aboutsummaryrefslogtreecommitdiffhomepage
path: root/experimental/Intersection/DataTypes.h
diff options
context:
space:
mode:
Diffstat (limited to 'experimental/Intersection/DataTypes.h')
-rw-r--r--experimental/Intersection/DataTypes.h418
1 files changed, 0 insertions, 418 deletions
diff --git a/experimental/Intersection/DataTypes.h b/experimental/Intersection/DataTypes.h
deleted file mode 100644
index 870a6de765..0000000000
--- a/experimental/Intersection/DataTypes.h
+++ /dev/null
@@ -1,418 +0,0 @@
-/*
- * Copyright 2012 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-#ifndef __DataTypes_h__
-#define __DataTypes_h__
-
-#include <float.h> // for FLT_EPSILON
-#include <math.h> // for fabs, sqrt
-
-#include "SkPoint.h"
-
-#define FORCE_RELEASE 0 // set force release to 1 for multiple thread -- no debugging
-#define ONE_OFF_DEBUG 1
-#define ONE_OFF_DEBUG_MATHEMATICA 0
-
-// FIXME: move these into SkTypes.h
-template <typename T> inline T SkTMax(T a, T b) {
- if (a < b)
- a = b;
- return a;
-}
-
-template <typename T> inline T SkTMin(T a, T b) {
- if (a > b)
- a = b;
- return a;
-}
-
-extern bool AlmostEqualUlps(float A, float B);
-inline bool AlmostEqualUlps(double A, double B) { return AlmostEqualUlps((float) A, (float) B); }
-
-// FIXME: delete
-int UlpsDiff(float A, float B);
-
-// FLT_EPSILON == 1.19209290E-07 == 1 / (2 ^ 23)
-// DBL_EPSILON == 2.22045e-16
-const double FLT_EPSILON_CUBED = FLT_EPSILON * FLT_EPSILON * FLT_EPSILON;
-const double FLT_EPSILON_HALF = FLT_EPSILON / 2;
-const double FLT_EPSILON_SQUARED = FLT_EPSILON * FLT_EPSILON;
-const double FLT_EPSILON_SQRT = sqrt(FLT_EPSILON);
-const double FLT_EPSILON_INVERSE = 1 / FLT_EPSILON;
-const double DBL_EPSILON_ERR = DBL_EPSILON * 4; // tune -- allow a few bits of error
-const double ROUGH_EPSILON = FLT_EPSILON * 64;
-const double MORE_ROUGH_EPSILON = FLT_EPSILON * 256;
-
-inline bool approximately_zero(double x) {
- return fabs(x) < FLT_EPSILON;
-}
-
-inline bool precisely_zero(double x) {
- return fabs(x) < DBL_EPSILON_ERR;
-}
-
-inline bool approximately_zero(float x) {
- return fabs(x) < FLT_EPSILON;
-}
-
-inline bool approximately_zero_cubed(double x) {
- return fabs(x) < FLT_EPSILON_CUBED;
-}
-
-inline bool approximately_zero_half(double x) {
- return fabs(x) < FLT_EPSILON_HALF;
-}
-
-inline bool approximately_zero_squared(double x) {
- return fabs(x) < FLT_EPSILON_SQUARED;
-}
-
-inline bool approximately_zero_sqrt(double x) {
- return fabs(x) < FLT_EPSILON_SQRT;
-}
-
-inline bool approximately_zero_inverse(double x) {
- return fabs(x) > FLT_EPSILON_INVERSE;
-}
-
-// FIXME: if called multiple times with the same denom, we want to pass 1/y instead
-inline bool approximately_zero_when_compared_to(double x, double y) {
- return x == 0 || fabs(x / y) < FLT_EPSILON;
-}
-
-// Use this for comparing Ts in the range of 0 to 1. For general numbers (larger and smaller) use
-// AlmostEqualUlps instead.
-inline bool approximately_equal(double x, double y) {
-#if 1
- return approximately_zero(x - y);
-#else
-// see http://visualstudiomagazine.com/blogs/tool-tracker/2011/11/compare-floating-point-numbers.aspx
-// this allows very small (e.g. degenerate) values to compare unequally, but in this case,
-// AlmostEqualUlps should be used instead.
