aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--gyp/utils.gypi1
-rw-r--r--src/utils/SkTextureCompressor_Blitter.h405
-rw-r--r--src/utils/SkTextureCompressor_R11EAC.cpp493
3 files changed, 463 insertions, 436 deletions
diff --git a/gyp/utils.gypi b/gyp/utils.gypi
index c90dbc530a..c8fc3f02df 100644
--- a/gyp/utils.gypi
+++ b/gyp/utils.gypi
@@ -87,6 +87,7 @@
'<(skia_src_path)/utils/SkTextureCompressor.h',
'<(skia_src_path)/utils/SkTextureCompressor_ASTC.cpp',
'<(skia_src_path)/utils/SkTextureCompressor_ASTC.h',
+ '<(skia_src_path)/utils/SkTextureCompressor_Blitter.h',
'<(skia_src_path)/utils/SkTextureCompressor_R11EAC.cpp',
'<(skia_src_path)/utils/SkTextureCompressor_R11EAC.h',
'<(skia_src_path)/utils/SkTextureCompressor_LATC.cpp',
diff --git a/src/utils/SkTextureCompressor_Blitter.h b/src/utils/SkTextureCompressor_Blitter.h
new file mode 100644
index 0000000000..23265a4d18
--- /dev/null
+++ b/src/utils/SkTextureCompressor_Blitter.h
@@ -0,0 +1,405 @@
+/*
+ * Copyright 2014 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef SkTextureCompressor_Blitter_DEFINED
+#define SkTextureCompressor_Blitter_DEFINED
+
+#include "SkTypes.h"
+#include "SkBlitter.h"
+
+namespace SkTextureCompressor {
+
+// The function used to compress an A8 block. This function is expected to be
+// used as a template argument to SkCompressedAlphaBlitter. The layout of the
+// block is also expected to be in column-major order.
+typedef void (*CompressA8Proc)(uint8_t* dst, const uint8_t block[]);
+
+// This class implements a blitter that blits directly into a buffer that will
+// be used as an compressed alpha texture. We compute this buffer by
+// buffering scan lines and then outputting them all at once. The number of
+// scan lines buffered is controlled by kBlockSize
+template<int BlockDim, int EncodedBlockSize, CompressA8Proc CompressionProc>
+class SkTCompressedAlphaBlitter : public SkBlitter {
+public:
+ SkTCompressedAlphaBlitter(int width, int height, void *compressedBuffer)
+ // 0x7FFE is one minus the largest positive 16-bit int. We use it for
+ // debugging to make sure that we're properly setting the nextX distance
+ // in flushRuns().
+ : kLongestRun(0x7FFE), kZeroAlpha(0)
+ , fNextRun(0)
+ , fWidth(width)
+ , fHeight(height)
+ , fBuffer(compressedBuffer)
+ {
+ SkASSERT((width % BlockDim) == 0);
+ SkASSERT((height % BlockDim) == 0);
+ }
+
+ virtual ~SkTCompressedAlphaBlitter() { this->flushRuns(); }
+
+ // Blit a horizontal run of one or more pixels.
+ virtual void blitH(int x, int y, int width) SK_OVERRIDE {
+ // This function is intended to be called from any standard RGB
+ // buffer, so we should never encounter it. However, if some code
+ // path does end up here, then this needs to be investigated.
+ SkFAIL("Not implemented!");
+ }
+
+ // Blit a horizontal run of antialiased pixels; runs[] is a *sparse*
+ // zero-terminated run-length encoding of spans of constant alpha values.
+ virtual void blitAntiH(int x, int y,
+ const SkAlpha antialias[],
+ const int16_t runs[]) SK_OVERRIDE {
+ // Make sure that the new row to blit is either the first
+ // row that we're blitting, or it's exactly the next scan row
+ // since the last row that we blit. This is to ensure that when
+ // we go to flush the runs, that they are all the same four
+ // runs.
+ if (fNextRun > 0 &&
+ ((x != fBufferedRuns[fNextRun-1].fX) ||
+ (y-1 != fBufferedRuns[fNextRun-1].fY))) {
+ this->flushRuns();
+ }
+
+ // Align the rows to a block boundary. If we receive rows that
+ // are not on a block boundary, then fill in the preceding runs
+ // with zeros. We do this by producing a single RLE that says
+ // that we have 0x7FFE pixels of zero (0x7FFE = 32766).
+ const int row = BlockDim * (y / BlockDim);
+ while ((row + fNextRun) < y) {
+ fBufferedRuns[fNextRun].fAlphas = &kZeroAlpha;
+ fBufferedRuns[fNextRun].fRuns = &kLongestRun;
+ fBufferedRuns[fNextRun].fX = 0;
+ fBufferedRuns[fNextRun].fY = row + fNextRun;
+ ++fNextRun;
+ }
+
+ // Make sure that our assumptions aren't violated...
