aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--samplecode/SampleCCPRGeometry.cpp33
-rw-r--r--src/gpu/ccpr/GrCCCoverageProcessor.cpp119
-rw-r--r--src/gpu/ccpr/GrCCCoverageProcessor.h45
-rw-r--r--src/gpu/ccpr/GrCCCoverageProcessor_GSImpl.cpp89
-rw-r--r--src/gpu/ccpr/GrCCCoverageProcessor_VSImpl.cpp199
-rw-r--r--src/gpu/ccpr/GrCCCubicShader.cpp118
-rw-r--r--src/gpu/ccpr/GrCCCubicShader.h30
-rw-r--r--src/gpu/ccpr/GrCCPathParser.cpp4
-rw-r--r--src/gpu/ccpr/GrCCQuadraticShader.cpp118
-rw-r--r--src/gpu/ccpr/GrCCQuadraticShader.h43
-rw-r--r--src/gpu/ccpr/GrCCTriangleShader.cpp6
-rw-r--r--src/gpu/ccpr/GrCCTriangleShader.h6
12 files changed, 525 insertions, 285 deletions
diff --git a/samplecode/SampleCCPRGeometry.cpp b/samplecode/SampleCCPRGeometry.cpp
index 2a7d6640a6..a90ece09a1 100644
--- a/samplecode/SampleCCPRGeometry.cpp
+++ b/samplecode/SampleCCPRGeometry.cpp
@@ -32,6 +32,10 @@ using RenderPass = GrCCCoverageProcessor::RenderPass;
static constexpr float kDebugBloat = 40;
+static int is_quadratic(RenderPass pass) {
+ return pass == RenderPass::kQuadratics || pass == RenderPass::kQuadraticCorners;
+}
+
/**
* This sample visualizes the AA bloat geometry generated by the ccpr geometry shaders. It
* increases the AA bloat by 50x and outputs color instead of coverage (coverage=+1 -> green,
@@ -115,13 +119,14 @@ static void draw_klm_line(int w, int h, SkCanvas* canvas, const SkScalar line[3]
}
void CCPRGeometryView::onDrawContent(SkCanvas* canvas) {
- canvas->clear(SK_ColorBLACK);
+ SkAutoCanvasRestore acr(canvas, true);
+ canvas->setMatrix(SkMatrix::I());
SkPath outline;
outline.moveTo(fPoints[0]);
- if (RenderPass::kCubics == fRenderPass) {
+ if (GrCCCoverageProcessor::RenderPassIsCubic(fRenderPass)) {
outline.cubicTo(fPoints[1], fPoints[2], fPoints[3]);
- } else if (RenderPass::kQuadratics == fRenderPass) {
+ } else if (is_quadratic(fRenderPass)) {
outline.quadTo(fPoints[1], fPoints[3]);
} else {
outline.lineTo(fPoints[1]);
@@ -130,7 +135,7 @@ void CCPRGeometryView::onDrawContent(SkCanvas* canvas) {
}
SkPaint outlinePaint;
- outlinePaint.setColor(0x80ffffff);
+ outlinePaint.setColor(0x30000000);
outlinePaint.setStyle(SkPaint::kStroke_Style);
outlinePaint.setStrokeWidth(0);
outlinePaint.setAntiAlias(true);
@@ -154,7 +159,7 @@ void CCPRGeometryView::onDrawContent(SkCanvas* canvas) {
if (GrRenderTargetContext* rtc = canvas->internal_private_accessTopLayerRenderTargetContext()) {
rtc->priv().testingOnly_addDrawOp(skstd::make_unique<Op>(this));
caption.appendf("RenderPass_%s", GrCCCoverageProcessor::RenderPassName(fRenderPass));
- if (RenderPass::kCubics == fRenderPass) {
+ if (GrCCCoverageProcessor::RenderPassIsCubic(fRenderPass)) {
caption.appendf(" (%s)", SkCubicTypeName(fCubicType));
}
} else {
@@ -166,7 +171,7 @@ void CCPRGeometryView::onDrawContent(SkCanvas* canvas) {
pointsPaint.setStrokeWidth(8);
pointsPaint.setAntiAlias(true);
- if (RenderPass::kCubics == fRenderPass) {
+ if (GrCCCoverageProcessor::RenderPassIsCubic(fRenderPass)) {
int w = this->width(), h = this->height();
canvas->drawPoints(SkCanvas::kPoints_PointMode, 4, fPoints, pointsPaint);
draw_klm_line(w, h, canvas, &fCubicKLM[0], SK_ColorYELLOW);
@@ -179,7 +184,7 @@ void CCPRGeometryView::onDrawContent(SkCanvas* canvas) {
