diff options
-rw-r--r-- | samplecode/SampleCCPRGeometry.cpp | 33 | ||||
-rw-r--r-- | src/gpu/ccpr/GrCCCoverageProcessor.cpp | 119 | ||||
-rw-r--r-- | src/gpu/ccpr/GrCCCoverageProcessor.h | 45 | ||||
-rw-r--r-- | src/gpu/ccpr/GrCCCoverageProcessor_GSImpl.cpp | 89 | ||||
-rw-r--r-- | src/gpu/ccpr/GrCCCoverageProcessor_VSImpl.cpp | 199 | ||||
-rw-r--r-- | src/gpu/ccpr/GrCCCubicShader.cpp | 118 | ||||
-rw-r--r-- | src/gpu/ccpr/GrCCCubicShader.h | 30 | ||||
-rw-r--r-- | src/gpu/ccpr/GrCCPathParser.cpp | 4 | ||||
-rw-r--r-- | src/gpu/ccpr/GrCCQuadraticShader.cpp | 118 | ||||
-rw-r--r-- | src/gpu/ccpr/GrCCQuadraticShader.h | 43 | ||||
-rw-r--r-- | src/gpu/ccpr/GrCCTriangleShader.cpp | 6 | ||||
-rw-r--r-- | src/gpu/ccpr/GrCCTriangleShader.h | 6 |
12 files changed, 285 insertions, 525 deletions
diff --git a/samplecode/SampleCCPRGeometry.cpp b/samplecode/SampleCCPRGeometry.cpp index a90ece09a1..2a7d6640a6 100644 --- a/samplecode/SampleCCPRGeometry.cpp +++ b/samplecode/SampleCCPRGeometry.cpp @@ -32,10 +32,6 @@ using RenderPass = GrCCCoverageProcessor::RenderPass; static constexpr float kDebugBloat = 40; -static int is_quadratic(RenderPass pass) { - return pass == RenderPass::kQuadratics || pass == RenderPass::kQuadraticCorners; -} - /** * This sample visualizes the AA bloat geometry generated by the ccpr geometry shaders. It * increases the AA bloat by 50x and outputs color instead of coverage (coverage=+1 -> green, @@ -119,14 +115,13 @@ static void draw_klm_line(int w, int h, SkCanvas* canvas, const SkScalar line[3] } void CCPRGeometryView::onDrawContent(SkCanvas* canvas) { - SkAutoCanvasRestore acr(canvas, true); - canvas->setMatrix(SkMatrix::I()); + canvas->clear(SK_ColorBLACK); SkPath outline; outline.moveTo(fPoints[0]); - if (GrCCCoverageProcessor::RenderPassIsCubic(fRenderPass)) { + if (RenderPass::kCubics == fRenderPass) { outline.cubicTo(fPoints[1], fPoints[2], fPoints[3]); - } else if (is_quadratic(fRenderPass)) { + } else if (RenderPass::kQuadratics == fRenderPass) { outline.quadTo(fPoints[1], fPoints[3]); } else { outline.lineTo(fPoints[1]); @@ -135,7 +130,7 @@ void CCPRGeometryView::onDrawContent(SkCanvas* canvas) { } SkPaint outlinePaint; - outlinePaint.setColor(0x30000000); + outlinePaint.setColor(0x80ffffff); outlinePaint.setStyle(SkPaint::kStroke_Style); outlinePaint.setStrokeWidth(0); outlinePaint.setAntiAlias(true); @@ -159,7 +154,7 @@ void CCPRGeometryView::onDrawContent(SkCanvas* canvas) { if (GrRenderTargetContext* rtc = canvas->internal_private_accessTopLayerRenderTargetContext()) { rtc->priv().testingOnly_addDrawOp(skstd::make_unique<Op>(this)); caption.appendf("RenderPass_%s", GrCCCoverageProcessor::RenderPassName(fRenderPass)); - if (GrCCCoverageProcessor::RenderPassIsCubic(fRenderPass)) { + if (RenderPass::kCubics == fRenderPass) { caption.appendf(" (%s)", SkCubicTypeName(fCubicType)); } } else { @@ -171,7 +166,7 @@ void CCPRGeometryView::onDrawContent(SkCanvas* canvas) { pointsPaint.setStrokeWidth(8); pointsPaint.setAntiAlias(true); - if (GrCCCoverageProcessor::RenderPassIsCubic(fRenderPass)) { + if (RenderPass::kCubics == fRenderPass) { int w = this->width(), h = this->height(); canvas->drawPoints(SkCanvas::kPoints_PointMode, 4, fPoints, pointsPaint); draw_klm_line(w, h, canvas, &fCubicKLM[0], SK_ColorYELLOW); @@ -184,7 +179,7 @@ void CCPRGeometryView::onDrawContent(SkCanvas* canvas) { SkPaint captionPaint; captionPaint.setTextSize(20); - captionPaint.setColor(SK_ColorBLACK); + captionPaint.setColor(SK_ColorWHITE); captionPaint.setAntiAlias(true); canvas->drawText(caption.c_str(), caption.size(), 10, 30, captionPaint); } @@ -193,7 +188,7 @@ void CCPRGeometryView::updateGpuData() { fTriPointInstances.reset(); fQuadPointInstances.reset(); - if (GrCCCoverageProcessor::RenderPassIsCubic(fRenderPass)) { + if (RenderPass::kCubics == fRenderPass) { double t[2], s[2]; fCubicType = GrPathUtils::getCubicKLM(fPoints, &fCubicKLM, t, s); GrCCGeometry geometry; @@ -217,7 +212,7 @@ void CCPRGeometryView::updateGpuData() { continue; } } - } else if (is_quadratic(fRenderPass)) { + } else if (RenderPass::kQuadratics == fRenderPass) { GrCCGeometry geometry; geometry.beginContour(fPoints[0]); geometry.quadraticTo(fPoints[1], fPoints[3]); @@ -254,7 +249,7 @@ void CCPRGeometryView::Op::onExecute(GrOpFlushState* state) { SkDEBUGCODE(proc.enableDebugVisualizations(kDebugBloat)); SkSTArray<1, GrMesh> mesh; - if (GrCCCoverageProcessor::RenderPassIsCubic(fView->fRenderPass)) { + if (RenderPass::kCubics == fView->fRenderPass) { sk_sp<GrBuffer> instBuff(rp->createBuffer( fView->fQuadPointInstances.count() * sizeof(QuadPointInstance), kVertex_GrBufferType, kDynamic_GrAccessPattern, @@ -275,11 +270,11 @@ void CCPRGeometryView::Op::onExecute(GrOpFlushState* state) { } GrPipeline pipeline(state->drawOpArgs().fProxy, GrPipeline::ScissorState::kDisabled, - SkBlendMode::kSrcOver); + SkBlendMode::kPlus); if (glGpu) { glGpu->handleDirtyContext(); - GR_GL_CALL(glGpu->glInterface(), PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_LINE)); + // GR_GL_CALL(glGpu->glInterface(), PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_LINE)); GR_GL_CALL(glGpu->glInterface(), Enable(GR_GL_LINE_SMOOTH)); } @@ -318,7 +313,7 @@ private: SkView::Click* CCPRGeometryView::onFindClickHandler(SkScalar x, SkScalar y, unsigned) { for (int i = 0; i < 4; ++i) { - if (!GrCCCoverageProcessor::RenderPassIsCubic(fRenderPass) && 2 == i) { + if (RenderPass::kCubics != fRenderPass && 2 == i) { continue; } if (fabs(x - fPoints[i].x()) < 20 && fabsf(y - fPoints[i].y()) < 20) { @@ -342,7 +337,7 @@ bool CCPRGeometryView::onQuery(SkEvent* evt) { } SkUnichar unichar; if (SampleCode::CharQ(*evt, &unichar)) { - if (unichar >= '1' && unichar <= '6') { + if (unichar >= '1' && unichar <= '4') { fRenderPass = RenderPass(unichar - '1'); this->updateAndInval(); return true; diff --git a/src/gpu/ccpr/GrCCCoverageProcessor.cpp b/src/gpu/ccpr/GrCCCoverageProcessor.cpp index 686ab5514d..76ca8f562e 100644 --- a/src/gpu/ccpr/GrCCCoverageProcessor.cpp +++ b/src/gpu/ccpr/GrCCCoverageProcessor.cpp @@ -15,35 +15,59 @@ #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLVertexGeoBuilder.h" +void GrCCCoverageProcessor::getGLSLProcessorKey(const GrShaderCaps&, + GrProcessorKeyBuilder* b) const { + int key = (int)fRenderPass << 2; + if (WindMethod::kInstanceData == fWindMethod) { + key |= 2; + } + if (Impl::kVertexShader == fImpl) { + key |= 1; + } +#ifdef SK_DEBUG + uint32_t bloatBits; + memcpy(&bloatBits, &fDebugBloat, 4); + b->add32(bloatBits); +#endif + b->add32(key); +} + +GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createGLSLInstance(const GrShaderCaps&) const { + std::unique_ptr<Shader> shader; + switch (fRenderPass) { + case RenderPass::kTriangles: + shader = skstd::make_unique<GrCCTriangleShader>(); + break; + case RenderPass::kTriangleCorners: + shader = skstd::make_unique<GrCCTriangleCornerShader>(); + break; + case RenderPass::kQuadratics: + shader = skstd::make_unique<GrCCQuadraticShader>(); + break; + case RenderPass::kCubics: + shader = skstd::make_unique<GrCCCubicShader>(); + break; + } + return Impl::kGeometryShader == fImpl ? this->createGSImpl(std::move(shader)) + : this->createVSImpl(std::move(shader)); +} + void GrCCCoverageProcessor::Shader::emitFragmentCode(const GrCCCoverageProcessor& proc, GrGLSLFPFragmentBuilder* f, const