+ SkASSERT(fNextRun == (y % BlockDim));
+ SkASSERT(fNextRun == 0 || fBufferedRuns[fNextRun - 1].fY < y);
+
+ // Set the values of the next run
+ fBufferedRuns[fNextRun].fAlphas = antialias;
+ fBufferedRuns[fNextRun].fRuns = runs;
+ fBufferedRuns[fNextRun].fX = x;
+ fBufferedRuns[fNextRun].fY = y;
+
+ // If we've output a block of scanlines in a row that don't violate our
+ // assumptions, then it's time to flush them...
+ if (BlockDim == ++fNextRun) {
+ this->flushRuns();
+ }
+ }
+
+ // Blit a vertical run of pixels with a constant alpha value.
+ virtual void blitV(int x, int y, int height, SkAlpha alpha) SK_OVERRIDE {
+ // This function is currently not implemented. It is not explicitly
+ // required by the contract, but if at some time a code path runs into
+ // this function (which is entirely possible), it needs to be implemented.
+ //
+ // TODO (krajcevski):
+ // This function will be most easily implemented in one of two ways:
+ // 1. Buffer each vertical column value and then construct a list
+ // of alpha values and output all of the blocks at once. This only
+ // requires a write to the compressed buffer
+ // 2. Replace the indices of each block with the proper indices based
+ // on the alpha value. This requires a read and write of the compressed
+ // buffer, but much less overhead.
+ SkFAIL("Not implemented!");
+ }
+
+ // Blit a solid rectangle one or more pixels wide.
+ virtual void blitRect(int x, int y, int width, int height) SK_OVERRIDE {
+ // Analogous to blitRow, this function is intended for RGB targets
+ // and should never be called by this blitter. Any calls to this function
+ // are probably a bug and should be investigated.
+ SkFAIL("Not implemented!");
+ }
+
+ // Blit a rectangle with one alpha-blended column on the left,
+ // width (zero or more) opaque pixels, and one alpha-blended column
+ // on the right. The result will always be at least two pixels wide.
+ virtual void blitAntiRect(int x, int y, int width, int height,
+ SkAlpha leftAlpha, SkAlpha rightAlpha) SK_OVERRIDE {
+ // This function is currently not implemented. It is not explicitly
+ // required by the contract, but if at some time a code path runs into
+ // this function (which is entirely possible), it needs to be implemented.
+ //
+ // TODO (krajcevski):
+ // This function will be most easily implemented as follows:
+ // 1. If width/height are smaller than a block, then update the
+ // indices of the affected blocks.
+ // 2. If width/height are larger than a block, then construct a 9-patch
+ // of block encodings that represent the rectangle, and write them
+ // to the compressed buffer as necessary. Whether or not the blocks
+ // are overwritten by zeros or just their indices are updated is up
+ // to debate.
+ SkFAIL("Not implemented!");
+ }
+
+ // Blit a pattern of pixels defined by a rectangle-clipped mask;
+ // typically used for text.
+ virtual void blitMask(const SkMask&, const SkIRect& clip) SK_OVERRIDE {
+ // This function is currently not implemented. It is not explicitly
+ // required by the contract, but if at some time a code path runs into
+ // this function (which is entirely possible), it needs to be implemented.
+ //
+ // TODO (krajcevski):
+ // This function will be most easily implemented in the same way as
+ // blitAntiRect above.
+ SkFAIL("Not implemented!");
+ }
+
+ // If the blitter just sets a single value for each pixel, return the
+ // bitmap it draws into, and assign value. If not, return NULL and ignore
+ // the value parameter.
+ virtual const SkBitmap* justAnOpaqueColor(uint32_t* value) SK_OVERRIDE {
+ return NULL;
+ }
+
+ /**
+ * Compressed texture blitters only really work correctly if they get
+ * BlockDim rows at a time. That being said, this blitter tries it's best
+ * to preserve semantics if blitAntiH doesn't get called in too many
+ * weird ways...
+ */
+ virtual int requestRowsPreserved() const { return BlockDim; }
+
+private:
+ static const int kPixelsPerBlock = BlockDim * BlockDim;
+
+ // The longest possible run of pixels that this blitter will receive.
+ // This is initialized in the constructor to 0x7FFE, which is one less
+ // than the largest positive 16-bit integer. We make sure that it's one
+ // less for debugging purposes. We also don't make this variable static
+ // in order to make sure that we can construct a valid pointer to it.
+ const int16_t kLongestRun;
+
+ // Usually used in conjunction with kLongestRun. This is initialized to
+ // zero.
+ const SkAlpha kZeroAlpha;
+
+ // This is the information that we buffer whenever we're asked to blit
+ // a row with this blitter.
+ struct BufferedRun {
+ const SkAlpha* fAlphas;
+ const int16_t* fRuns;
+ int fX, fY;
+ } fBufferedRuns[BlockDim];
+
+ // The next row [0, BlockDim) that we need to blit.
+ int fNextRun;
+
+ // The width and height of the image that we're blitting
+ const int fWidth;
+ const int fHeight;
+
+ // The compressed buffer that we're blitting into. It is assumed that the buffer
+ // is large enough to store a compressed image of size fWidth*fHeight.