SkPaint captionPaint;
captionPaint.setTextSize(20);
- captionPaint.setColor(SK_ColorWHITE);
+ captionPaint.setColor(SK_ColorBLACK);
captionPaint.setAntiAlias(true);
canvas->drawText(caption.c_str(), caption.size(), 10, 30, captionPaint);
}
@@ -188,7 +193,7 @@ void CCPRGeometryView::updateGpuData() {
fTriPointInstances.reset();
fQuadPointInstances.reset();
- if (RenderPass::kCubics == fRenderPass) {
+ if (GrCCCoverageProcessor::RenderPassIsCubic(fRenderPass)) {
double t[2], s[2];
fCubicType = GrPathUtils::getCubicKLM(fPoints, &fCubicKLM, t, s);
GrCCGeometry geometry;
@@ -212,7 +217,7 @@ void CCPRGeometryView::updateGpuData() {
continue;
}
}
- } else if (RenderPass::kQuadratics == fRenderPass) {
+ } else if (is_quadratic(fRenderPass)) {
GrCCGeometry geometry;
geometry.beginContour(fPoints[0]);
geometry.quadraticTo(fPoints[1], fPoints[3]);
@@ -249,7 +254,7 @@ void CCPRGeometryView::Op::onExecute(GrOpFlushState* state) {
SkDEBUGCODE(proc.enableDebugVisualizations(kDebugBloat));
SkSTArray<1, GrMesh> mesh;
- if (RenderPass::kCubics == fView->fRenderPass) {
+ if (GrCCCoverageProcessor::RenderPassIsCubic(fView->fRenderPass)) {
sk_sp<GrBuffer> instBuff(rp->createBuffer(
fView->fQuadPointInstances.count() * sizeof(QuadPointInstance),
kVertex_GrBufferType, kDynamic_GrAccessPattern,
@@ -270,11 +275,11 @@ void CCPRGeometryView::Op::onExecute(GrOpFlushState* state) {
}
GrPipeline pipeline(state->drawOpArgs().fProxy, GrPipeline::ScissorState::kDisabled,
- SkBlendMode::kPlus);
+ SkBlendMode::kSrcOver);
if (glGpu) {
glGpu->handleDirtyContext();
- // GR_GL_CALL(glGpu->glInterface(), PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_LINE));
+ GR_GL_CALL(glGpu->glInterface(), PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_LINE));
GR_GL_CALL(glGpu->glInterface(), Enable(GR_GL_LINE_SMOOTH));
}
@@ -313,7 +318,7 @@ private:
SkView::Click* CCPRGeometryView::onFindClickHandler(SkScalar x, SkScalar y, unsigned) {
for (int i = 0; i < 4; ++i) {
- if (RenderPass::kCubics != fRenderPass && 2 == i) {
+ if (!GrCCCoverageProcessor::RenderPassIsCubic(fRenderPass) && 2 == i) {
continue;
}
if (fabs(x - fPoints[i].x()) < 20 && fabsf(y - fPoints[i].y()) < 20) {
@@ -337,7 +342,7 @@ bool CCPRGeometryView::onQuery(SkEvent* evt) {
}
SkUnichar unichar;
if (SampleCode::CharQ(*evt, &unichar)) {
- if (unichar >= '1' && unichar <= '4') {
+ if (unichar >= '1' && unichar <= '6') {
fRenderPass = RenderPass(unichar - '1');
this->updateAndInval();
return true;
diff --git a/src/gpu/ccpr/GrCCCoverageProcessor.cpp b/src/gpu/ccpr/GrCCCoverageProcessor.cpp
index 76ca8f562e..686ab5514d 100644
--- a/src/gpu/ccpr/GrCCCoverageProcessor.cpp
+++ b/src/gpu/ccpr/GrCCCoverageProcessor.cpp
@@ -15,59 +15,35 @@
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLVertexGeoBuilder.h"
-void GrCCCoverageProcessor::getGLSLProcessorKey(const GrShaderCaps&,
- GrProcessorKeyBuilder* b) const {
- int key = (int)fRenderPass << 2;
- if (WindMethod::kInstanceData == fWindMethod) {
- key |= 2;
- }
- if (Impl::kVertexShader == fImpl) {
- key |= 1;
- }
-#ifdef SK_DEBUG
- uint32_t bloatBits;
- memcpy(&bloatBits, &fDebugBloat, 4);
- b->add32(bloatBits);
-#endif
- b->add32(key);
-}
-
-GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createGLSLInstance(const GrShaderCaps&) const {