char* skOutputColor, const char* skOutputCoverage) const { f->codeAppendf("half coverage = 0;"); - this->onEmitFragmentCode(f, "coverage"); + this->onEmitFragmentCode(proc, f, "coverage"); f->codeAppendf("%s.a = coverage;", skOutputColor); f->codeAppendf("%s = half4(1);", skOutputCoverage); #ifdef SK_DEBUG if (proc.debugVisualizationsEnabled()) { - f->codeAppendf("%s = half4(-%s.a, %s.a, 0, 1);", - skOutputColor, skOutputColor, skOutputColor); + f->codeAppendf("%s = half4(-%s.a, %s.a, 0, abs(%s.a));", + skOutputColor, skOutputColor, skOutputColor, skOutputColor); } #endif } -void GrCCCoverageProcessor::Shader::EmitEdgeDistanceEquation(GrGLSLVertexGeoBuilder* s, - const char* leftPt, - const char* rightPt, - const char* outputDistanceEquation) { - s->codeAppendf("float2 n = float2(%s.y - %s.y, %s.x - %s.x);", - rightPt, leftPt, leftPt, rightPt); - s->codeAppend ("float nwidth = (abs(n.x) + abs(n.y)) * (bloat * 2);"); - // When nwidth=0, wind must also be 0 (and coverage * wind = 0). So it doesn't matter what we - // come up with here as long as it isn't NaN or Inf. - s->codeAppend ("n /= (0 != nwidth) ? nwidth : 1;"); - s->codeAppendf("%s = float3(-n, dot(n, %s) - .5);", outputDistanceEquation, leftPt); -} - void GrCCCoverageProcessor::Shader::CalcEdgeCoverageAtBloatVertex(GrGLSLVertexGeoBuilder* s, const char* leftPt, const char* rightPt, @@ -78,66 +102,3 @@ void GrCCCoverageProcessor::Shader::CalcEdgeCoverageAtBloatVertex(GrGLSLVertexGe // GPU divides by multiplying by the reciprocal?) It also guards against NaN when nwidth=0. s->codeAppendf("%s = (abs(t) != nwidth ? t / nwidth : sign(t)) * -.5 - .5;", outputCoverage); } - -int GrCCCoverageProcessor::Shader::DefineSoftSampleLocations(GrGLSLFPFragmentBuilder* f, - const char* samplesName) { - // Standard DX11 sample locations. -#if defined(SK_BUILD_FOR_ANDROID) || defined(SK_BUILD_FOR_IOS) - f->defineConstant("float2[8]", samplesName, "float2[8](" - "float2(+1, -3)/16, float2(-1, +3)/16, float2(+5, +1)/16, float2(-3, -5)/16, " - "float2(-5, +5)/16, float2(-7, -1)/16, float2(+3, +7)/16, float2(+7, -7)/16." - ")"); - return 8; -#else - f->defineConstant("float2[16]", samplesName, "float2[16](" - "float2(+1, +1)/16, float2(-1, -3)/16, float2(-3, +2)/16, float2(+4, -1)/16, " - "float2(-5, -2)/16, float2(+2, +5)/16, float2(+5, +3)/16, float2(+3, -5)/16, " - "float2(-2, +6)/16, float2( 0, -7)/16, float2(-4, -6)/16, float2(-6, +4)/16, " - "float2(-8, 0)/16, float2(+7, -4)/16, float2(+6, +7)/16, float2(-7, -8)/16." - ")"); - return 16; -#endif -} - -void GrCCCoverageProcessor::getGLSLProcessorKey(const GrShaderCaps&, - GrProcessorKeyBuilder* b) const { - int key = (int)fRenderPass << 2; - if (WindMethod::kInstanceData == fWindMethod) { - key |= 2; - } - if (Impl::kVertexShader == fImpl) { - key |= 1; - } -#ifdef SK_DEBUG - uint32_t bloatBits; - memcpy(&bloatBits, &fDebugBloat, 4); - b->add32(bloatBits); -#endif - b->add32(key); -} - -GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createGLSLInstance(const GrShaderCaps&) const { - std::unique_ptr<Shader> shader; - switch (fRenderPass) { - case RenderPass::kTriangles: - shader = skstd::make_unique<GrCCTriangleShader>(); - break; - case RenderPass::kTriangleCorners: - shader = skstd::make_unique<GrCCTriangleCornerShader>(); - break; - case RenderPass::kQuadratics: - shader = skstd::make_unique<GrCCQuadraticHullShader>(); - break; - case RenderPass::kQuadraticCorners: - shader = skstd::make_unique<GrCCQuadraticCornerShader>(); - break; - case RenderPass::kCubics: - shader = skstd::make_unique<GrCCCubicHullShader>(); - break; - case RenderPass::kCubicCorners: - shader = skstd::make_unique<GrCCCubicCornerShader>(); - break; - } - return Impl::kGeometryShader == fImpl ? this->createGSImpl(std::move(shader)) - : this->createVSImpl(std::move(shader)); -} diff --git a/src/gpu/ccpr/GrCCCoverageProcessor.h b/src/gpu/ccpr/GrCCCoverageProcessor.h index c1f85993a1..7db424e219 100644 --- a/src/gpu/ccpr/GrCCCoverageProcessor.h +++ b/src/gpu/ccpr/GrCCCoverageProcessor.h @@ -53,20 +53,15 @@ public: void set(const SkPoint[4], float dx, float dy); void set(const SkPoint&, const SkPoint&, const SkPoint&, const Sk2f& trans, float w); }; - - // All primitive shapes (triangles and closed, convex bezier curves) require two - // render passes: One to draw a rough outline of the shape, and a second pass to touch up the - // corners. Here we enumerate every render pass needed in order to produce a complete - // coverage count mask. This is an exhaustive list of all ccpr coverage shaders. + // Here we enumerate every render pass needed in order to produce a complete coverage count + // mask. Triangles require two render passes: One to draw a rough outline, and a second pass to + // touch up the corners. This is an exhaustive list of all ccpr coverage shaders. enum class RenderPass { kTriangles, kTriangleCorners, kQuadratics, - kQuadraticCorners, kCubics, - kCubicCorners }; - static bool RenderPassIsCubic(RenderPass); static const char* RenderPassName(RenderPass); enum class WindMethod : bool { @@ -152,13 +147,6 @@ public: void emitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*, const char* skOutputColor, const char* skOutputCoverage) const; - // Defines an equation ("dot(float3(pt, 1), distance_equation)") that is -1 on the outside - // border of a conservative raster edge and 0 on the inside. 'leftPt' and 'rightPt' must be - // ordered clockwise. - static void EmitEdgeDistanceEquation(GrGLSLVertexGeoBuilder*, const char* leftPt, - const char* rightPt, - const char* outputDistanceEquation); - // Calculates an edge's coverage at a conservative raster vertex. The edge is defined by two // clockwise-ordered points, 'leftPt' and 'rightPt'. 'rasterVertexDir' is a pair of +/-1 // values that point in the direction of conservative raster bloat, starting from an @@ -181,7 +169,7 @@ public: const char* wind) = 0; // Emits the fragment code that calculates a pixel's signed coverage value. - virtual void onEmitFragmentCode(GrGLSLFPFragmentBuilder*, + virtual void onEmitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*, const char* outputCoverage) const = 0; // Returns the name of a Shader's internal varying at the point where where its value is @@ -191,12 +179,6 @@ public: SkASSERT(Scope::kVertToGeo != varying.scope()); return Scope::kGeoToFrag == varying.scope() ? varying.gsOut() : varying.vsOut(); } - - // Defines a global float2 array that contains MSAA sample locations as offsets from pixel - // center. Subclasses can use this for software multisampling. - // - // Returns the number of samples. - static int DefineSoftSampleLocations(GrGLSLFPFragmentBuilder* f, const char* samplesName); }; class GSImpl; @@ -208,7 +190,7 @@ private: static constexpr float kAABloatRadius = 0.491111f; // Number of bezier points for curves, or 3 for triangles. - int numInputPoints() const { return RenderPassIsCubic(fRenderPass) ? 4 : 3; } + int numInputPoints() const { return RenderPass::kCubics == fRenderPass ? 