+ void* const fBuffer;
+
+ // Various utility functions
+ int blocksWide() const { return fWidth / BlockDim; }
+ int blocksTall() const { return fHeight / BlockDim; }
+ int totalBlocks() const { return (fWidth * fHeight) / kPixelsPerBlock; }
+
+ // Returns the block index for the block containing pixel (x, y). Block
+ // indices start at zero and proceed in raster order.
+ int getBlockOffset(int x, int y) const {
+ SkASSERT(x < fWidth);
+ SkASSERT(y < fHeight);
+ const int blockCol = x / BlockDim;
+ const int blockRow = y / BlockDim;
+ return blockRow * this->blocksWide() + blockCol;
+ }
+
+ // Returns a pointer to the block containing pixel (x, y)
+ uint8_t *getBlock(int x, int y) const {
+ uint8_t* ptr = reinterpret_cast<uint8_t*>(fBuffer);
+ return ptr + EncodedBlockSize*this->getBlockOffset(x, y);
+ }
+
+ // Updates the block whose columns are stored in block. curAlphai is expected
+ // to store the alpha values that will be placed within each of the columns in
+ // the range [col, col+colsLeft).
+ typedef uint32_t Column[BlockDim/4];
+ typedef uint32_t Block[BlockDim][BlockDim/4];
+ inline void updateBlockColumns(Block block, const int col,
+ const int colsLeft, const Column curAlphai) {
+ SkASSERT(NULL != block);
+ SkASSERT(col + colsLeft <= 4);
+
+ for (int i = col; i < (col + colsLeft); ++i) {
+ memcpy(block[i], curAlphai, sizeof(Column));
+ }
+ }
+
+ // The following function writes the buffered runs to compressed blocks.
+ // If fNextRun < BlockDim, then we fill the runs that we haven't buffered with
+ // the constant zero buffer.
+ void flushRuns() {
+ // If we don't have any runs, then just return.
+ if (0 == fNextRun) {
+ return;
+ }
+
+#ifndef NDEBUG
+ // Make sure that if we have any runs, they all match
+ for (int i = 1; i < fNextRun; ++i) {
+ SkASSERT(fBufferedRuns[i].fY == fBufferedRuns[i-1].fY + 1);
+ SkASSERT(fBufferedRuns[i].fX == fBufferedRuns[i-1].fX);
+ }
+#endif
+
+ // If we don't have as many runs as we have rows, fill in the remaining
+ // runs with constant zeros.
+ for (int i = fNextRun; i < BlockDim; ++i) {
+ fBufferedRuns[i].fY = fBufferedRuns[0].fY + i;
+ fBufferedRuns[i].fX = fBufferedRuns[0].fX;
+ fBufferedRuns[i].fAlphas = &kZeroAlpha;
+ fBufferedRuns[i].fRuns = &kLongestRun;
+ }
+
+ // Make sure that our assumptions aren't violated.
+ SkASSERT(fNextRun > 0 && fNextRun <= BlockDim);
+ SkASSERT((fBufferedRuns[0].fY % BlockDim) == 0);
+
+ // The following logic walks BlockDim rows at a time and outputs compressed
+ // blocks to the buffer passed into the constructor.
+ // We do the following:
+ //
+ // c1 c2 c3 c4
+ // -----------------------------------------------------------------------
+ // ... | | | | | ----> fBufferedRuns[0]
+ // -----------------------------------------------------------------------
+ // ... | | | | | ----> fBufferedRuns[1]
+ // -----------------------------------------------------------------------
+ // ... | | | | | ----> fBufferedRuns[2]
+ // -----------------------------------------------------------------------
+ // ... | | | | | ----> fBufferedRuns[3]
+ // -----------------------------------------------------------------------
+ //
+ // curX -- the macro X value that we've gotten to.
+ // c[BlockDim] -- the buffers that represent the columns of the current block
+ // that we're operating on
+ // curAlphaColumn -- buffer containing the column of alpha values from fBufferedRuns.
+ // nextX -- for each run, the next point at which we need to update curAlphaColumn
+ // after the value of curX.
+ // finalX -- the minimum of all the nextX values.
+ //
+ // curX advances to finalX outputting any blocks that it passes along
+ // the way. Since finalX will not change when we reach the end of a
+ // run, the termination criteria will be whenever curX == finalX at the
+ // end of a loop.
+
+ // Setup:
+ Block block;
+ sk_bzero(block, sizeof(block));
+
+ Column curAlphaColumn;
+ sk_bzero(curAlphaColumn, sizeof(curAlphaColumn));
+
+ SkAlpha *curAlpha = reinterpret_cast<SkAlpha*>(&curAlphaColumn);
+
+ int nextX[BlockDim];
+ for (int i = 0; i < BlockDim; ++i) {
+ nextX[i] = 0x7FFFFF;
+ }
+
+ uint8_t* outPtr = this->getBlock(fBufferedRuns[0].fX, fBufferedRuns[0].fY);
+
+ // Populate the first set of runs and figure out how far we need to
+ // advance on the first step
+ int curX = 0;
+ int finalX = 0xFFFFF;
+ for (int i = 0; i < BlockDim; ++i) {
+ nextX[i] = *(fBufferedRuns[i].fRuns);
+ curAlpha[i] = *(fBufferedRuns[i].fAlphas);
+
+ finalX = SkMin32(nextX[i], finalX);
+ }
+
+ // Make sure that we have a valid right-bound X value
+ SkASSERT(finalX < 0xFFFFF);
+
+ // Run the blitter...