- if (x == y) {
- return true;
- }
- double absY = fabs(y);
- if (x == 0) {
- return absY < FLT_EPSILON;
- }
- double absX = fabs(x);
- if (y == 0) {
- return absX < FLT_EPSILON;
- }
- return fabs(x - y) < (absX > absY ? absX : absY) * FLT_EPSILON;
-#endif
-}
-
-inline bool precisely_equal(double x, double y) {
- return precisely_zero(x - y);
-}
-
-inline bool approximately_equal_half(double x, double y) {
- return approximately_zero_half(x - y);
-}
-
-inline bool approximately_equal_squared(double x, double y) {
- return approximately_equal(x, y);
-}
-
-inline bool approximately_greater(double x, double y) {
- return x - FLT_EPSILON >= y;
-}
-
-inline bool approximately_greater_or_equal(double x, double y) {
- return x + FLT_EPSILON > y;
-}
-
-inline bool approximately_lesser(double x, double y) {
- return x + FLT_EPSILON <= y;
-}
-
-inline bool approximately_lesser_or_equal(double x, double y) {
- return x - FLT_EPSILON < y;
-}
-
-inline double approximately_pin(double x) {
- return approximately_zero(x) ? 0 : x;
-}
-
-inline float approximately_pin(float x) {
- return approximately_zero(x) ? 0 : x;
-}
-
-inline bool approximately_greater_than_one(double x) {
- return x > 1 - FLT_EPSILON;
-}
-
-inline bool precisely_greater_than_one(double x) {
- return x > 1 - DBL_EPSILON_ERR;
-}
-
-inline bool approximately_less_than_zero(double x) {
- return x < FLT_EPSILON;
-}
-
-inline bool precisely_less_than_zero(double x) {
- return x < DBL_EPSILON_ERR;
-}
-
-inline bool approximately_negative(double x) {
- return x < FLT_EPSILON;
-}
-
-inline bool precisely_negative(double x) {
- return x < DBL_EPSILON_ERR;
-}
-
-inline bool approximately_one_or_less(double x) {
- return x < 1 + FLT_EPSILON;
-}
-
-inline bool approximately_positive(double x) {
- return x > -FLT_EPSILON;
-}
-
-inline bool approximately_positive_squared(double x) {
- return x > -(FLT_EPSILON_SQUARED);
-}
-
-inline bool approximately_zero_or_more(double x) {
- return x > -FLT_EPSILON;
-}
-
-inline bool approximately_between(double a, double b, double c) {
- return a <= c ? approximately_negative(a - b) && approximately_negative(b - c)
- : approximately_negative(b - a) && approximately_negative(c - b);
-}
-
-// returns true if (a <= b <= c) || (a >= b >= c)
-inline bool between(double a, double b, double c) {
- SkASSERT(((a <= b && b <= c) || (a >= b && b >= c)) == ((a - b) * (c - b) <= 0));
- return (a - b) * (c - b) <= 0;
-}
-
-inline bool more_roughly_equal(double x, double y) {
- return fabs(x - y) < MORE_ROUGH_EPSILON;
-}
-
-inline bool roughly_equal(double x, double y) {
- return fabs(x - y) < ROUGH_EPSILON;
-}
-
-struct _Point;
-
-struct _Vector {
- double x;
- double y;
-
- friend _Point operator+(const _Point& a, const _Vector& b);
-
- void operator+=(const _Vector& v) {
- x += v.x;
- y += v.y;
- }
-
- void operator-=(const _Vector& v) {
- x -= v.x;
- y -= v.y;
- }
-
- void operator/=(const double s) {
- x /= s;
- y /= s;
- }
-
- void operator*=(const double s) {
- x *= s;
- y *= s;
- }
-
- double cross(const _Vector& a) const {
- return x * a.y - y * a.x;
- }
-
- double dot(const _Vector& a) const {
- return x * a.x + y * a.y;
- }
-
- double length() const {
- return sqrt(lengthSquared());
- }
-
- double lengthSquared() const {
- return x * x + y * y;
- }
-
- SkVector asSkVector() const {
- SkVector v = {SkDoubleToScalar(x), SkDoubleToScalar(y)};
- return v;
- }
-};
-
-struct _Point {
- double x;
- double y;
-
- friend _Vector operator-(const _Point& a, const _Point& b);
-
- void operator+=(const _Vector& v) {
- x += v.x;
- y += v.y;
- }
-
- void operator-=(const _Vector& v) {
- x -= v.x;
- y -= v.y;
- }
-
- friend bool operator==(const _Point& a, const _Point& b) {