4 : 3; } enum class Impl : bool { kGeometryShader, @@ -269,29 +251,12 @@ inline void GrCCCoverageProcessor::QuadPointInstance::set(const SkPoint& p0, con Sk2f::Store4(this, P0, P1, P2, W); } -inline bool GrCCCoverageProcessor::RenderPassIsCubic(RenderPass pass) { - switch (pass) { - case RenderPass::kTriangles: - case RenderPass::kTriangleCorners: - case RenderPass::kQuadratics: - case RenderPass::kQuadraticCorners: - return false; - case RenderPass::kCubics: - case RenderPass::kCubicCorners: - return true; - } - SK_ABORT("Invalid RenderPass"); - return false; -} - inline const char* GrCCCoverageProcessor::RenderPassName(RenderPass pass) { switch (pass) { case RenderPass::kTriangles: return "kTriangles"; case RenderPass::kTriangleCorners: return "kTriangleCorners"; case RenderPass::kQuadratics: return "kQuadratics"; - case RenderPass::kQuadraticCorners: return "kQuadraticCorners"; case RenderPass::kCubics: return "kCubics"; - case RenderPass::kCubicCorners: return "kCubicCorners"; } SK_ABORT("Invalid RenderPass"); return ""; diff --git a/src/gpu/ccpr/GrCCCoverageProcessor_GSImpl.cpp b/src/gpu/ccpr/GrCCCoverageProcessor_GSImpl.cpp index d9febc0e66..e64b8c0838 100644 --- a/src/gpu/ccpr/GrCCCoverageProcessor_GSImpl.cpp +++ b/src/gpu/ccpr/GrCCCoverageProcessor_GSImpl.cpp @@ -76,7 +76,7 @@ protected: SkSTArray<2, GrShaderVar> emitArgs; const char* position = emitArgs.emplace_back("position", kFloat2_GrSLType).c_str(); const char* coverage = nullptr; - if (RenderPass::kTriangles == proc.fRenderPass) { + if (RenderPass::kTriangleCorners != proc.fRenderPass) { coverage = emitArgs.emplace_back("coverage", kHalf_GrSLType).c_str(); } g->emitFunction(kVoid_GrSLType, "emitVertex", emitArgs.count(), emitArgs.begin(), [&]() { @@ -212,7 +212,8 @@ public: }; /** - * Generates a conservative raster around a convex quadrilateral that encloses a cubic or quadratic. + * Generates a conservative raster hull around a convex quadrilateral that encloses a cubic or + * quadratic, as well as its shared edge. */ class GSHull4Impl : public GrCCCoverageProcessor::GSImpl { public: @@ -231,54 +232,85 @@ public: // Visualize the input (convex) quadrilateral as a square. Paying special attention to wind, // we can identify the points by their corresponding corner. // - // NOTE: We split the square down the diagonal from top-right to bottom-left, and generate - // the hull in two independent invocations. Each invocation designates the corner it will - // begin with as top-left. - g->codeAppend ("int i = sk_InvocationID * 2;"); + // NOTE: For the hull we split the square down the diagonal from top-right to bottom-left, + // and generate it in two independent invocations. All invocations, including the shared + // edge, designate the corner they will begin with as top-left. + g->codeAppendf("bool is_shared_edge = (2 == sk_InvocationID);"); + g->codeAppendf("int i = !is_shared_edge ? sk_InvocationID * 2 : (%s > 0 ? 3 : 0);", + wind.c_str()); g->codeAppendf("float2 topleft = %s[i];", hullPts); - g->codeAppendf("float2 topright = %s[%s > 0 ? i + 1 : 3 - i];", hullPts, wind.c_str()); - g->codeAppendf("float2 bottomleft = %s[%s > 0 ? 3 - i : i + 1];", hullPts, wind.c_str()); - g->codeAppendf("float2 bottomright = %s[2 - i];", hullPts); + g->codeAppendf("float2 topright = %s[(i + (%s > 0 ? 1 : 3)) & 3];", hullPts, wind.c_str()); + g->codeAppendf("float2 bottomleft = %s[(i + (%s > 0 ? 3 : 1)) & 3];", + hullPts, wind.c_str()); + g->codeAppendf("float2 bottomright = %s[(i + 2) & 3];", hullPts); // Determine how much to outset the conservative raster hull from the relevant edges. - g->codeAppend ("float2 leftbloat = float2(topleft.y > bottomleft.y ? +bloat : -bloat, " - "topleft.x > bottomleft.x ? -bloat : bloat);"); - g->codeAppend ("float2 upbloat = float2(topright.y > topleft.y ? +bloat : -bloat, " - "topright.x > topleft.x ? -bloat : +bloat);"); - g->codeAppend ("float2 rightbloat = float2(bottomright.y > topright.y ? +bloat : -bloat, " - "bottomright.x > topright.x ? -bloat : +bloat);"); + g->codeAppend ("float2 leftbloat = sign(topleft - bottomleft) * bloat;"); + g->codeAppend ("leftbloat = float2(0 != leftbloat.y ? leftbloat.y : leftbloat.x, " + "0 != leftbloat.x ? -leftbloat.x : -leftbloat.y);"); + + g->codeAppend ("float2 upbloat = sign(topright - topleft) * bloat;"); + g->codeAppend ("upbloat = float2(0 != upbloat.y ? upbloat.y : upbloat.x, " + "0 != upbloat.x ? -upbloat.x : -upbloat.y);"); + + g->codeAppend ("float2 rightbloat = sign(bottomright - topright) * bloat;"); + g->codeAppend ("rightbloat = float2(0 != rightbloat.y ? rightbloat.y : rightbloat.x, " + "0 != rightbloat.x ? -rightbloat.x : -rightbloat.y);"); + + // The hull raster has a coverage of +1 all around. + g->codeAppend ("half2 coverages = half2(+1);"); + + g->codeAppend ("if (is_shared_edge) {"); + // On bloat vertices along the shared edge that fall outside the input + // points, ramp coverage to 0. We do this by using coverage=-1 to erase + // what the hull just wrote. + g->codeAppend ( "coverages = half2(-1, 0);"); + // Reassign bloats to characterize a conservative raster around just the + // shared edge, rather than the entire hull. + g->codeAppend ( "leftbloat = rightbloat = -upbloat;"); + g->codeAppend ("}"); // Here we generate the conservative raster geometry. It is the convex hull of 4 pixel-size // boxes centered on the input points, split evenly between two invocations. This translates // to a polygon with either one, two, or three vertices at each input point, depending on - // how sharp the corner is. For more details on conservative raster, see: + // how sharp the corner is. The shared edge raster is the convex hull of 2 pixel-size boxes, + // one at each endpoint. For more details on conservative raster, see: // https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter42.html g->codeAppendf("bool2 left_up_notequal = notEqual(leftbloat, upbloat);"); g->codeAppend ("if (all(left_up_notequal)) {"); // The top-left corner will have three conservative raster vertices. // Emit the middle one first to the triangle strip. - g->codeAppendf( "%s(topleft + float2(-leftbloat.y, leftbloat.x));", emitVertexFn); + g->codeAppendf( "%s(topleft + float2(-leftbloat.y, leftbloat.x), coverages[0]);", + emitVertexFn); g->codeAppend ("}"); g->codeAppend ("if (any(left_up_notequal)) {"); // Second conservative raster vertex for the top-left corner. - g->codeAppendf( "%s(topleft + leftbloat);", emitVertexFn); + g->codeAppendf( "%s(topleft + leftbloat, coverages[1]);", emitVertexFn); g->codeAppend ("}"); - // Main interior body of this invocation's half of the hull. - g->codeAppendf("%s(topleft + upbloat);", emitVertexFn); - g->codeAppendf("%s(bottomleft + leftbloat);", emitVertexFn); - g->codeAppendf("%s(topright + upbloat);", emitVertexFn); + g->codeAppendf("%s(topleft + upbloat, coverages[0]);", emitVertexFn); + + g->codeAppend ("if (!is_shared_edge) {"); + // Main interior body of this invocation's half of the hull. + g->codeAppendf( "%s(bottomleft + leftbloat, +1);", emitVertexFn); + g->codeAppend ("}"); + + g->codeAppendf("%s(topright + (is_shared_edge ? rightbloat : upbloat), coverages[1]);", + emitVertexFn); // Remaining two conservative raster vertices for the top-right corner. g->codeAppendf("bool2 up_right_notequal = notEqual(upbloat, rightbloat);"); g->codeAppend ("if (any(up_right_notequal)) {"); - g->codeAppendf( "%s(topright + rightbloat);", emitVertexFn); + g->codeAppendf( "%s(topright + (is_shared_edge ? upbloat : rightbloat), " + "coverages[0]);", emitVertexFn); g->codeAppend ("}"); g->codeAppend ("if (all(up_right_notequal)) {"); - g->codeAppendf( "%s(topright + float2(-upbloat.y, upbloat.x));", emitVertexFn); + g->codeAppendf( "%s(topright + float2(-upbloat.y, upbloat.x), coverages[0]);", + emitVertexFn); g->codeAppend ("}"); - g->configure(InputType::kLines, OutputType::kTriangleStrip, 7, 2); + // 3 invocations: 2 hull invocations and 1 shared edge. + g->configure(InputType::kLines, OutputType::kTriangleStrip, 7, 3); } }; @@ -312,17 +344,15 @@ private: void GrCCCoverageProcessor::initGS() { SkASSERT(Impl::kGeometryShader == fImpl); - if (RenderPassIsCubic(fRenderPass) || WindMethod::kInstanceData == fWindMethod) { + if (RenderPass::kCubics == fRenderPass || WindMethod::kInstanceData == fWindMethod) { SkASSERT(WindMethod::kCrossProduct == fWindMethod || 3 == this->numInputPoints()); this->addVertexAttrib("x_or_y_values", kFloat4_GrVertexAttribType); SkASSERT(sizeof(QuadPointInstance) == this->getVertexStride() * 2); SkASSERT(offsetof(QuadPointInstance, fY) == this->getVertexStride()); - GR_STATIC_ASSERT(0 == offsetof(QuadPointInstance, fX)); } else { this->addVertexAttrib("x_or_y_values", kFloat3_GrVertexAttribType); SkASSERT(sizeof(TriPointInstance) == this->getVertexStride() * 2); SkASSERT(offsetof(TriPointInstance, fY) == this->getVertexStride()); - GR_STATIC_ASSERT(0 == offsetof(TriPointInstance, fX)); } this->setWillUseGeoShader(); } @@ -348,9 +378,6 @@ GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createGSImpl(std::unique_ptr<Sh case RenderPass::kQuadratics: case RenderPass::kCubics: return new GSHull4Impl(std::move(shadr)); - case RenderPass::kQuadraticCorners: - case RenderPass::kCubicCorners: - return new GSCornerImpl(std::move(shadr), 2); } SK_ABORT("Invalid RenderPass"); return nullptr; diff --git a/src/gpu/ccpr/GrCCCoverageProcessor_VSImpl.cpp b/src/gpu/ccpr/GrCCCoverageProcessor_VSImpl.cpp index 144a4a5d58..08398e1900 100644 --- a/src/gpu/ccpr/GrCCCoverageProcessor_VSImpl.cpp +++ b/src/gpu/ccpr/GrCCCoverageProcessor_VSImpl.cpp @@ -92,13 +92,13 @@ protected: static constexpr int kVertexData_LeftNeighborIdShift = 9; static constexpr int kVertexData_RightNeighborIdShift = 7; static constexpr int kVertexData_BloatIdxShift = 5; -static constexpr int kVertexData_InvertCoverageBit = 1 << 4; +static constexpr int kVertexData_InvertNegativeCoverageBit = 1 << 4; static constexpr int kVertexData_IsEdgeBit = 1 << 3; static constexpr int kVertexData_IsHullBit = 1 << 2; /** * Vertex data tells the shader how to offset vertices for conservative raster, and how/whether to - * calculate initial coverage values for edges. See VSHullAndEdgeImpl. + * calculate coverage values. See VSHullAndEdgeImpl. */ static constexpr int32_t pack_vertex_data(int32_t leftNeighborID, int32_t rightNeighborID, int32_t bloatIdx, int32_t cornerID, @@ -114,15 +114,12 @@ static constexpr int32_t hull_vertex_data(int32_t cornerID, int32_t bloatIdx, in kVertexData_IsHullBit); } -static constexpr int32_t edge_vertex_data(int32_t edgeID, int32_t endptIdx, int32_t bloatIdx, - int n) { - return pack_vertex_data(0 == endptIdx ? (edgeID + 1) % n : edgeID, - 0 == endptIdx ? (edgeID + 1) % n : edgeID, - bloatIdx, 0 == endptIdx ? edgeID : (edgeID + 1) % n, - kVertexData_IsEdgeBit | - (!endptIdx ? kVertexData_InvertCoverageBit : 0)); +static constexpr int32_t edge_vertex_data(int32_t leftID, int rightID, int32_t bloatIdx, + int32_t extraData = 0) { + return pack_vertex_data(leftID, leftID, bloatIdx, rightID, kVertexData_IsEdgeBit | extraData); } + static constexpr int32_t kHull3AndEdgeVertices[] = { hull_vertex_data(0, 0, 3), hull_vertex_data(0, 1, 3), @@ -134,26 +131,26 @@ static constexpr int32_t kHull3AndEdgeVertices[] = { hull_vertex_data(2, 1, 3), hull_vertex_data(2, 2, 3), - edge_vertex_data(0, 0, 0, 3), - edge_vertex_data(0, 0, 1, 3), - edge_vertex_data(0, 0, 2, 3), - edge_vertex_data(0, 1, 0, 3), - edge_vertex_data(0, 1, 1, 3), - edge_vertex_data(0, 1, 2, 3), - - edge_vertex_data(1, 0, 0, 3), - edge_vertex_data(1, 0, 1, 3), - edge_vertex_data(1, 0, 2, 3), - edge_vertex_data(1, 1, 0, 3), - edge_vertex_data(1, 1, 1, 3), - edge_vertex_data(1, 1, 2, 3), - - edge_vertex_data(2, 0, 0, 3), - edge_vertex_data(2, 0, 1, 3), - edge_vertex_data(2, 0, 2, 3), - edge_vertex_data(2, 1, 0, 3), - edge_vertex_data(2, 1, 1, 3), - edge_vertex_data(2, 1, 2, 3), + edge_vertex_data(0, 1, 0), + edge_vertex_data(0, 1, 1), + edge_vertex_data(0, 1, 2), + edge_vertex_data(1, 0, 0, kVertexData_InvertNegativeCoverageBit), + edge_vertex_data(1, 0, 1, kVertexData_InvertNegativeCoverageBit), + edge_vertex_data(1, 0, 2, kVertexData_InvertNegativeCoverageBit), + + edge_vertex_data(1, 2, 0), + edge_vertex_data(1, 2, 1), + edge_vertex_data(1, 2, 2), + edge_vertex_data(2, 1, 0, kVertexData_InvertNegativeCoverageBit), + edge_vertex_data(2, 1, 1, kVertexData_InvertNegativeCoverageBit), + edge_vertex_data(2, 1, 2, kVertexData_InvertNegativeCoverageBit), + + edge_vertex_data(2, 0, 0), + edge_vertex_data(2, 0, 1), + edge_vertex_data(2, 0, 2), + edge_vertex_data(0, 2, 0, kVertexData_InvertNegativeCoverageBit), + edge_vertex_data(0, 2, 1, kVertexData_InvertNegativeCoverageBit), + edge_vertex_data(0, 2, 2, kVertexData_InvertNegativeCoverageBit), }; GR_DECLARE_STATIC_UNIQUE_KEY(gHull3AndEdgeVertexBufferKey); @@ -201,7 +198,7 @@ static constexpr uint16_t kHull3AndEdgeIndicesAsTris[] = { GR_DECLARE_STATIC_UNIQUE_KEY(gHull3AndEdgeIndexBufferKey); -static constexpr int32_t kHull4Vertices[] = { +static constexpr int32_t kHull4AndEdgeVertices[] = { hull_vertex_data(0, 0, 4), hull_vertex_data(0, 1, 4), hull_vertex_data(0, 2, 4), @@ -215,17 +212,23 @@ static constexpr int32_t kHull4Vertices[] = { hull_vertex_data(3, 1, 4), hull_vertex_data(3, 2, 4), - // No edges for now (beziers don't use edges). + edge_vertex_data(0, 3, 0, kVertexData_InvertNegativeCoverageBit), + edge_vertex_data(0, 3, 1), + edge_vertex_data(0, 3, 2), + edge_vertex_data(3, 0, 0), + edge_vertex_data(3, 0, 1), + edge_vertex_data(3, 0, 2, kVertexData_InvertNegativeCoverageBit), }; -GR_DECLARE_STATIC_UNIQUE_KEY(gHull4VertexBufferKey); +GR_DECLARE_STATIC_UNIQUE_KEY(gHull4AndEdgeVertexBufferKey); -static constexpr uint16_t kHull4IndicesAsStrips[] = { +static constexpr uint16_t kHull4AndEdgeIndicesAsStrips[] = { 1, 0, 2, 11, 3, 5, 4, kRestartStrip, // First half of the hull (split diagonally). - 7, 6, 8, 5, 9, 11, 10 // Second half of the hull. + 7, 6, 8, 5, 9, 11, 10, kRestartStrip, // Second half of the hull. + 13, 12, 14, 17, 15, 16 // Shared edge. }; -static constexpr uint16_t kHull4IndicesAsTris[] = { +static constexpr uint16_t kHull4AndEdgeIndicesAsTris[] = { // First half of the hull (split diagonally). 