+ while (curX != finalX) {
+ SkASSERT(finalX >= curX);
+
+ // Do we need to populate the rest of the block?
+ if ((finalX - (BlockDim*(curX / BlockDim))) >= BlockDim) {
+ const int col = curX % BlockDim;
+ const int colsLeft = BlockDim - col;
+ SkASSERT(curX + colsLeft <= finalX);
+
+ this->updateBlockColumns(block, col, colsLeft, curAlphaColumn);
+
+ // Write this block
+ CompressionProc(outPtr, reinterpret_cast<uint8_t*>(block));
+ outPtr += EncodedBlockSize;
+ curX += colsLeft;
+ }
+
+ // If we can advance even further, then just keep memsetting the block
+ if ((finalX - curX) >= BlockDim) {
+ SkASSERT((curX % BlockDim) == 0);
+
+ const int col = 0;
+ const int colsLeft = BlockDim;
+
+ this->updateBlockColumns(block, col, colsLeft, curAlphaColumn);
+
+ // While we can keep advancing, just keep writing the block.
+ uint8_t lastBlock[EncodedBlockSize];
+ CompressionProc(lastBlock, reinterpret_cast<uint8_t*>(block));
+ while((finalX - curX) >= BlockDim) {
+ memcpy(outPtr, lastBlock, EncodedBlockSize);
+ outPtr += EncodedBlockSize;
+ curX += BlockDim;
+ }
+ }
+
+ // If we haven't advanced within the block then do so.
+ if (curX < finalX) {
+ const int col = curX % BlockDim;
+ const int colsLeft = finalX - curX;
+
+ this->updateBlockColumns(block, col, colsLeft, curAlphaColumn);
+ curX += colsLeft;
+ }
+
+ SkASSERT(curX == finalX);
+
+ // Figure out what the next advancement is...
+ for (int i = 0; i < BlockDim; ++i) {
+ if (nextX[i] == finalX) {
+ const int16_t run = *(fBufferedRuns[i].fRuns);
+ fBufferedRuns[i].fRuns += run;
+ fBufferedRuns[i].fAlphas += run;
+ curAlpha[i] = *(fBufferedRuns[i].fAlphas);
+ nextX[i] += *(fBufferedRuns[i].fRuns);
+ }
+ }
+
+ finalX = 0xFFFFF;
+ for (int i = 0; i < BlockDim; ++i) {
+ finalX = SkMin32(nextX[i], finalX);
+ }
+ }
+
+ // If we didn't land on a block boundary, output the block...
+ if ((curX % BlockDim) > 1) {
+ CompressionProc(outPtr, reinterpret_cast<uint8_t*>(block));
+ }
+
+ fNextRun = 0;
+ }
+};
+
+} // namespace SkTextureCompressor
+
+#endif // SkTextureCompressor_Blitter_DEFINED
diff --git a/src/utils/SkTextureCompressor_R11EAC.cpp b/src/utils/SkTextureCompressor_R11EAC.cpp
index 3ce0120ec5..982fb012ef 100644
--- a/src/utils/SkTextureCompressor_R11EAC.cpp
+++ b/src/utils/SkTextureCompressor_R11EAC.cpp
@@ -6,6 +6,7 @@
*/
#include "SkTextureCompressor.h"
+#include "SkTextureCompressor_Blitter.h"
#include "SkEndian.h"
@@ -302,6 +303,45 @@ static bool compress_4x4_a8_to_64bit(uint8_t* dst, const uint8_t* src,
}
#endif // (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST)
+// This function converts an integer containing four bytes of alpha
+// values into an integer containing four bytes of indices into R11 EAC.
+// Note, there needs to be a mapping of indices:
+// 0 1 2 3 4 5 6 7
+// 3 2 1 0 4 5 6 7
+//
+// To compute this, we first negate each byte, and then add three, which
+// gives the mapping
+// 3 2 1 0 -1 -2 -3 -4
+//
+// Then we mask out the negative values, take their absolute value, and
+// add three.
+//
+// Most of the voodoo in this function comes from Hacker's Delight, section 2-18
+static inline uint32_t convert_indices(uint32_t x) {
+ // Take the top three bits...
+ x = (x & 0xE0E0E0E0) >> 5;
+
+ // Negate...
+ x = ~((0x80808080 - x) ^ 0x7F7F7F7F);
+
+ // Add three
+ const uint32_t s = (x & 0x7F7F7F7F) + 0x03030303;
+ x = ((x ^ 0x03030303) & 0x80808080) ^ s;
+
+ // Absolute value
+ const uint32_t a = x & 0x80808080;
+ const uint32_t b = a >> 7;
+
+ // Aside: mask negatives (m is three if the byte was negative)
+ const uint32_t m = (a >> 6) | b;
+
+ // .. continue absolute value
+ x = (x ^ ((a - b) | a)) + b;
+
+ // Add three
+ return x + m;
+}
+
#if COMPRESS_R11_EAC_FASTEST
template<unsigned shift>
static inline uint64_t swap_shift(uint64_t x, uint64_t mask) {
@@ -376,45 +416,6 @@ static inline uint64_t interleave6(uint64_t topRows, uint64_t bottomRows) {
return x;
}
-// This function converts an integer containing four bytes of alpha
-// values into an integer containing four bytes of indices into R11 EAC.
