aboutsummaryrefslogtreecommitdiffhomepage
path: root/experimental/Intersection/QuarticRoot.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'experimental/Intersection/QuarticRoot.cpp')
-rw-r--r--experimental/Intersection/QuarticRoot.cpp293
1 files changed, 103 insertions, 190 deletions
diff --git a/experimental/Intersection/QuarticRoot.cpp b/experimental/Intersection/QuarticRoot.cpp
index 86ea7a63fd..6941935f43 100644
--- a/experimental/Intersection/QuarticRoot.cpp
+++ b/experimental/Intersection/QuarticRoot.cpp
@@ -30,190 +30,48 @@
#include "QuadraticUtilities.h"
#include "QuarticRoot.h"
+int reducedQuarticRoots(const double t4, const double t3, const double t2, const double t1,
+ const double t0, const bool oneHint, double roots[4]) {
#if SK_DEBUG
-#define QUARTIC_DEBUG 1
-#else
-#define QUARTIC_DEBUG 0
-#endif
-
-const double PI = 4 * atan(1);
-
-// unlike quadraticRoots in QuadraticUtilities.cpp, this does not discard
-// real roots <= 0 or >= 1
-int quadraticRootsX(const double A, const double B, const double C,
- double s[2]) {
- if (approximately_zero(A)) {
- if (approximately_zero(B)) {
- s[0] = 0;
- return C == 0;
- }
- s[0] = -C / B;
- return 1;
- }
- /* normal form: x^2 + px + q = 0 */
- const double p = B / (2 * A);
- const double q = C / A;
- double D = p * p - q;
- if (D < 0) {
- if (approximately_positive_squared(D)) {
- D = 0;
- } else {
- return 0;
- }
- }
- double sqrt_D = sqrt(D);
- if (approximately_less_than_zero(sqrt_D)) {
- s[0] = -p;
- return 1;
- }
- s[0] = sqrt_D - p;
- s[1] = -sqrt_D - p;
- return 2;
-}
-
-#define USE_GEMS 0
-#if USE_GEMS
-// unlike cubicRoots in CubicUtilities.cpp, this does not discard
-// real roots <= 0 or >= 1
-int cubicRootsX(const double A, const double B, const double C,
- const double D, double s[3]) {
- int num;
- /* normal form: x^3 + Ax^2 + Bx + C = 0 */
- const double invA = 1 / A;
- const double a = B * invA;
- const double b = C * invA;
- const double c = D * invA;
- /* substitute x = y - a/3 to eliminate quadric term:
- x^3 +px + q = 0 */
- const double a2 = a * a;
- const double Q = (-a2 + b * 3) / 9;
- const double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
- /* use Cardano's formula */
- const double Q3 = Q * Q * Q;
- const double R2plusQ3 = R * R + Q3;
- if (approximately_zero(R2plusQ3)) {
- if (approximately_zero(R)) {/* one triple solution */
- s[0] = 0;
- num = 1;
- } else { /* one single and one double solution */
-
- double u = cube_root(-R);
- s[0] = 2 * u;
- s[1] = -u;
- num = 2;
- }
- }
- else if (R2plusQ3 < 0) { /* Casus irreducibilis: three real solutions */
- const double theta = acos(-R / sqrt(-Q3)) / 3;
- const double _2RootQ = 2 * sqrt(-Q);
- s[0] = _2RootQ * cos(theta);
- s[1] = -_2RootQ * cos(theta + PI / 3);
- s[2] = -_2RootQ * cos(theta - PI / 3);
- num = 3;
- } else { /* one real solution */
- const double sqrt_D = sqrt(R2plusQ3);
- const double u = cube_root(sqrt_D - R);
- const double v = -cube_root(sqrt_D + R);
- s[0] = u + v;
- num = 1;
- }
- /* resubstitute */
- const double sub = a / 3;
- for (int i = 0; i < num; ++i) {
- s[i] -= sub;
- }
- return num;
-}
-#else
-
-int cubicRootsX(double A, double B, double C, double D, double s[3]) {