- std::unique_ptr<Shader> shader;
- switch (fRenderPass) {
- case RenderPass::kTriangles:
- shader = skstd::make_unique<GrCCTriangleShader>();
- break;
- case RenderPass::kTriangleCorners:
- shader = skstd::make_unique<GrCCTriangleCornerShader>();
- break;
- case RenderPass::kQuadratics:
- shader = skstd::make_unique<GrCCQuadraticShader>();
- break;
- case RenderPass::kCubics:
- shader = skstd::make_unique<GrCCCubicShader>();
- break;
- }
- return Impl::kGeometryShader == fImpl ? this->createGSImpl(std::move(shader))
- : this->createVSImpl(std::move(shader));
-}
-
void GrCCCoverageProcessor::Shader::emitFragmentCode(const GrCCCoverageProcessor& proc,
GrGLSLFPFragmentBuilder* f,
const char* skOutputColor,
const char* skOutputCoverage) const {
f->codeAppendf("half coverage = 0;");
- this->onEmitFragmentCode(proc, f, "coverage");
+ this->onEmitFragmentCode(f, "coverage");
f->codeAppendf("%s.a = coverage;", skOutputColor);
f->codeAppendf("%s = half4(1);", skOutputCoverage);
#ifdef SK_DEBUG
if (proc.debugVisualizationsEnabled()) {
- f->codeAppendf("%s = half4(-%s.a, %s.a, 0, abs(%s.a));",
- skOutputColor, skOutputColor, skOutputColor, skOutputColor);
+ f->codeAppendf("%s = half4(-%s.a, %s.a, 0, 1);",
+ skOutputColor, skOutputColor, skOutputColor);
}
#endif
}
+void GrCCCoverageProcessor::Shader::EmitEdgeDistanceEquation(GrGLSLVertexGeoBuilder* s,
+ const char* leftPt,
+ const char* rightPt,
+ const char* outputDistanceEquation) {
+ s->codeAppendf("float2 n = float2(%s.y - %s.y, %s.x - %s.x);",
+ rightPt, leftPt, leftPt, rightPt);
+ s->codeAppend ("float nwidth = (abs(n.x) + abs(n.y)) * (bloat * 2);");
+ // When nwidth=0, wind must also be 0 (and coverage * wind = 0). So it doesn't matter what we
+ // come up with here as long as it isn't NaN or Inf.
+ s->codeAppend ("n /= (0 != nwidth) ? nwidth : 1;");
+ s->codeAppendf("%s = float3(-n, dot(n, %s) - .5);", outputDistanceEquation, leftPt);
+}
+
void GrCCCoverageProcessor::Shader::CalcEdgeCoverageAtBloatVertex(GrGLSLVertexGeoBuilder* s,
const char* leftPt,
const char* rightPt,
@@ -102,3 +78,66 @@ void GrCCCoverageProcessor::Shader::CalcEdgeCoverageAtBloatVertex(GrGLSLVertexGe
// GPU divides by multiplying by the reciprocal?) It also guards against NaN when nwidth=0.
s->codeAppendf("%s = (abs(t) != nwidth ? t / nwidth : sign(t)) * -.5 - .5;", outputCoverage);
}
+
+int GrCCCoverageProcessor::Shader::DefineSoftSampleLocations(GrGLSLFPFragmentBuilder* f,
+ const char* samplesName) {
+ // Standard DX11 sample locations.
+#if defined(SK_BUILD_FOR_ANDROID) || defined(SK_BUILD_FOR_IOS)
+ f->defineConstant("float2[8]", samplesName, "float2[8]("
+ "float2(+1, -3)/16, float2(-1, +3)/16, float2(+5, +1)/16, float2(-3, -5)/16, "
+ "float2(-5, +5)/16, float2(-7, -1)/16, float2(+3, +7)/16, float2(+7, -7)/16."
+ ")");
+ return 8;
+#else
+ f->defineConstant("float2[16]", samplesName, "float2[16]("
+ "float2(+1, +1)/16, float2(-1, -3)/16, float2(-3, +2)/16, float2(+4, -1)/16, "
+ "float2(-5, -2)/16, float2(+2, +5)/16, float2(+5, +3)/16, float2(+3, -5)/16, "
+ "float2(-2, +6)/16, float2( 0, -7)/16, float2(-4, -6)/16, float2(-6, +4)/16, "
+ "float2(-8, 0)/16, float2(+7, -4)/16, float2(+6, +7)/16, float2(-7, -8)/16."