-// Note, there needs to be a mapping of indices:
-// 0 1 2 3 4 5 6 7
-// 3 2 1 0 4 5 6 7
-//
-// To compute this, we first negate each byte, and then add three, which
-// gives the mapping
-// 3 2 1 0 -1 -2 -3 -4
-//
-// Then we mask out the negative values, take their absolute value, and
-// add three.
-//
-// Most of the voodoo in this function comes from Hacker's Delight, section 2-18
-static inline uint32_t convert_indices(uint32_t x) {
- // Take the top three bits...
- x = (x & 0xE0E0E0E0) >> 5;
-
- // Negate...
- x = ~((0x80808080 - x) ^ 0x7F7F7F7F);
-
- // Add three
- const uint32_t s = (x & 0x7F7F7F7F) + 0x03030303;
- x = ((x ^ 0x03030303) & 0x80808080) ^ s;
-
- // Absolute value
- const uint32_t a = x & 0x80808080;
- const uint32_t b = a >> 7;
-
- // Aside: mask negatives (m is three if the byte was negative)
- const uint32_t m = (a >> 6) | b;
-
- // .. continue absolute value
- x = (x ^ ((a - b) | a)) + b;
-
- // Add three
- return x + m;
-}
-
// This function follows the same basic procedure as compress_heterogeneous_r11eac_block
// above when COMPRESS_R11_EAC_FAST is defined, but it avoids a few loads/stores and
// tries to optimize where it can using SIMD.
@@ -513,10 +514,15 @@ static inline uint32_t pack_indices_vertical(uint32_t x) {
// alpha values. Each column is assumed to be loaded from top to bottom, and hence
// must first be converted to indices and then packed into the resulting 64-bit
// integer.
-static inline uint64_t compress_block_vertical(const uint32_t alphaColumn0,
- const uint32_t alphaColumn1,
- const uint32_t alphaColumn2,
- const uint32_t alphaColumn3) {
+inline void compress_block_vertical(uint8_t* dstPtr, const uint8_t *block) {
+
+ const uint32_t* src = reinterpret_cast<const uint32_t*>(block);
+ uint64_t* dst = reinterpret_cast<uint64_t*>(dstPtr);
+
+ const uint32_t alphaColumn0 = src[0];
+ const uint32_t alphaColumn1 = src[1];
+ const uint32_t alphaColumn2 = src[2];
+ const uint32_t alphaColumn3 = src[3];
if (alphaColumn0 == alphaColumn1 &&
alphaColumn2 == alphaColumn3 &&
@@ -524,11 +530,13 @@ static inline uint64_t compress_block_vertical(const uint32_t alphaColumn0,
if (0 == alphaColumn0) {
// Transparent
- return 0x0020000000002000ULL;
+ *dst = 0x0020000000002000ULL;
+ return;
}
else if (0xFFFFFFFF == alphaColumn0) {
// Opaque
- return 0xFFFFFFFFFFFFFFFFULL;
+ *dst = 0xFFFFFFFFFFFFFFFFULL;
+ return;
}
}
@@ -542,25 +550,11 @@ static inline uint64_t compress_block_vertical(const uint32_t alphaColumn0,
const uint32_t packedIndexColumn2 = pack_indices_vertical(indexColumn2);
const uint32_t packedIndexColumn3 = pack_indices_vertical(indexColumn3);
- return SkEndian_SwapBE64(0x8490000000000000ULL |
+ *dst = SkEndian_SwapBE64(0x8490000000000000ULL |
(static_cast<uint64_t>(packedIndexColumn0) << 36) |
(static_cast<uint64_t>(packedIndexColumn1) << 24) |
static_cast<uint64_t>(packedIndexColumn2 << 12) |
static_cast<uint64_t>(packedIndexColumn3));
-
-}
-
-// Updates the block whose columns are stored in blockColN. curAlphai is expected
-// to store, as an integer, the four alpha values that will be placed within each
-// of the columns in the range [col, col+colsLeft).
-static inline void update_block_columns(uint32_t* block, const int col,
- const int colsLeft, const uint32_t curAlphai) {
- SkASSERT(NULL != block);
- SkASSERT(col + colsLeft <= 4);
-
- for (int i = col; i < (col + colsLeft); ++i) {
- block[i] = curAlphai;
- }
}
////////////////////////////////////////////////////////////////////////////////
@@ -582,383 +576,10 @@ bool CompressA8ToR11EAC(uint8_t* dst, const uint8_t* src, int width, int height,
#endif
}
-// This class implements a blitter that blits directly into a buffer that will
-// be used as an R11 EAC compressed texture. We compute this buffer by
-// buffering four scan lines and then outputting them all at once. This blitter
-// is only expected to be used with alpha masks, i.e. kAlpha8_SkColorType.