- return a.x == b.x && a.y == b.y;
- }
-
- friend bool operator!=(const _Point& a, const _Point& b) {
- return a.x != b.x || a.y != b.y;
- }
-
- // note: this can not be implemented with
- // return approximately_equal(a.y, y) && approximately_equal(a.x, x);
- // because that will not take the magnitude of the values
- bool approximatelyEqual(const _Point& a) const {
- double denom = SkTMax(fabs(x), SkTMax(fabs(y), SkTMax(fabs(a.x), fabs(a.y))));
- if (denom == 0) {
- return true;
- }
- double inv = 1 / denom;
- return approximately_equal(x * inv, a.x * inv) && approximately_equal(y * inv, a.y * inv);
- }
-
- bool approximatelyEqual(const SkPoint& a) const {
- double denom = SkTMax(fabs(x), SkTMax(fabs(y), SkTMax(fabs(a.fX), fabs(a.fY))));
- if (denom == 0) {
- return true;
- }
- double inv = 1 / denom;
- return approximately_equal(x * inv, a.fX * inv) && approximately_equal(y * inv, a.fY * inv);
- }
-
- bool approximatelyEqualHalf(const _Point& a) const {
- double denom = SkTMax(fabs(x), SkTMax(fabs(y), SkTMax(fabs(a.x), fabs(a.y))));
- if (denom == 0) {
- return true;
- }
- double inv = 1 / denom;
- return approximately_equal_half(x * inv, a.x * inv)
- && approximately_equal_half(y * inv, a.y * inv);
- }
-
- bool approximatelyZero() const {
- return approximately_zero(x) && approximately_zero(y);
- }
-
- SkPoint asSkPoint() const {
- SkPoint pt = {SkDoubleToScalar(x), SkDoubleToScalar(y)};
- return pt;
- }
-
- double distance(const _Point& a) const {
- _Vector temp = *this - a;
- return temp.length();
- }
-
- double distanceSquared(const _Point& a) const {
- _Vector temp = *this - a;
- return temp.lengthSquared();
- }
-
- double moreRoughlyEqual(const _Point& a) const {
- return more_roughly_equal(a.y, y) && more_roughly_equal(a.x, x);
- }
-
- double roughlyEqual(const _Point& a) const {
- return roughly_equal(a.y, y) && roughly_equal(a.x, x);
- }
-};
-
-typedef _Point _Line[2];
-typedef _Point Quadratic[3];
-typedef _Point Triangle[3];
-typedef _Point Cubic[4];
-
-struct _Rect {
- double left;
- double top;
- double right;
- double bottom;
-
- void add(const _Point& pt) {
- if (left > pt.x) {
- left = pt.x;
- }
- if (top > pt.y) {
- top = pt.y;
- }
- if (right < pt.x) {
- right = pt.x;
- }
- if (bottom < pt.y) {
- bottom = pt.y;
- }
- }
-
- // FIXME: used by debugging only ?
- bool contains(const _Point& pt) const {
- return approximately_between(left, pt.x, right)
- && approximately_between(top, pt.y, bottom);
- }
-
- bool intersects(_Rect& r) const {
- SkASSERT(left <= right);
- SkASSERT(top <= bottom);
- SkASSERT(r.left <= r.right);
- SkASSERT(r.top <= r.bottom);
- return r.left <= right && left <= r.right && r.top <= bottom && top <= r.bottom;
- }
-
- void set(const _Point& pt) {
- left = right = pt.x;
- top = bottom = pt.y;
- }
-
- void setBounds(const _Line& line) {
- set(line[0]);
- add(line[1]);
- }
-
- void setBounds(const Cubic& );
- void setBounds(const Quadratic& );
- void setRawBounds(const Cubic& );
- void setRawBounds(const Quadratic& );
-};
-
-struct CubicPair {
- const Cubic& first() const { return (const Cubic&) pts[0]; }
- const Cubic& second() const { return (const Cubic&) pts[3]; }
- _Point pts[7];
-};
-
-struct QuadraticPair {
- const Quadratic& first() const { return (const Quadratic&) pts[0]; }
- const Quadratic& second() const { return (const Quadratic&) pts[2]; }
- _Point pts[5];
-};
-
-// FIXME: move these into SkFloatingPoint.h
-#include "SkFloatingPoint.h"
-
-#define sk_double_isnan(a) sk_float_isnan(a)
-
-// FIXME: move these to debugging file
-#ifdef SK_DEBUG
-void mathematica_ize(char* str, size_t bufferSize);
-bool valid_wind(int winding);
-void winding_printf(int winding);
-#endif
-
-#endif // __DataTypes_h__