+ ")");
+ return 16;
+#endif
+}
+
+void GrCCCoverageProcessor::getGLSLProcessorKey(const GrShaderCaps&,
+ GrProcessorKeyBuilder* b) const {
+ int key = (int)fRenderPass << 2;
+ if (WindMethod::kInstanceData == fWindMethod) {
+ key |= 2;
+ }
+ if (Impl::kVertexShader == fImpl) {
+ key |= 1;
+ }
+#ifdef SK_DEBUG
+ uint32_t bloatBits;
+ memcpy(&bloatBits, &fDebugBloat, 4);
+ b->add32(bloatBits);
+#endif
+ b->add32(key);
+}
+
+GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createGLSLInstance(const GrShaderCaps&) const {
+ std::unique_ptr<Shader> shader;
+ switch (fRenderPass) {
+ case RenderPass::kTriangles:
+ shader = skstd::make_unique<GrCCTriangleShader>();
+ break;
+ case RenderPass::kTriangleCorners:
+ shader = skstd::make_unique<GrCCTriangleCornerShader>();
+ break;
+ case RenderPass::kQuadratics:
+ shader = skstd::make_unique<GrCCQuadraticHullShader>();
+ break;
+ case RenderPass::kQuadraticCorners:
+ shader = skstd::make_unique<GrCCQuadraticCornerShader>();
+ break;
+ case RenderPass::kCubics:
+ shader = skstd::make_unique<GrCCCubicHullShader>();
+ break;
+ case RenderPass::kCubicCorners:
+ shader = skstd::make_unique<GrCCCubicCornerShader>();
+ break;
+ }
+ return Impl::kGeometryShader == fImpl ? this->createGSImpl(std::move(shader))
+ : this->createVSImpl(std::move(shader));
+}
diff --git a/src/gpu/ccpr/GrCCCoverageProcessor.h b/src/gpu/ccpr/GrCCCoverageProcessor.h
index 7db424e219..c1f85993a1 100644
--- a/src/gpu/ccpr/GrCCCoverageProcessor.h
+++ b/src/gpu/ccpr/GrCCCoverageProcessor.h
@@ -53,15 +53,20 @@ public:
void set(const SkPoint[4], float dx, float dy);
void set(const SkPoint&, const SkPoint&, const SkPoint&, const Sk2f& trans, float w);
};
- // Here we enumerate every render pass needed in order to produce a complete coverage count
- // mask. Triangles require two render passes: One to draw a rough outline, and a second pass to
- // touch up the corners. This is an exhaustive list of all ccpr coverage shaders.
+
+ // All primitive shapes (triangles and closed, convex bezier curves) require two
+ // render passes: One to draw a rough outline of the shape, and a second pass to touch up the
+ // corners. Here we enumerate every render pass needed in order to produce a complete
+ // coverage count mask. This is an exhaustive list of all ccpr coverage shaders.
enum class RenderPass {
kTriangles,
kTriangleCorners,
kQuadratics,
+ kQuadraticCorners,
kCubics,
+ kCubicCorners
};
+ static bool RenderPassIsCubic(RenderPass);
static const char* RenderPassName(RenderPass);
enum class WindMethod : bool {
@@ -147,6 +152,13 @@ public:
void emitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*,
const char* skOutputColor, const char* skOutputCoverage) const;
+ // Defines an equation ("dot(float3(pt, 1), distance_equation)") that is -1 on the outside
+ // border of a conservative raster edge and 0 on the inside. 'leftPt' and 'rightPt' must be
+ // ordered clockwise.
+ static void EmitEdgeDistanceEquation(GrGLSLVertexGeoBuilder*, const char* leftPt,
+ const char* rightPt,
+ const char* outputDistanceEquation);
+
// Calculates an edge's coverage at a conservative raster vertex. The edge is defined by two
// clockwise-ordered points, 'leftPt' and 'rightPt'. 'rasterVertexDir' is a pair of +/-1
// values that point in the direction of conservative raster bloat, starting from an
@@ -169,7 +181,7 @@ public:
const char* wind) = 0;
// Emits the fragment code that calculates a pixel's signed coverage value.
- virtual void onEmitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*,
+ virtual void onEmitFragmentCode(GrGLSLFPFragmentBuilder*,
const char* outputCoverage) const = 0;
// Returns the name of a Shader's internal varying at the point where where its value is
@@ -179,6 +191,12 @@ public:
SkASSERT(Scope::kVertToGeo != varying.scope());
return Scope::kGeoToFrag == varying.scope() ? varying.gsOut() : varying.vsOut();
}
+
+ // Defines a global float2 array that contains MSAA sample locations as offsets from pixel
+ // center. Subclasses can use this for software multisampling.
+ //
+ // Returns the number of samples.
+ static int DefineSoftSampleLocations(GrGLSLFPFragmentBuilder* f, const char* samplesName);
};
class GSImpl;
@@ -190,7 +208,7 @@ private:
static constexpr float kAABloatRadius = 0.491111f;
// Number of bezier points for curves, or 3 for triangles.