-#if QUARTIC_DEBUG
// create a string mathematica understands
+ // GDB set print repe 15 # if repeated digits is a bother
+ // set print elements 400 # if line doesn't fit
char str[1024];
bzero(str, sizeof(str));
- sprintf(str, "Solve[%1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]", A, B, C, D);
+ sprintf(str, "Solve[%1.19g x^4 + %1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]",
+ t4, t3, t2, t1, t0);
#endif
- if (approximately_zero(A)) { // we're just a quadratic
- return quadraticRootsX(B, C, D, s);
+ if (approximately_zero(t4)) {
+ if (approximately_zero(t3)) {
+ return quadraticRootsReal(t2, t1, t0, roots);
+ }
+ return cubicRootsReal(t3, t2, t1, t0, roots);
}
- if (approximately_zero(D)) { // 0 is one root
- int num = quadraticRootsX(A, B, C, s);
+ if (approximately_zero(t0)) { // 0 is one root
+ int num = cubicRootsReal(t4, t3, t2, t1, roots);
for (int i = 0; i < num; ++i) {
- if (approximately_zero(s[i])) {
+ if (approximately_zero(roots[i])) {
return num;
}
}
- s[num++] = 0;
+ roots[num++] = 0;
return num;
}
- if (approximately_zero(A + B + C + D)) { // 1 is one root
- int num = quadraticRootsX(A, A + B, -D, s);
+ if (oneHint) {
+ assert(approximately_zero(t4 + t3 + t2 + t1 + t0)); // 1 is one root
+ int num = cubicRootsReal(t4, t4 + t3, -(t1 + t0), -t0, roots); // note that -C==A+B+D+E
for (int i = 0; i < num; ++i) {
- if (approximately_equal(s[i], 1)) {
+ if (approximately_equal(roots[i], 1)) {
return num;
}
}
- s[num++] = 1;
+ roots[num++] = 1;
return num;
}
- double a, b, c;
- {
- double invA = 1 / A;
- a = B * invA;
- b = C * invA;
- c = D * invA;
- }
- double a2 = a * a;
- double Q = (a2 - b * 3) / 9;
- double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
- double Q3 = Q * Q * Q;
- double R2MinusQ3 = R * R - Q3;
- double adiv3 = a / 3;
- double r;
- double* roots = s;
-
- if (approximately_zero_squared(R2MinusQ3)) {
- if (approximately_zero(R)) {/* one triple solution */
- *roots++ = -adiv3;
- } else { /* one single and one double solution */
-
- double u = cube_root(-R);
- *roots++ = 2 * u - adiv3;
- *roots++ = -u - adiv3;
- }
- }
- else if (R2MinusQ3 < 0) // we have 3 real roots
- {
- double theta = acos(R / sqrt(Q3));
- double neg2RootQ = -2 * sqrt(Q);
-
- r = neg2RootQ * cos(theta / 3) - adiv3;
- *roots++ = r;
-
- r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3;
- *roots++ = r;
-
- r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3;
- *roots++ = r;
- }
- else // we have 1 real root
- {
- double A = fabs(R) + sqrt(R2MinusQ3);
- A = cube_root(A);
- if (R > 0) {
- A = -A;
- }
- if (A != 0) {
- A += Q / A;
- }
- r = A - adiv3;
- *roots++ = r;
- }
- return (int)(roots - s);
+ return -1;
}
-#endif
-int quarticRoots(const double A, const double B, const double C, const double D,
+int quarticRootsReal(const double A, const double B, const double C, const double D,
const double E, double s[4]) {
double u, v;
/* normal form: x^4 + Ax^3 + Bx^2 + Cx + D = 0 */
@@ -231,37 +89,97 @@ int quarticRoots(const double A, const double B, const double C, const double D,
int num;
if (approximately_zero(r)) {
/* no absolute term: y(y^3 + py + q) = 0 */
