the behaviour of such a curve in an applet. - --- -Kalle Rutanen -http://kaba.hilvi.org - -*/ - -// reduce to a quadratic or smaller -// look for identical points -// look for all four points in a line - // note that three points in a line doesn't simplify a cubic -// look for approximation with single quadratic - // save approximation with multiple quadratics for later -int reduceOrder(const Cubic& cubic, Cubic& reduction, ReduceOrder_Flags allowQuadratics) { - int index, minX, maxX, minY, maxY; - int minXSet, minYSet; - minX = maxX = minY = maxY = 0; - minXSet = minYSet = 0; - for (index = 1; index < 4; ++index) { - if (cubic[minX].x > cubic[index].x) { - minX = index; - } - if (cubic[minY].y > cubic[index].y) { - minY = index; - } - if (cubic[maxX].x < cubic[index].x) { - maxX = index; - } - if (cubic[maxY].y < cubic[index].y) { - maxY = index; - } - } - for (index = 0; index < 4; ++index) { - if (approximately_equal(cubic[index].x, cubic[minX].x)) { - minXSet |= 1 << index; - } - if (approximately_equal(cubic[index].y, cubic[minY].y)) { - minYSet |= 1 << index; - } - } - if (minXSet == 0xF) { // test for vertical line - if (minYSet == 0xF) { // return 1 if all four are coincident - return coincident_line(cubic, reduction); - } - return vertical_line(cubic, reduction); - } - if (minYSet == 0xF) { // test for horizontal line - return horizontal_line(cubic, reduction); - } - int result = check_linear(cubic, reduction, minX, maxX, minY, maxY); - if (result) { - return result; - } - if (allowQuadratics && (result = check_quadratic(cubic, reduction, minX, maxX, minY, maxY))) { - return result; - } - memcpy(reduction, cubic, sizeof(Cubic)); - return 4; -} |