- int numInputPoints() const { return RenderPass::kCubics == fRenderPass ? 4 : 3; }
+ int numInputPoints() const { return RenderPassIsCubic(fRenderPass) ? 4 : 3; }
enum class Impl : bool {
kGeometryShader,
@@ -251,12 +269,29 @@ inline void GrCCCoverageProcessor::QuadPointInstance::set(const SkPoint& p0, con
Sk2f::Store4(this, P0, P1, P2, W);
}
+inline bool GrCCCoverageProcessor::RenderPassIsCubic(RenderPass pass) {
+ switch (pass) {
+ case RenderPass::kTriangles:
+ case RenderPass::kTriangleCorners:
+ case RenderPass::kQuadratics:
+ case RenderPass::kQuadraticCorners:
+ return false;
+ case RenderPass::kCubics:
+ case RenderPass::kCubicCorners:
+ return true;
+ }
+ SK_ABORT("Invalid RenderPass");
+ return false;
+}
+
inline const char* GrCCCoverageProcessor::RenderPassName(RenderPass pass) {
switch (pass) {
case RenderPass::kTriangles: return "kTriangles";
case RenderPass::kTriangleCorners: return "kTriangleCorners";
case RenderPass::kQuadratics: return "kQuadratics";
+ case RenderPass::kQuadraticCorners: return "kQuadraticCorners";
case RenderPass::kCubics: return "kCubics";
+ case RenderPass::kCubicCorners: return "kCubicCorners";
}
SK_ABORT("Invalid RenderPass");
return "";
diff --git a/src/gpu/ccpr/GrCCCoverageProcessor_GSImpl.cpp b/src/gpu/ccpr/GrCCCoverageProcessor_GSImpl.cpp
index e64b8c0838..d9febc0e66 100644
--- a/src/gpu/ccpr/GrCCCoverageProcessor_GSImpl.cpp
+++ b/src/gpu/ccpr/GrCCCoverageProcessor_GSImpl.cpp
@@ -76,7 +76,7 @@ protected:
SkSTArray<2, GrShaderVar> emitArgs;
const char* position = emitArgs.emplace_back("position", kFloat2_GrSLType).c_str();
const char* coverage = nullptr;
- if (RenderPass::kTriangleCorners != proc.fRenderPass) {
+ if (RenderPass::kTriangles == proc.fRenderPass) {
coverage = emitArgs.emplace_back("coverage", kHalf_GrSLType).c_str();
}
g->emitFunction(kVoid_GrSLType, "emitVertex", emitArgs.count(), emitArgs.begin(), [&]() {
@@ -212,8 +212,7 @@ public:
};
/**
- * Generates a conservative raster hull around a convex quadrilateral that encloses a cubic or
- * quadratic, as well as its shared edge.
+ * Generates a conservative raster around a convex quadrilateral that encloses a cubic or quadratic.
*/
class GSHull4Impl : public GrCCCoverageProcessor::GSImpl {
public:
@@ -232,85 +231,54 @@ public:
// Visualize the input (convex) quadrilateral as a square. Paying special attention to wind,
// we can identify the points by their corresponding corner.
//
- // NOTE: For the hull we split the square down the diagonal from top-right to bottom-left,
- // and generate it in two independent invocations. All invocations, including the shared
- // edge, designate the corner they will begin with as top-left.
- g->codeAppendf("bool is_shared_edge = (2 == sk_InvocationID);");
- g->codeAppendf("int i = !is_shared_edge ? sk_InvocationID * 2 : (%s > 0 ? 3 : 0);",
- wind.c_str());
+ // NOTE: We split the square down the diagonal from top-right to bottom-left, and generate
+ // the hull in two independent invocations. Each invocation designates the corner it will
+ // begin with as top-left.
+ g->codeAppend ("int i = sk_InvocationID * 2;");
g->codeAppendf("float2 topleft = %s[i];", hullPts);
- g->codeAppendf("float2 topright = %s[(i + (%s > 0 ? 1 : 3)) & 3];", hullPts, wind.c_str());
- g->codeAppendf("float2 bottomleft = %s[(i + (%s > 0 ? 3 : 1)) & 3];",
- hullPts, wind.c_str());
- g->codeAppendf("float2 bottomright = %s[(i + 2) & 3];", hullPts);
+ g->codeAppendf("float2 topright = %s[%s > 0 ? i + 1 : 3 - i];", hullPts, wind.c_str());
+ g->codeAppendf("float2 bottomleft = %s[%s > 0 ? 3 - i : i + 1];", hullPts, wind.c_str());
+ g->codeAppendf("float2 bottomright = %s[2 - i];", hullPts);
// Determine how much to outset the conservative raster hull from the relevant edges.
- g->codeAppend ("float2 leftbloat = sign(topleft - bottomleft) * bloat;");
- g->codeAppend ("leftbloat = float2(0 != leftbloat.y ? leftbloat.y : leftbloat.x, "
- "0 != leftbloat.x ? -leftbloat.x : -leftbloat.y);");
-
- g->codeAppend ("float2 upbloat = sign(topright - topleft) * bloat;");
- g->codeAppend ("upbloat = float2(0 != upbloat.y ? upbloat.y : upbloat.x, "
- "0 != upbloat.x ? -upbloat.x : -upbloat.y);");
-
- g->codeAppend ("float2 rightbloat = sign(bottomright - topright) * bloat;");
- g->codeAppend ("rightbloat = float2(0 != rightbloat.y ? rightbloat.y : rightbloat.x, "
- "0 != rightbloat.x ? -rightbloat.x : -rightbloat.y);");
-
- // The hull raster has a coverage of +1 all around.