- num = cubicRootsX(1, 0, p, q, s);
+ num = cubicRootsReal(1, 0, p, q, s);
s[num++] = 0;
} else {
/* solve the resolvent cubic ... */
- (void) cubicRootsX(1, -p / 2, -r, r * p / 2 - q * q / 8, s);
+ double cubicRoots[3];
+ int roots = cubicRootsReal(1, -p / 2, -r, r * p / 2 - q * q / 8, cubicRoots);
+ int index;
+ #if 0 && SK_DEBUG // enable to verify that any cubic root is as good as any other
+ double tries[3][4];
+ int nums[3];
+ for (index = 0; index < roots; ++index) {
+ /* ... and take one real solution ... */
+ const double z = cubicRoots[index];
+ /* ... to build two quadric equations */
+ u = z * z - r;
+ v = 2 * z - p;
+ if (approximately_zero_squared(u)) {
+ u = 0;
+ } else if (u > 0) {
+ u = sqrt(u);
+ } else {
+ SkDebugf("%s u=%1.9g <0\n", __FUNCTION__, u);
+ continue;
+ }
+ if (approximately_zero_squared(v)) {
+ v = 0;
+ } else if (v > 0) {
+ v = sqrt(v);
+ } else {
+ SkDebugf("%s v=%1.9g <0\n", __FUNCTION__, v);
+ continue;
+ }
+ nums[index] = quadraticRootsReal(1, q < 0 ? -v : v, z - u, tries[index]);
+ nums[index] += quadraticRootsReal(1, q < 0 ? v : -v, z + u, tries[index] + nums[index]);
+ /* resubstitute */
+ const double sub = a / 4;
+ for (int i = 0; i < nums[index]; ++i) {
+ tries[index][i] -= sub;
+ }
+ }
+ for (index = 0; index < roots; ++index) {
+ SkDebugf("%s", __FUNCTION__);
+ for (int idx2 = 0; idx2 < nums[index]; ++idx2) {
+ SkDebugf(" %1.9g", tries[index][idx2]);
+ }
+ SkDebugf("\n");
+ }
+ #endif
/* ... and take one real solution ... */
- const double z = s[0];
- /* ... to build two quadric equations */
- u = z * z - r;
- v = 2 * z - p;
- if (approximately_zero_squared(u)) {
- u = 0;
- } else if (u > 0) {
- u = sqrt(u);
- } else {
- return 0;
+ double z;
+ num = 0;
+ int num2 = 0;
+ for (index = 0; index < roots; ++index) {
+ z = cubicRoots[index];
+ /* ... to build two quadric equations */
+ u = z * z - r;
+ v = 2 * z - p;
+ if (approximately_zero_squared(u)) {
+ u = 0;
+ } else if (u > 0) {
+ u = sqrt(u);
+ } else {
+ continue;
+ }
+ if (approximately_zero_squared(v)) {
+ v = 0;
+ } else if (v > 0) {
+ v = sqrt(v);
+ } else {
+ continue;
+ }
+ num = quadraticRootsReal(1, q < 0 ? -v : v, z - u, s);
+ num2 = quadraticRootsReal(1, q < 0 ? v : -v, z + u, s + num);
+ if (!((num | num2) & 1)) {
+ break; // prefer solutions without single quad roots
+ }
}
- if (approximately_zero_squared(v)) {
- v = 0;
- } else if (v > 0) {
- v = sqrt(v);
- } else {
- return 0;
+ num += num2;
+ if (!num) {
+ return 0; // no valid cubic root
}
- num = quadraticRootsX(1, q < 0 ? -v : v, z - u, s);
- num += quadraticRootsX(1, q < 0 ? v : -v, z + u, s + num);
+ }
+ /* resubstitute */
+ const double sub = a / 4;
+ for (int i = 0; i < num; ++i) {
+ s[i] -= sub;
}
// eliminate duplicates
for (int i = 0; i < num - 1; ++i) {
for (int j = i + 1; j < num; ) {
- if (approximately_equal(s[i], s[j])) {
+ if (AlmostEqualUlps(s[i], s[j])) {
if (j < --num) {
s[j] = s[num];
}
@@ -270,10 +188,5 @@ int quarticRoots(const double A, const double B, const double C, const double D,
}
}
}
- /* resubstitute */
- const double sub = a / 4;
- for (int i = 0; i < num; ++i) {
- s[i] -= sub;
- }
return num;
}