-class R11_EACBlitter : public SkBlitter {
-public:
- R11_EACBlitter(int width, int height, void *compressedBuffer);
- virtual ~R11_EACBlitter() { this->flushRuns(); }
-
- // Blit a horizontal run of one or more pixels.
- virtual void blitH(int x, int y, int width) SK_OVERRIDE {
- // This function is intended to be called from any standard RGB
- // buffer, so we should never encounter it. However, if some code
- // path does end up here, then this needs to be investigated.
- SkFAIL("Not implemented!");
- }
-
- // Blit a horizontal run of antialiased pixels; runs[] is a *sparse*
- // zero-terminated run-length encoding of spans of constant alpha values.
- virtual void blitAntiH(int x, int y,
- const SkAlpha antialias[],
- const int16_t runs[]) SK_OVERRIDE;
-
- // Blit a vertical run of pixels with a constant alpha value.
- virtual void blitV(int x, int y, int height, SkAlpha alpha) SK_OVERRIDE {
- // This function is currently not implemented. It is not explicitly
- // required by the contract, but if at some time a code path runs into
- // this function (which is entirely possible), it needs to be implemented.
- //
- // TODO (krajcevski):
- // This function will be most easily implemented in one of two ways:
- // 1. Buffer each vertical column value and then construct a list
- // of alpha values and output all of the blocks at once. This only
- // requires a write to the compressed buffer
- // 2. Replace the indices of each block with the proper indices based
- // on the alpha value. This requires a read and write of the compressed
- // buffer, but much less overhead.
- SkFAIL("Not implemented!");
- }
-
- // Blit a solid rectangle one or more pixels wide.
- virtual void blitRect(int x, int y, int width, int height) SK_OVERRIDE {
- // Analogous to blitRow, this function is intended for RGB targets
- // and should never be called by this blitter. Any calls to this function
- // are probably a bug and should be investigated.
- SkFAIL("Not implemented!");
- }
-
- // Blit a rectangle with one alpha-blended column on the left,
- // width (zero or more) opaque pixels, and one alpha-blended column
- // on the right. The result will always be at least two pixels wide.
- virtual void blitAntiRect(int x, int y, int width, int height,
- SkAlpha leftAlpha, SkAlpha rightAlpha) SK_OVERRIDE {
- // This function is currently not implemented. It is not explicitly
- // required by the contract, but if at some time a code path runs into
- // this function (which is entirely possible), it needs to be implemented.
- //
- // TODO (krajcevski):
- // This function will be most easily implemented as follows:
- // 1. If width/height are smaller than a block, then update the
- // indices of the affected blocks.
- // 2. If width/height are larger than a block, then construct a 9-patch
- // of block encodings that represent the rectangle, and write them
- // to the compressed buffer as necessary. Whether or not the blocks
- // are overwritten by zeros or just their indices are updated is up
- // to debate.
- SkFAIL("Not implemented!");
- }
-
- // Blit a pattern of pixels defined by a rectangle-clipped mask;
- // typically used for text.
- virtual void blitMask(const SkMask&, const SkIRect& clip) SK_OVERRIDE {
- // This function is currently not implemented. It is not explicitly
- // required by the contract, but if at some time a code path runs into
- // this function (which is entirely possible), it needs to be implemented.
- //
- // TODO (krajcevski):
- // This function will be most easily implemented in the same way as
- // blitAntiRect above.
- SkFAIL("Not implemented!");
- }
-
- // If the blitter just sets a single value for each pixel, return the
- // bitmap it draws into, and assign value. If not, return NULL and ignore
- // the value parameter.
- virtual const SkBitmap* justAnOpaqueColor(uint32_t* value) SK_OVERRIDE {
- return NULL;
- }
-
- /**
- * Compressed texture blitters only really work correctly if they get
- * four blocks at a time. That being said, this blitter tries it's best
- * to preserve semantics if blitAntiH doesn't get called in too many
- * weird ways...
- */
- virtual int requestRowsPreserved() const { return kR11_EACBlockSz; }
-
-protected:
- virtual void onNotifyFinished() { this->flushRuns(); }
-
-private:
- static const int kR11_EACBlockSz = 4;
- static const int kPixelsPerBlock = kR11_EACBlockSz * kR11_EACBlockSz;
-
- // The longest possible run of pixels that this blitter will receive.
- // This is initialized in the constructor to 0x7FFE, which is one less
- // than the largest positive 16-bit integer. We make sure that it's one
- // less for debugging purposes. We also don't make this variable static
- // in order to make sure that we can construct a valid pointer to it.
- const int16_t kLongestRun;
-
- // Usually used in conjunction with kLongestRun. This is initialized to
- // zero.
- const SkAlpha kZeroAlpha;
-
- // This is the information that we buffer whenever we're asked to blit
- // a row with this blitter.