- g->codeAppend ("half2 coverages = half2(+1);");
-
- g->codeAppend ("if (is_shared_edge) {");
- // On bloat vertices along the shared edge that fall outside the input
- // points, ramp coverage to 0. We do this by using coverage=-1 to erase
- // what the hull just wrote.
- g->codeAppend ( "coverages = half2(-1, 0);");
- // Reassign bloats to characterize a conservative raster around just the
- // shared edge, rather than the entire hull.
- g->codeAppend ( "leftbloat = rightbloat = -upbloat;");
- g->codeAppend ("}");
+ g->codeAppend ("float2 leftbloat = float2(topleft.y > bottomleft.y ? +bloat : -bloat, "
+ "topleft.x > bottomleft.x ? -bloat : bloat);");
+ g->codeAppend ("float2 upbloat = float2(topright.y > topleft.y ? +bloat : -bloat, "
+ "topright.x > topleft.x ? -bloat : +bloat);");
+ g->codeAppend ("float2 rightbloat = float2(bottomright.y > topright.y ? +bloat : -bloat, "
+ "bottomright.x > topright.x ? -bloat : +bloat);");
// Here we generate the conservative raster geometry. It is the convex hull of 4 pixel-size
// boxes centered on the input points, split evenly between two invocations. This translates
// to a polygon with either one, two, or three vertices at each input point, depending on
- // how sharp the corner is. The shared edge raster is the convex hull of 2 pixel-size boxes,
- // one at each endpoint. For more details on conservative raster, see:
+ // how sharp the corner is. For more details on conservative raster, see:
// https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter42.html
g->codeAppendf("bool2 left_up_notequal = notEqual(leftbloat, upbloat);");
g->codeAppend ("if (all(left_up_notequal)) {");
// The top-left corner will have three conservative raster vertices.
// Emit the middle one first to the triangle strip.
- g->codeAppendf( "%s(topleft + float2(-leftbloat.y, leftbloat.x), coverages[0]);",
- emitVertexFn);
+ g->codeAppendf( "%s(topleft + float2(-leftbloat.y, leftbloat.x));", emitVertexFn);
g->codeAppend ("}");
g->codeAppend ("if (any(left_up_notequal)) {");
// Second conservative raster vertex for the top-left corner.
- g->codeAppendf( "%s(topleft + leftbloat, coverages[1]);", emitVertexFn);
+ g->codeAppendf( "%s(topleft + leftbloat);", emitVertexFn);
g->codeAppend ("}");
- g->codeAppendf("%s(topleft + upbloat, coverages[0]);", emitVertexFn);
-
- g->codeAppend ("if (!is_shared_edge) {");
- // Main interior body of this invocation's half of the hull.
- g->codeAppendf( "%s(bottomleft + leftbloat, +1);", emitVertexFn);
- g->codeAppend ("}");
-
- g->codeAppendf("%s(topright + (is_shared_edge ? rightbloat : upbloat), coverages[1]);",
- emitVertexFn);
+ // Main interior body of this invocation's half of the hull.
+ g->codeAppendf("%s(topleft + upbloat);", emitVertexFn);
+ g->codeAppendf("%s(bottomleft + leftbloat);", emitVertexFn);
+ g->codeAppendf("%s(topright + upbloat);", emitVertexFn);
// Remaining two conservative raster vertices for the top-right corner.
g->codeAppendf("bool2 up_right_notequal = notEqual(upbloat, rightbloat);");
g->codeAppend ("if (any(up_right_notequal)) {");
- g->codeAppendf( "%s(topright + (is_shared_edge ? upbloat : rightbloat), "
- "coverages[0]);", emitVertexFn);
+ g->codeAppendf( "%s(topright + rightbloat);", emitVertexFn);
g->codeAppend ("}");
g->codeAppend ("if (all(up_right_notequal)) {");
- g->codeAppendf( "%s(topright + float2(-upbloat.y, upbloat.x), coverages[0]);",
- emitVertexFn);
+ g->codeAppendf( "%s(topright + float2(-upbloat.y, upbloat.x));", emitVertexFn);
g->codeAppend ("}");
- // 3 invocations: 2 hull invocations and 1 shared edge.