1, 0, 2, 0, 11, 2, @@ -239,23 +242,30 @@ static constexpr uint16_t kHull4IndicesAsTris[] = { 8, 5, 9, 5, 11, 9, 9, 11, 10, + + // Shared edge. + 13, 12, 14, + 12, 17, 14, + 14, 17, 15, + 17, 16, 15, }; -GR_DECLARE_STATIC_UNIQUE_KEY(gHull4IndexBufferKey); +GR_DECLARE_STATIC_UNIQUE_KEY(gHull4AndEdgeIndexBufferKey); /** - * Generates a conservative raster hull around a convex polygon. For triangles we generate - * additional conservative rasters around the edges and calculate coverage ramps. + * Generates a conservative raster hull around a triangle or curve. For triangles we generate + * additional conservative rasters with coverage ramps around the edges. For curves we + * generate an additional raster with coverage ramps around its shared edge. * - * Triangle rough outlines are drawn in two steps: (1) draw a conservative raster of the entire - * triangle, with a coverage of +1, and (2) draw conservative rasters around each edge, with a + * Triangle rough outlines are drawn in two steps: (1) Draw a conservative raster of the entire + * triangle, with a coverage of +1. (2) Draw conservative rasters around each edge, with a * coverage ramp from -1 to 0. These edge coverage values convert jagged conservative raster edges - * into smooth, antialiased ones. + * into smooth, antialiased ones. The final corners get touched up in a later step by VSCornerImpl. * - * Curve rough outlines are just the conservative raster of a convex quadrilateral that encloses the - * curve. The Shader takes care of everything else for now. - * - * The final corners get touched up in a later step by VSCornerImpl. + * Curves are drawn in two steps: (1) Draw a conservative raster around the input points, passing + * coverage=+1 to the Shader. (2) Draw an additional conservative raster around the curve's shared + * edge, using coverage=-1 at bloat vertices that fall outside the input points. This erases what + * the hull just wrote and ramps coverage to zero. */ class VSHullAndEdgeImpl : public GrCCCoverageProcessor::VSImpl { public: @@ -284,10 +294,9 @@ public: // Here we generate conservative raster geometry for the input polygon. It is the convex // hull of N pixel-size boxes, one centered on each the input points. Each corner has three // vertices, where one or two may cause degenerate triangles. The vertex data tells us how - // to offset each vertex. For more details on conservative raster, see: + // to offset each vertex. Edges are also handled here using the same concept. For more + // details on conservative raster, see: // https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter42.html - // - // Triangle edges are also handled here using the same concept (see kHull3AndEdgeVertices). v->codeAppendf("float2 corner = %s[clockwise_indices & 3];", hullPts); v->codeAppendf("float2 left = %s[clockwise_indices >> %i];", hullPts, kVertexData_LeftNeighborIdShift); @@ -324,29 +333,32 @@ public: // fallthru. v->codeAppend ("}"); - // For triangles, we also emit coverage in order to handle edges and corners. - const char* coverage = nullptr; + v->codeAppend ("float2 vertex = corner + bloatdir * bloat;"); + gpArgs->fPositionVar.set(kFloat2_GrSLType, "vertex"); + + // The hull has a coverage of +1 all around. + v->codeAppend ("half coverage = +1;"); + if (3 == fNumSides) { - v->codeAppend ("half coverage;"); + v->codeAppendf("if (0 != (%s & %i)) {", // Are we an edge? + proc.getAttrib(kAttribIdx_VertexData).fName, kVertexData_IsEdgeBit); Shader::CalcEdgeCoverageAtBloatVertex(v, "left", "corner", "bloatdir", "coverage"); - v->codeAppendf("if (0 != (%s & %i)) {", // Are we the opposite endpoint of an edge? - proc.getAttrib(kAttribIdx_VertexData).fName, - kVertexData_InvertCoverageBit); - v->codeAppend ( "coverage = -1 - coverage;"); v->codeAppend ("}"); - - v->codeAppendf("if (0 != (%s & %i)) {", // Are we a hull vertex? - proc.getAttrib(kAttribIdx_VertexData).fName, kVertexData_IsHullBit); - v->codeAppend ( "coverage = +1;"); // Hull coverage is +1 all around. + } else { + SkASSERT(4 == fNumSides); + v->codeAppendf("if (0 != (%s & %i)) {", // Are we an edge? + proc.getAttrib(kAttribIdx_VertexData).fName, kVertexData_IsEdgeBit); + v->codeAppend ( "coverage = -1;"); v->codeAppend ("}"); - - coverage = "coverage"; } - v->codeAppend ("float2 vertex = corner + bloatdir * bloat;"); - gpArgs->fPositionVar.set(kFloat2_GrSLType, "vertex"); + v->codeAppendf("if (0 != (%s & %i)) {", // Invert coverage? + proc.getAttrib(kAttribIdx_VertexData).fName, + kVertexData_InvertNegativeCoverageBit); + v->codeAppend ( "coverage = -1 - coverage;"); + v->codeAppend ("}"); - return coverage; + return "coverage"; } private: @@ -425,31 +437,7 @@ void GrCCCoverageProcessor::initVS(GrResourceProvider* rp) { break; } - case RenderPass::kQuadratics: - case RenderPass::kCubics: { - GR_DEFINE_STATIC_UNIQUE_KEY(gHull4VertexBufferKey); - fVertexBuffer = rp->findOrMakeStaticBuffer(kVertex_GrBufferType, sizeof(kHull4Vertices), - kHull4Vertices, gHull4VertexBufferKey); - GR_DEFINE_STATIC_UNIQUE_KEY(gHull4IndexBufferKey); - if (caps.usePrimitiveRestart()) { - fIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType, - sizeof(kHull4IndicesAsStrips), - kHull4IndicesAsStrips, - gHull4IndexBufferKey); - fNumIndicesPerInstance = SK_ARRAY_COUNT(kHull4IndicesAsStrips); - } else { - fIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType, - sizeof(kHull4IndicesAsTris), - kHull4IndicesAsTris, - gHull4IndexBufferKey); - fNumIndicesPerInstance = SK_ARRAY_COUNT(kHull4IndicesAsTris); - } - break; - } - - case RenderPass::kTriangleCorners: - case RenderPass::kQuadraticCorners: - case RenderPass::kCubicCorners: { + case RenderPass::kTriangleCorners: { GR_DEFINE_STATIC_UNIQUE_KEY(gCornerIndexBufferKey); if (caps.usePrimitiveRestart()) { fIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType, @@ -464,14 +452,35 @@ void GrCCCoverageProcessor::initVS(GrResourceProvider* rp) { gCornerIndexBufferKey); fNumIndicesPerInstance = SK_ARRAY_COUNT(kCornerIndicesAsTris); } - if (RenderPass::kTriangleCorners != fRenderPass) { - fNumIndicesPerInstance = fNumIndicesPerInstance * 2/3; + break; + } + + case RenderPass::kQuadratics: + case RenderPass::kCubics: { + GR_DEFINE_STATIC_UNIQUE_KEY(gHull4AndEdgeVertexBufferKey); + fVertexBuffer = rp->findOrMakeStaticBuffer(kVertex_GrBufferType, + sizeof(kHull4AndEdgeVertices), + kHull4AndEdgeVertices, + gHull4AndEdgeVertexBufferKey); + GR_DEFINE_STATIC_UNIQUE_KEY(gHull4AndEdgeIndexBufferKey); + if (caps.usePrimitiveRestart()) { + fIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType, + sizeof(kHull4AndEdgeIndicesAsStrips), + kHull4AndEdgeIndicesAsStrips, + gHull4AndEdgeIndexBufferKey); + fNumIndicesPerInstance = SK_ARRAY_COUNT(kHull4AndEdgeIndicesAsStrips); + } else { + fIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType, + sizeof(kHull4AndEdgeIndicesAsTris), + kHull4AndEdgeIndicesAsTris, + gHull4AndEdgeIndexBufferKey); + fNumIndicesPerInstance = SK_ARRAY_COUNT(kHull4AndEdgeIndicesAsTris); } break; } } - if (RenderPassIsCubic(fRenderPass) || WindMethod::kInstanceData == fWindMethod) { + if (RenderPass::kCubics == fRenderPass || WindMethod::kInstanceData == fWindMethod) { SkASSERT(WindMethod::kCrossProduct == fWindMethod || 3 == this->numInputPoints()); SkASSERT(kAttribIdx_X == this->numAttribs()); @@ -525,13 +534,11 @@ GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createVSImpl(std::unique_ptr<Sh switch (fRenderPass) { case RenderPass::kTriangles: return new VSHullAndEdgeImpl(std::move(shadr), 3); + case RenderPass::kTriangleCorners: + return new VSCornerImpl(std::move(shadr)); case RenderPass::kQuadratics: case RenderPass::kCubics: return new VSHullAndEdgeImpl(std::move(shadr), 4); - case RenderPass::kTriangleCorners: - case RenderPass::kQuadraticCorners: - case RenderPass::kCubicCorners: - return new VSCornerImpl(std::move(shadr)); } SK_ABORT("Invalid RenderPass"); return nullptr; diff --git a/src/gpu/ccpr/GrCCCubicShader.cpp b/src/gpu/ccpr/GrCCCubicShader.cpp index 5ae51c7d9b..76d1646b65 100644 --- a/src/gpu/ccpr/GrCCCubicShader.cpp +++ b/src/gpu/ccpr/GrCCCubicShader.cpp @@ -13,8 +13,8 @@ using Shader = GrCCCoverageProcessor::Shader; void GrCCCubicShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts, - const char* repetitionID, const char* wind, - GeometryVars* vars) const { + const char* /*repetitionID*/, const char* /*wind*/, + GeometryVars*) const { // Find the cubic's power basis coefficients. s->codeAppendf("float2x4 C = float4x4(-1, 3, -3, 1, " " 3, -6, 3, 0, " @@ -58,118 +58,44 @@ void GrCCCubicShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts, // Evaluate the cubic at T=.5 for a mid-ish point. s->codeAppendf("float2 midpoint = %s * float4(.125, .375, .375, .125);", pts); - // Orient the KLM matrix so L & M have matching signs on the side of the curve we wish to fill. - // We give L & M both the same sign as wind, in order to pass this value to the fragment shader. - // (Cubics are pre-chopped such that L & M do not change sign within any individual segment). + // Orient the KLM matrix so L & M are both positive on the side of the curve we wish to fill. s->codeAppendf("float2 orientation = sign(float3(midpoint, 1) * float2x3(%s[1], %s[2]));", fKLMMatrix.c_str(), fKLMMatrix.c_str()); s->codeAppendf("%s *= float3x3(orientation[0] * orientation[1], 0, 0, " - "0, orientation[0] * %s, 0, " - "0, 0, orientation[1] * %s);", fKLMMatrix.c_str(), wind, wind); - - // Determine the amount of additional coverage to subtract out for the flat edge (P3 -> P0). - s->declareGlobal(fEdgeDistanceEquation); - s->codeAppendf("short edgeidx0 = %s > 0 ? 3 : 0;", wind); - s->codeAppendf("float2 edgept0 = %s[edgeidx0];", pts); - s->codeAppendf("float2 edgept1 = %s[3 - edgeidx0];", pts); - Shader::EmitEdgeDistanceEquation(s, "edgept0", "edgept1", fEdgeDistanceEquation.c_str()); - - this->onEmitSetupCode(s, pts, repetitionID, vars); + "0, orientation[0], 0, " + "0, 0, orientation[1]);", fKLMMatrix.c_str()); } void GrCCCubicShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler, GrGLSLVarying::Scope scope, SkString* code, const char* position, const char* inputCoverage, - const char* /*wind*/) { - SkASSERT(!inputCoverage); - - fKLMD.reset(kFloat4_GrSLType, scope); - varyingHandler->addVarying("klmd", &fKLMD); + const char* wind) { code->appendf("float3 klm = float3(%s, 1) * %s;", position, fKLMMatrix.c_str()); - code->appendf("float d = dot(float3(%s, 1), %s);", position, fEdgeDistanceEquation.c_str()); - code->appendf("%s = float4(klm, d);", OutName(fKLMD)); - - this->onEmitVaryings(varyingHandler, scope, code); -} -void GrCCCubicShader::onEmitFragmentCode(GrGLSLFPFragmentBuilder* f, - const char* outputCoverage) const { - f->codeAppendf("float k = %s.x, l = %s.y, m = %s.z, d = %s.w;", - fKLMD.fsIn(), fKLMD.fsIn(), fKLMD.fsIn(), fKLMD.fsIn()); - - this->emitCoverage(f, outputCoverage); + fKLMW.reset(kFloat4_GrSLType, scope); + varyingHandler->addVarying("klmw", &fKLMW); + code->appendf("%s.xyz = klm;", OutName(fKLMW)); + code->appendf("%s.w = %s * %s;", OutName(fKLMW), inputCoverage, wind); - // Wind is the sign of both L and/or M. Take the sign of whichever has the larger magnitude. - // (In reality, either would be fine because we chop cubics with more than a half pixel of - // padding around the L & M lines, so neither should approach zero.) - f->codeAppend ("half wind = sign(l + m);"); - f->codeAppendf("%s *= wind;", outputCoverage); -} - -void GrCCCubicHullShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler, - GrGLSLVarying::Scope scope, SkString* code) { fGradMatrix.reset(kFloat2x2_GrSLType, scope); varyingHandler->addVarying("grad_matrix", &fGradMatrix); - // "klm" was just defined by the base class. code->appendf("%s[0] = 3 * klm[0] * %s[0].xy;", OutName(fGradMatrix), fKLMMatrix.c_str()); code->appendf("%s[1] = -klm[1] * %s[2].xy - klm[2] * %s[1].xy;", OutName(fGradMatrix), fKLMMatrix.c_str(), fKLMMatrix.c_str()); } -void GrCCCubicHullShader::emitCoverage(GrGLSLFPFragmentBuilder* f, - const char* outputCoverage) const { - // k,l,m,d are defined by the base class. - f->codeAppend ("float f = k*k*k - l*m;"); - f->codeAppendf("float2 grad_f = %s * float2(k, 1);", fGradMatrix.fsIn()); - f->codeAppendf("%s = clamp(0.5 - f * inversesqrt(dot(grad_f, grad_f)), 0, 1);", outputCoverage); - f->codeAppendf("%s += min(d, 0);", outputCoverage); // Flat edge opposite the curve. -} - -void GrCCCubicCornerShader::onEmitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts, - const char* repetitionID, GeometryVars* vars) const { - s->codeAppendf("float2 corner = %s[%s * 3];", pts, repetitionID); - vars->fCornerVars.fPoint = "corner"; -} - -void GrCCCubicCornerShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler, - GrGLSLVarying::Scope scope, SkString* code) { - using Interpolation = GrGLSLVaryingHandler::Interpolation; - - fdKLMDdx.reset(kFloat4_GrSLType, scope); - varyingHandler->addVarying("dklmddx", &fdKLMDdx, Interpolation::kCanBeFlat); - code->appendf("%s = float4(%s[0].x, %s[1].x, %s[2].x, %s.x);", - OutName(fdKLMDdx), fKLMMatrix.c_str(), fKLMMatrix.c_str(), - fKLMMatrix.c_str(), fEdgeDistanceEquation.c_str()); - - fdKLMDdy.reset(kFloat4_GrSLType, scope); - varyingHandler->addVarying("dklmddy", &fdKLMDdy, Interpolation::kCanBeFlat); - code->appendf("%s = float4(%s[0].y, %s[1].y, %s[2].y, %s.y);", - OutName(fdKLMDdy), fKLMMatrix.c_str(), fKLMMatrix.c_str(), - fKLMMatrix.c_str(), fEdgeDistanceEquation.c_str()); -} - -void GrCCCubicCornerShader::emitCoverage(GrGLSLFPFragmentBuilder* f, +void GrCCCubicShader::onEmitFragmentCode(const GrCCCoverageProcessor& proc, + GrGLSLFPFragmentBuilder* f, const char* outputCoverage) const { - f->codeAppendf("float2x4 grad_klmd = float2x4(%s, %s);", fdKLMDdx.fsIn(), fdKLMDdy.fsIn()); - - // Erase what the previous hull shader wrote. We don't worry about the two corners falling on - // the same pixel because those cases should have been weeded out by this point. - // k,l,m,d are defined by the base class. + f->codeAppendf("float k = %s.x, l = %s.y, m = %s.z;", + fKLMW.fsIn(), fKLMW.fsIn(), fKLMW.fsIn()); f->codeAppend ("float f = k*k*k - l*m;"); - f->codeAppend ("float2 grad_f = float3(3*k*k, -m, -l) * float2x3(grad_klmd);"); - f->codeAppendf("%s = -clamp(0.5 - f * inversesqrt(dot(grad_f, grad_f)), 0, 1);", - outputCoverage); - f->codeAppendf("%s -= d;", outputCoverage); - - // Use software msaa to estimate actual coverage at the corner pixels. - const int sampleCount = Shader::DefineSoftSampleLocations(f, "samples"); - f->codeAppendf("float4 klmd_center = float4(%s.xyz, %s.w + 0.5);", - fKLMD.fsIn(), fKLMD.fsIn()); - f->codeAppendf("for (int i = 0; i < %i; ++i) {", sampleCount); - f->codeAppend ( "float4 klmd = grad_klmd * samples[i] + klmd_center;"); - f->codeAppend ( "half f = klmd.y * klmd.z - klmd.x * klmd.x * klmd.x;"); - f->codeAppendf( "%s += all(greaterThan(half4(f, klmd.y, klmd.z, klmd.w), " - "half4(0))) ? %f : 0;", - outputCoverage, 1.0 / sampleCount); - f->codeAppend ("}"); + f->codeAppendf("float2 grad_f = %s * float2(k, 1);", fGradMatrix.fsIn()); + f->codeAppend ("float d = f * inversesqrt(dot(grad_f, grad_f));"); +#ifdef SK_DEBUG + if (proc.debugVisualizationsEnabled()) { + f->codeAppendf("d /= %f;", proc.debugBloat()); + } +#endif + f->codeAppendf("%s = clamp(0.5 - d, 0, 1) * %s.w;", outputCoverage, fKLMW.fsIn()); } diff --git a/src/gpu/ccpr/GrCCCubicShader.h b/src/gpu/ccpr/GrCCCubicShader.h index 063549264a..70d3300461 100644 --- a/src/gpu/ccpr/GrCCCubicShader.h +++ b/src/gpu/ccpr/GrCCCubicShader.h @@ -24,37 +24,17 @@ class GrCCCubicShader : public GrCCCoverageProcessor::Shader { protected: void emitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID, - const char* wind, GeometryVars*) const final; - virtual void onEmitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID, - GeometryVars*) const {} + const char* wind, GeometryVars*) const override; void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code, - const char* position, const char* inputCoverage, const char* wind) final; - virtual void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) = 0; + const char* position, const char* inputCoverage, const char* wind) override; - void onEmitFragmentCode(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const final; - virtual void emitCoverage(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const = 0; + void onEmitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*, + const char* outputCoverage) const override; GrShaderVar fKLMMatrix{"klm_matrix", kFloat3x3_GrSLType}; - GrShaderVar fEdgeDistanceEquation{"edge_distance_equation", kFloat3_GrSLType}; - GrGLSLVarying fKLMD; -}; - -class GrCCCubicHullShader : public GrCCCubicShader { - void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) override; - void emitCoverage(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const override; - + GrGLSLVarying fKLMW; GrGLSLVarying fGradMatrix; }; -class GrCCCubicCornerShader : public GrCCCubicShader { - void onEmitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID, - GeometryVars*) const override; - void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) override; - void emitCoverage(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const override; - - GrGLSLVarying fdKLMDdx; - GrGLSLVarying fdKLMDdy; -}; - #endif diff --git a/src/gpu/ccpr/GrCCPathParser.cpp b/src/gpu/ccpr/GrCCPathParser.cpp index 43f5e6be6a..e625c43743 100644 --- a/src/gpu/ccpr/GrCCPathParser.cpp +++ b/src/gpu/ccpr/GrCCPathParser.cpp @@ -530,15 +530,11 @@ void GrCCPathParser::drawCoverageCount(GrOpFlushState* flushState, CoverageCount if (batchTotalCounts.fQuadratics) { this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kQuadratics, WindMethod::kCrossProduct, &PrimitiveTallies::fQuadratics, drawBounds); - this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kQuadraticCorners, - WindMethod::kCrossProduct, &PrimitiveTallies::fQuadratics, drawBounds); } if (batchTotalCounts.fCubics) { this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kCubics, WindMethod::kCrossProduct, &PrimitiveTallies::fCubics, drawBounds); - this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kCubicCorners, - WindMethod::kCrossProduct, &PrimitiveTallies::fCubics, drawBounds); } } diff --git a/src/gpu/ccpr/GrCCQuadraticShader.cpp b/src/gpu/ccpr/GrCCQuadraticShader.cpp index 090e29f4c3..baa10fd34e 100644 --- a/src/gpu/ccpr/GrCCQuadraticShader.cpp +++ b/src/gpu/ccpr/GrCCQuadraticShader.cpp @@ -14,7 +14,7 @@ using Shader = GrCCCoverageProcessor::Shader; void GrCCQuadraticShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts, - const char* repetitionID, const char* wind, + const char* /*repetitionID*/, const char* /*wind*/, GeometryVars* vars) const { s->declareGlobal(fCanonicalMatrix); s->codeAppendf("%s = float3x3(0.0, 0, 1, " @@ -25,41 +25,6 @@ void GrCCQuadraticShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* p "%s[2], 1));", fCanonicalMatrix.c_str(), pts, pts, pts); - s->declareGlobal(fEdgeDistanceEquation); - s->codeAppendf("float2 edgept0 = %s[%s > 0 ? 2 : 0];", pts, wind); - s->codeAppendf("float2 edgept1 = %s[%s > 0 ? 0 : 2];", pts, wind); - Shader::EmitEdgeDistanceEquation(s, "edgept0", "edgept1", fEdgeDistanceEquation.c_str()); - - this->onEmitSetupCode(s, pts, repetitionID, vars); -} - -void GrCCQuadraticShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler, - GrGLSLVarying::Scope scope, SkString* code, - const char* position, const char* inputCoverage, - const char* wind) { - SkASSERT(!inputCoverage); - - fXYDW.reset(kFloat4_GrSLType, scope); - varyingHandler->addVarying("xydw", &fXYDW); - code->appendf("%s.xy = (%s * float3(%s, 1)).xy;", - OutName(fXYDW), fCanonicalMatrix.c_str(), position); - code->appendf("%s.z = dot(%s.xy, %s) + %s.z;", - OutName(fXYDW), fEdgeDistanceEquation.c_str(), position, - fEdgeDistanceEquation.c_str()); - code->appendf("%s.w = %s;", OutName(fXYDW), wind); - - this->onEmitVaryings(varyingHandler, scope, code); -} - -void GrCCQuadraticShader::onEmitFragmentCode(GrGLSLFPFragmentBuilder* f, - const char* outputCoverage) const { - this->emitCoverage(f, outputCoverage); - f->codeAppendf("%s *= %s.w;", outputCoverage, fXYDW.fsIn()); // Sign by wind. -} - -void GrCCQuadraticHullShader::onEmitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts, - const char* /*repetitionID*/, - GeometryVars* vars) const { // Find the T value whose tangent is halfway between the tangents at the endpionts. s->codeAppendf("float2 tan0 = %s[1] - %s[0];", pts, pts); s->codeAppendf("float2 tan1 = %s[2] - %s[1];", pts, pts); @@ -76,66 +41,31 @@ void GrCCQuadraticHullShader::onEmitSetupCode(GrGLSLVertexGeoBuilder* s, const c vars->fHullVars.fAlternatePoints = "quadratic_hull"; } -void GrCCQuadraticHullShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler, - GrGLSLVarying::Scope scope, SkString* code) { - fGrad.reset(kFloat2_GrSLType, scope); - varyingHandler->addVarying("grad", &fGrad); - code->appendf("%s = float2(2 * %s.x, -1) * float2x2(%s);", - OutName(fGrad), OutName(fXYDW), fCanonicalMatrix.c_str()); -} - -void GrCCQuadraticHullShader::emitCoverage(GrGLSLFPFragmentBuilder* f, - const char* outputCoverage) const { - f->codeAppendf("float d = (%s.x * %s.x - %s.y) * inversesqrt(dot(%s, %s));", - fXYDW.fsIn(), fXYDW.fsIn(), fXYDW.fsIn(), fGrad.fsIn(), fGrad.fsIn()); - f->codeAppendf("%s = clamp(0.5 - d, 0, 1);", outputCoverage); - f->codeAppendf("%s += min(%s.z, 0);", outputCoverage, fXYDW.fsIn()); // Flat closing edge. -} - -void GrCCQuadraticCornerShader::onEmitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts, - const char* repetitionID, - GeometryVars* vars) const { - s->codeAppendf("float2 corner = %s[%s * 2];", pts, repetitionID); - vars->fCornerVars.fPoint = "corner"; -} - -void GrCCQuadraticCornerShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler, - GrGLSLVarying::Scope scope, SkString* code) { - using Interpolation = GrGLSLVaryingHandler::Interpolation; - - fdXYDdx.reset(kFloat3_GrSLType, scope); - varyingHandler->addVarying("dXYDdx", &fdXYDdx, Interpolation::kCanBeFlat); - code->appendf("%s = float3(%s[0].x, %s[0].y, %s.x);", - OutName(fdXYDdx), fCanonicalMatrix.c_str(), fCanonicalMatrix.c_str(), - fEdgeDistanceEquation.c_str()); +void GrCCQuadraticShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler, + GrGLSLVarying::Scope scope, SkString* code, + const char* position, const char* inputCoverage, + const char* wind) { + fCoords.reset(kFloat4_GrSLType, scope); + varyingHandler->addVarying("coords", &fCoords); + code->appendf("%s.xy = (%s * float3(%s, 1)).xy;", + OutName(fCoords), fCanonicalMatrix.c_str(), position); + code->appendf("%s.zw = float2(2 * %s.x, -1) * float2x2(%s);", + OutName(fCoords), OutName(fCoords), fCanonicalMatrix.c_str()); - fdXYDdy.reset(kFloat3_GrSLType, scope); - varyingHandler->addVarying("dXYDdy", &fdXYDdy, Interpolation::kCanBeFlat); - code->appendf("%s = float3(%s[1].x, %s[1].y, %s.y);", - OutName(fdXYDdy), fCanonicalMatrix.c_str(), fCanonicalMatrix.c_str(), - fEdgeDistanceEquation.c_str()); + fCoverageTimesWind.reset(kHalf_GrSLType, scope); + varyingHandler->addVarying("coverage_times_wind", &fCoverageTimesWind); + code->appendf("%s = %s * %s;", OutName(fCoverageTimesWind), inputCoverage, wind); } -void GrCCQuadraticCornerShader::emitCoverage(GrGLSLFPFragmentBuilder* f, +void GrCCQuadraticShader::onEmitFragmentCode(const GrCCCoverageProcessor& proc, + GrGLSLFPFragmentBuilder* f, const char* outputCoverage) const { - f->codeAppendf("float x = %s.x, y = %s.y, d = %s.z;", - fXYDW.fsIn(), fXYDW.fsIn(), fXYDW.fsIn()); - f->codeAppendf("float2x3 grad_xyd = float2x3(%s, %s);", fdXYDdx.fsIn(), fdXYDdy.fsIn()); - - // Erase what the previous hull shader wrote. We don't worry about the two corners falling on - // the same pixel because those cases should have been weeded out by this point. - f->codeAppend ("float f = x*x - y;"); - f->codeAppend ("float2 grad_f = float2(2*x, -1) * float2x2(grad_xyd);"); - f->codeAppendf("%s = -(0.5 - f * inversesqrt(dot(grad_f, grad_f)));", outputCoverage); - f->codeAppendf("%s -= d;", outputCoverage); - - // Use software msaa to approximate coverage at the corner pixels. - int sampleCount = Shader::DefineSoftSampleLocations(f, "samples"); - f->codeAppendf("float3 xyd_center = float3(%s.xy, %s.z + 0.5);", fXYDW.fsIn(), fXYDW.fsIn()); - f->codeAppendf("for (int i = 0; i < %i; ++i) {", sampleCount); - f->codeAppend ( "float3 xyd = grad_xyd * samples[i] + xyd_center;"); - f->codeAppend ( "half f = xyd.y - xyd.x * xyd.x;"); // f > 0 -> inside curve. - f->codeAppendf( "%s += all(greaterThan(float2(f,xyd.z), float2(0))) ? %f : 0;", - outputCoverage, 1.0 / sampleCount); - f->codeAppendf("}"); + f->codeAppendf("float d = (%s.x * %s.x - %s.y) * inversesqrt(dot(%s.zw, %s.zw));", + fCoords.fsIn(), fCoords.fsIn(), fCoords.fsIn(), fCoords.fsIn(), fCoords.fsIn()); +#ifdef SK_DEBUG + if (proc.debugVisualizationsEnabled()) { + f->codeAppendf("d /= %f;", proc.debugBloat()); + } +#endif + f->codeAppendf("%s = clamp(0.5 - d, 0, 1) * %s;", outputCoverage, fCoverageTimesWind.fsIn()); } diff --git a/src/gpu/ccpr/GrCCQuadraticShader.h b/src/gpu/ccpr/GrCCQuadraticShader.h index 0be03d33dd..d91f943471 100644 --- a/src/gpu/ccpr/GrCCQuadraticShader.h +++ b/src/gpu/ccpr/GrCCQuadraticShader.h @@ -23,48 +23,17 @@ class GrCCQuadraticShader : public GrCCCoverageProcessor::Shader { protected: void emitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID, - const char* wind, GeometryVars*) const final; - virtual void onEmitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID, - GeometryVars*) const = 0; + const char* wind, GeometryVars*) const override; void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code, - const char* position, const char* inputCoverage, const char* wind) final; - virtual void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) {} + const char* position, const char* inputCoverage, const char* wind) override; - void onEmitFragmentCode(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const final; - virtual void emitCoverage(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const = 0; + void onEmitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*, + const char* outputCoverage) const override; const GrShaderVar fCanonicalMatrix{"canonical_matrix", kFloat3x3_GrSLType}; - const GrShaderVar fEdgeDistanceEquation{"edge_distance_equation", kFloat3_GrSLType}; - GrGLSLVarying fXYDW; -}; - -/** - * This pass draws a conservative raster hull around the quadratic bezier curve, computes the - * curve's coverage using the gradient-based AA technique outlined in the Loop/Blinn paper, and - * uses simple distance-to-edge to subtract out coverage for the flat closing edge [P2 -> P0]. Since - * the provided curves are monotonic, this will get every pixel right except the two corners. - */ -class GrCCQuadraticHullShader : public GrCCQuadraticShader { - void onEmitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID, - GeometryVars*) const override; - void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) override; - void emitCoverage(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const override; - - GrGLSLVarying fGrad; -}; - -/** - * This pass fixes the corners of a closed quadratic segment with soft MSAA. - */ -class GrCCQuadraticCornerShader : public GrCCQuadraticShader { - void onEmitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID, - GeometryVars*) const override; - void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) override; - void emitCoverage(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const override; - - GrGLSLVarying fdXYDdx; - GrGLSLVarying fdXYDdy; + GrGLSLVarying fCoords; + GrGLSLVarying fCoverageTimesWind; }; #endif diff --git a/src/gpu/ccpr/GrCCTriangleShader.cpp b/src/gpu/ccpr/GrCCTriangleShader.cpp index e086201b42..8135313965 100644 --- a/src/gpu/ccpr/GrCCTriangleShader.cpp +++ b/src/gpu/ccpr/GrCCTriangleShader.cpp @@ -22,7 +22,8 @@ void GrCCTriangleShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler, code->appendf("%s = %s * %s;", OutName(fCoverageTimesWind), inputCoverage, wind); } -void GrCCTriangleShader::onEmitFragmentCode(GrGLSLFPFragmentBuilder* f, +void GrCCTriangleShader::onEmitFragmentCode(const GrCCCoverageProcessor&, + GrGLSLFPFragmentBuilder* f, const char* outputCoverage) const { f->codeAppendf("%s = %s;", outputCoverage, fCoverageTimesWind.fsIn()); } @@ -106,7 +107,8 @@ void GrCCTriangleCornerShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandl code->appendf("%s = %s * .5;", OutName(fWindTimesHalf), wind); } -void GrCCTriangleCornerShader::onEmitFragmentCode(GrGLSLFPFragmentBuilder* f, +void GrCCTriangleCornerShader::onEmitFragmentCode(const GrCCCoverageProcessor&, + GrGLSLFPFragmentBuilder* f, const char* outputCoverage) const { // By the time we reach this shader, the pixel is in the following state: // diff --git a/src/gpu/ccpr/GrCCTriangleShader.h b/src/gpu/ccpr/GrCCTriangleShader.h index 5f33b077cd..6dae8df497 100644 --- a/src/gpu/ccpr/GrCCTriangleShader.h +++ b/src/gpu/ccpr/GrCCTriangleShader.h @@ -19,7 +19,8 @@ class GrCCTriangleShader : public GrCCCoverageProcessor::Shader { void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code, const char* position, const char* inputCoverage, const char* wind) override; - void onEmitFragmentCode(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const override; + void onEmitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*, + const char* outputCoverage) const override; GrGLSLVarying fCoverageTimesWind; }; @@ -34,7 +35,8 @@ class GrCCTriangleCornerShader : public GrCCCoverageProcessor::Shader { const char* wind, GeometryVars*) const override; void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code, const char* position, const char* inputCoverage, const char* wind) override; - void onEmitFragmentCode(GrGLSLFPFragmentBuilder* f, const char* outputCoverage) const override; + void onEmitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*, + const char* outputCoverage) const override; GrShaderVar fAABoxMatrices{"aa_box_matrices", kFloat2x2_GrSLType, 2}; GrShaderVar fAABoxTranslates{"aa_box_translates", kFloat2_GrSLType, 2}; |