- struct BufferedRun {
- const SkAlpha* fAlphas;
- const int16_t* fRuns;
- int fX, fY;
- } fBufferedRuns[kR11_EACBlockSz];
-
- // The next row (0-3) that we need to blit. This value should never exceed
- // the number of rows that we have (kR11_EACBlockSz)
- int fNextRun;
-
- // The width and height of the image that we're blitting
- const int fWidth;
- const int fHeight;
-
- // The R11 EAC buffer that we're blitting into. It is assumed that the buffer
- // is large enough to store a compressed image of size fWidth*fHeight.
- uint64_t* const fBuffer;
-
- // Various utility functions
- int blocksWide() const { return fWidth / kR11_EACBlockSz; }
- int blocksTall() const { return fHeight / kR11_EACBlockSz; }
- int totalBlocks() const { return (fWidth * fHeight) / kPixelsPerBlock; }
-
- // Returns the block index for the block containing pixel (x, y). Block
- // indices start at zero and proceed in raster order.
- int getBlockOffset(int x, int y) const {
- SkASSERT(x < fWidth);
- SkASSERT(y < fHeight);
- const int blockCol = x / kR11_EACBlockSz;
- const int blockRow = y / kR11_EACBlockSz;
- return blockRow * this->blocksWide() + blockCol;
- }
-
- // Returns a pointer to the block containing pixel (x, y)
- uint64_t *getBlock(int x, int y) const {
- return fBuffer + this->getBlockOffset(x, y);
- }
-
- // The following function writes the buffered runs to compressed blocks.
- // If fNextRun < 4, then we fill the runs that we haven't buffered with
- // the constant zero buffer.
- void flushRuns();
-};
-
-
-R11_EACBlitter::R11_EACBlitter(int width, int height, void *latcBuffer)
- // 0x7FFE is one minus the largest positive 16-bit int. We use it for
- // debugging to make sure that we're properly setting the nextX distance
- // in flushRuns().
- : kLongestRun(0x7FFE), kZeroAlpha(0)
- , fNextRun(0)
- , fWidth(width)
- , fHeight(height)
- , fBuffer(reinterpret_cast<uint64_t*const>(latcBuffer))
-{
- SkASSERT((width % kR11_EACBlockSz) == 0);
- SkASSERT((height % kR11_EACBlockSz) == 0);
-}
-
-void R11_EACBlitter::blitAntiH(int x, int y,
- const SkAlpha* antialias,
- const int16_t* runs) {
- // Make sure that the new row to blit is either the first
- // row that we're blitting, or it's exactly the next scan row
- // since the last row that we blit. This is to ensure that when
- // we go to flush the runs, that they are all the same four
- // runs.
- if (fNextRun > 0 &&
- ((x != fBufferedRuns[fNextRun-1].fX) ||
- (y-1 != fBufferedRuns[fNextRun-1].fY))) {
- this->flushRuns();
- }
-
- // Align the rows to a block boundary. If we receive rows that
- // are not on a block boundary, then fill in the preceding runs
- // with zeros. We do this by producing a single RLE that says
- // that we have 0x7FFE pixels of zero (0x7FFE = 32766).
- const int row = y & ~3;
- while ((row + fNextRun) < y) {
- fBufferedRuns[fNextRun].fAlphas = &kZeroAlpha;
- fBufferedRuns[fNextRun].fRuns = &kLongestRun;
- fBufferedRuns[fNextRun].fX = 0;
- fBufferedRuns[fNextRun].fY = row + fNextRun;
- ++fNextRun;
- }
-
- // Make sure that our assumptions aren't violated...
- SkASSERT(fNextRun == (y & 3));
- SkASSERT(fNextRun == 0 || fBufferedRuns[fNextRun - 1].fY < y);
-
- // Set the values of the next run
- fBufferedRuns[fNextRun].fAlphas = antialias;
- fBufferedRuns[fNextRun].fRuns = runs;
- fBufferedRuns[fNextRun].fX = x;
- fBufferedRuns[fNextRun].fY = y;
-
- // If we've output four scanlines in a row that don't violate our
- // assumptions, then it's time to flush them...
- if (4 == ++fNextRun) {
- this->flushRuns();
- }
-}
-
-void R11_EACBlitter::flushRuns() {
-
- // If we don't have any runs, then just return.
- if (0 == fNextRun) {
- return;
- }
-
-#ifndef NDEBUG
- // Make sure that if we have any runs, they all match
- for (int i = 1; i < fNextRun; ++i) {
- SkASSERT(fBufferedRuns[i].fY == fBufferedRuns[i-1].fY + 1);
- SkASSERT(fBufferedRuns[i].fX == fBufferedRuns[i-1].fX);
- }
-#endif
-
- // If we dont have as many runs as we have rows, fill in the remaining
- // runs with constant zeros.
- for (int i = fNextRun; i < kR11_EACBlockSz; ++i) {
- fBufferedRuns[i].fY = fBufferedRuns[0].fY + i;
- fBufferedRuns[i].fX = fBufferedRuns[0].fX;
- fBufferedRuns[i].fAlphas = &kZeroAlpha;
- fBufferedRuns[i].fRuns = &kLongestRun;
- }
-
- // Make sure that our assumptions aren't violated.
- SkASSERT(fNextRun > 0 && fNextRun <= 4);
- SkASSERT((fBufferedRuns[0].fY & 3) == 0);
-
- // The following logic walks four rows at a time and outputs compressed
- // blocks to the buffer passed into the constructor.