- g->configure(InputType::kLines, OutputType::kTriangleStrip, 7, 3);
+ g->configure(InputType::kLines, OutputType::kTriangleStrip, 7, 2);
}
};
@@ -344,15 +312,17 @@ private:
void GrCCCoverageProcessor::initGS() {
SkASSERT(Impl::kGeometryShader == fImpl);
- if (RenderPass::kCubics == fRenderPass || WindMethod::kInstanceData == fWindMethod) {
+ if (RenderPassIsCubic(fRenderPass) || WindMethod::kInstanceData == fWindMethod) {
SkASSERT(WindMethod::kCrossProduct == fWindMethod || 3 == this->numInputPoints());
this->addVertexAttrib("x_or_y_values", kFloat4_GrVertexAttribType);
SkASSERT(sizeof(QuadPointInstance) == this->getVertexStride() * 2);
SkASSERT(offsetof(QuadPointInstance, fY) == this->getVertexStride());
+ GR_STATIC_ASSERT(0 == offsetof(QuadPointInstance, fX));
} else {
this->addVertexAttrib("x_or_y_values", kFloat3_GrVertexAttribType);
SkASSERT(sizeof(TriPointInstance) == this->getVertexStride() * 2);
SkASSERT(offsetof(TriPointInstance, fY) == this->getVertexStride());
+ GR_STATIC_ASSERT(0 == offsetof(TriPointInstance, fX));
}
this->setWillUseGeoShader();
}
@@ -378,6 +348,9 @@ GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createGSImpl(std::unique_ptr<Sh
case RenderPass::kQuadratics:
case RenderPass::kCubics:
return new GSHull4Impl(std::move(shadr));
+ case RenderPass::kQuadraticCorners:
+ case RenderPass::kCubicCorners:
+ return new GSCornerImpl(std::move(shadr), 2);
}
SK_ABORT("Invalid RenderPass");
return nullptr;
diff --git a/src/gpu/ccpr/GrCCCoverageProcessor_VSImpl.cpp b/src/gpu/ccpr/GrCCCoverageProcessor_VSImpl.cpp
index 08398e1900..144a4a5d58 100644
--- a/src/gpu/ccpr/GrCCCoverageProcessor_VSImpl.cpp
+++ b/src/gpu/ccpr/GrCCCoverageProcessor_VSImpl.cpp
@@ -92,13 +92,13 @@ protected:
static constexpr int kVertexData_LeftNeighborIdShift = 9;
static constexpr int kVertexData_RightNeighborIdShift = 7;
static constexpr int kVertexData_BloatIdxShift = 5;
-static constexpr int kVertexData_InvertNegativeCoverageBit = 1 << 4;
+static constexpr int kVertexData_InvertCoverageBit = 1 << 4;
static constexpr int kVertexData_IsEdgeBit = 1 << 3;
static constexpr int kVertexData_IsHullBit = 1 << 2;
/**
* Vertex data tells the shader how to offset vertices for conservative raster, and how/whether to
- * calculate coverage values. See VSHullAndEdgeImpl.
+ * calculate initial coverage values for edges. See VSHullAndEdgeImpl.
*/
static constexpr int32_t pack_vertex_data(int32_t leftNeighborID, int32_t rightNeighborID,
int32_t bloatIdx, int32_t cornerID,
@@ -114,12 +114,15 @@ static constexpr int32_t hull_vertex_data(int32_t cornerID, int32_t bloatIdx, in
kVertexData_IsHullBit);
}
-static constexpr int32_t edge_vertex_data(int32_t leftID, int rightID, int32_t bloatIdx,
- int32_t extraData = 0) {
- return pack_vertex_data(leftID, leftID, bloatIdx, rightID, kVertexData_IsEdgeBit | extraData);
+static constexpr int32_t edge_vertex_data(int32_t edgeID, int32_t endptIdx, int32_t bloatIdx,
+ int n) {
+ return pack_vertex_data(0 == endptIdx ? (edgeID + 1) % n : edgeID,
+ 0 == endptIdx ? (edgeID + 1) % n : edgeID,
+ bloatIdx, 0 == endptIdx ? edgeID : (edgeID + 1) % n,
+ kVertexData_IsEdgeBit |
+ (!endptIdx ? kVertexData_InvertCoverageBit : 0));
}
-
static constexpr int32_t kHull3AndEdgeVertices[] = {
hull_vertex_data(0, 0, 3),
hull_vertex_data(0, 1, 3),
@@ -131,26 +134,26 @@ static constexpr int32_t kHull3AndEdgeVertices[] = {
hull_vertex_data(2, 1, 3),
hull_vertex_data(2, 2, 3),
- edge_vertex_data(0, 1, 0),
- edge_vertex_data(0, 1, 1),
- edge_vertex_data(0, 1, 2),
- edge_vertex_data(1, 0, 0, kVertexData_InvertNegativeCoverageBit),
- edge_vertex_data(1, 0, 1, kVertexData_InvertNegativeCoverageBit),
- edge_vertex_data(1, 0, 2, kVertexData_InvertNegativeCoverageBit),
-
- edge_vertex_data(1, 2, 0),
- edge_vertex_data(1, 2, 1),
- edge_vertex_data(1, 2, 2),