- // We do the following:
- //
- // c1 c2 c3 c4
- // -----------------------------------------------------------------------
- // ... | | | | | ----> fBufferedRuns[0]
- // -----------------------------------------------------------------------
- // ... | | | | | ----> fBufferedRuns[1]
- // -----------------------------------------------------------------------
- // ... | | | | | ----> fBufferedRuns[2]
- // -----------------------------------------------------------------------
- // ... | | | | | ----> fBufferedRuns[3]
- // -----------------------------------------------------------------------
- //
- // curX -- the macro X value that we've gotten to.
- // c1, c2, c3, c4 -- the integers that represent the columns of the current block
- // that we're operating on
- // curAlphaColumn -- integer containing the column of alpha values from fBufferedRuns.
- // nextX -- for each run, the next point at which we need to update curAlphaColumn
- // after the value of curX.
- // finalX -- the minimum of all the nextX values.
- //
- // curX advances to finalX outputting any blocks that it passes along
- // the way. Since finalX will not change when we reach the end of a
- // run, the termination criteria will be whenever curX == finalX at the
- // end of a loop.
-
- // Setup:
- uint32_t c[4] = { 0, 0, 0, 0 };
- uint32_t curAlphaColumn = 0;
- SkAlpha *curAlpha = reinterpret_cast<SkAlpha*>(&curAlphaColumn);
-
- int nextX[kR11_EACBlockSz];
- for (int i = 0; i < kR11_EACBlockSz; ++i) {
- nextX[i] = 0x7FFFFF;
- }
-
- uint64_t* outPtr = this->getBlock(fBufferedRuns[0].fX, fBufferedRuns[0].fY);
-
- // Populate the first set of runs and figure out how far we need to
- // advance on the first step
- int curX = 0;
- int finalX = 0xFFFFF;
- for (int i = 0; i < kR11_EACBlockSz; ++i) {
- nextX[i] = *(fBufferedRuns[i].fRuns);
- curAlpha[i] = *(fBufferedRuns[i].fAlphas);
-
- finalX = SkMin32(nextX[i], finalX);
- }
-
- // Make sure that we have a valid right-bound X value
- SkASSERT(finalX < 0xFFFFF);
-
- // Run the blitter...
- while (curX != finalX) {
- SkASSERT(finalX >= curX);
-
- // Do we need to populate the rest of the block?
- if ((finalX - (curX & ~3)) >= kR11_EACBlockSz) {
- const int col = curX & 3;
- const int colsLeft = 4 - col;
- SkASSERT(curX + colsLeft <= finalX);
-
- update_block_columns(c, col, colsLeft, curAlphaColumn);
-
- // Write this block
- *outPtr = compress_block_vertical(c[0], c[1], c[2], c[3]);
- ++outPtr;
- curX += colsLeft;
- }
-
- // If we can advance even further, then just keep memsetting the block
- if ((finalX - curX) >= kR11_EACBlockSz) {
- SkASSERT((curX & 3) == 0);
-
- const int col = 0;
- const int colsLeft = kR11_EACBlockSz;
-
- update_block_columns(c, col, colsLeft, curAlphaColumn);
-
- // While we can keep advancing, just keep writing the block.
- uint64_t lastBlock = compress_block_vertical(c[0], c[1], c[2], c[3]);
- while((finalX - curX) >= kR11_EACBlockSz) {
- *outPtr = lastBlock;
- ++outPtr;
- curX += kR11_EACBlockSz;
- }
- }
-
- // If we haven't advanced within the block then do so.
- if (curX < finalX) {
- const int col = curX & 3;
- const int colsLeft = finalX - curX;
-
- update_block_columns(c, col, colsLeft, curAlphaColumn);
-
- curX += colsLeft;
- }
-
- SkASSERT(curX == finalX);
-
- // Figure out what the next advancement is...
- for (int i = 0; i < kR11_EACBlockSz; ++i) {
- if (nextX[i] == finalX) {
- const int16_t run = *(fBufferedRuns[i].fRuns);
- fBufferedRuns[i].fRuns += run;
- fBufferedRuns[i].fAlphas += run;
- curAlpha[i] = *(fBufferedRuns[i].fAlphas);
- nextX[i] += *(fBufferedRuns[i].fRuns);
- }
- }
-
- finalX = 0xFFFFF;
- for (int i = 0; i < kR11_EACBlockSz; ++i) {
- finalX = SkMin32(nextX[i], finalX);
- }
- }
-
- // If we didn't land on a block boundary, output the block...
- if ((curX & 3) > 1) {
- *outPtr = compress_block_vertical(c[0], c[1], c[2], c[3]);
- }
-
- fNextRun = 0;
-}
-
SkBlitter* CreateR11EACBlitter(int width, int height, void* outputBuffer) {
- return new R11_EACBlitter(width, height, outputBuffer);
+ return new
+ SkTCompressedAlphaBlitter<4, 8, compress_block_vertical>
+ (width, height, outputBuffer);
}
} // namespace SkTextureCompressor