- edge_vertex_data(2, 1, 0, kVertexData_InvertNegativeCoverageBit),
- edge_vertex_data(2, 1, 1, kVertexData_InvertNegativeCoverageBit),
- edge_vertex_data(2, 1, 2, kVertexData_InvertNegativeCoverageBit),
-
- edge_vertex_data(2, 0, 0),
- edge_vertex_data(2, 0, 1),
- edge_vertex_data(2, 0, 2),
- edge_vertex_data(0, 2, 0, kVertexData_InvertNegativeCoverageBit),
- edge_vertex_data(0, 2, 1, kVertexData_InvertNegativeCoverageBit),
- edge_vertex_data(0, 2, 2, kVertexData_InvertNegativeCoverageBit),
+ edge_vertex_data(0, 0, 0, 3),
+ edge_vertex_data(0, 0, 1, 3),
+ edge_vertex_data(0, 0, 2, 3),
+ edge_vertex_data(0, 1, 0, 3),
+ edge_vertex_data(0, 1, 1, 3),
+ edge_vertex_data(0, 1, 2, 3),
+
+ edge_vertex_data(1, 0, 0, 3),
+ edge_vertex_data(1, 0, 1, 3),
+ edge_vertex_data(1, 0, 2, 3),
+ edge_vertex_data(1, 1, 0, 3),
+ edge_vertex_data(1, 1, 1, 3),
+ edge_vertex_data(1, 1, 2, 3),
+
+ edge_vertex_data(2, 0, 0, 3),
+ edge_vertex_data(2, 0, 1, 3),
+ edge_vertex_data(2, 0, 2, 3),
+ edge_vertex_data(2, 1, 0, 3),
+ edge_vertex_data(2, 1, 1, 3),
+ edge_vertex_data(2, 1, 2, 3),
};
GR_DECLARE_STATIC_UNIQUE_KEY(gHull3AndEdgeVertexBufferKey);
@@ -198,7 +201,7 @@ static constexpr uint16_t kHull3AndEdgeIndicesAsTris[] = {
GR_DECLARE_STATIC_UNIQUE_KEY(gHull3AndEdgeIndexBufferKey);
-static constexpr int32_t kHull4AndEdgeVertices[] = {
+static constexpr int32_t kHull4Vertices[] = {
hull_vertex_data(0, 0, 4),
hull_vertex_data(0, 1, 4),
hull_vertex_data(0, 2, 4),
@@ -212,23 +215,17 @@ static constexpr int32_t kHull4AndEdgeVertices[] = {
hull_vertex_data(3, 1, 4),
hull_vertex_data(3, 2, 4),
- edge_vertex_data(0, 3, 0, kVertexData_InvertNegativeCoverageBit),
- edge_vertex_data(0, 3, 1),
- edge_vertex_data(0, 3, 2),
- edge_vertex_data(3, 0, 0),
- edge_vertex_data(3, 0, 1),
- edge_vertex_data(3, 0, 2, kVertexData_InvertNegativeCoverageBit),
+ // No edges for now (beziers don't use edges).
};
-GR_DECLARE_STATIC_UNIQUE_KEY(gHull4AndEdgeVertexBufferKey);
+GR_DECLARE_STATIC_UNIQUE_KEY(gHull4VertexBufferKey);
-static constexpr uint16_t kHull4AndEdgeIndicesAsStrips[] = {
+static constexpr uint16_t kHull4IndicesAsStrips[] = {
1, 0, 2, 11, 3, 5, 4, kRestartStrip, // First half of the hull (split diagonally).
- 7, 6, 8, 5, 9, 11, 10, kRestartStrip, // Second half of the hull.
- 13, 12, 14, 17, 15, 16 // Shared edge.
+ 7, 6, 8, 5, 9, 11, 10 // Second half of the hull.
};
-static constexpr uint16_t kHull4AndEdgeIndicesAsTris[] = {
+static constexpr uint16_t kHull4IndicesAsTris[] = {
// First half of the hull (split diagonally).
1, 0, 2,
0, 11, 2,
@@ -242,30 +239,23 @@ static constexpr uint16_t kHull4AndEdgeIndicesAsTris[] = {
8, 5, 9,
5, 11, 9,
9, 11, 10,
-
- // Shared edge.
- 13, 12, 14,
- 12, 17, 14,
- 14, 17, 15,
- 17, 16, 15,
};
-GR_DECLARE_STATIC_UNIQUE_KEY(gHull4AndEdgeIndexBufferKey);
+GR_DECLARE_STATIC_UNIQUE_KEY(gHull4IndexBufferKey);
/**
- * Generates a conservative raster hull around a triangle or curve. For triangles we generate
- * additional conservative rasters with coverage ramps around the edges. For curves we
- * generate an additional raster with coverage ramps around its shared edge.
+ * Generates a conservative raster hull around a convex polygon. For triangles we generate
+ * additional conservative rasters around the edges and calculate coverage ramps.
*
- * Triangle rough outlines are drawn in two steps: (1) Draw a conservative raster of the entire
- * triangle, with a coverage of +1. (2) Draw conservative rasters around each edge, with a
+ * Triangle rough outlines are drawn in two steps: (1) draw a conservative raster of the entire
+ * triangle, with a coverage of +1, and (2) draw conservative rasters around each edge, with a
* coverage ramp from -1 to 0. These edge coverage values convert jagged conservative raster edges
- * into smooth, antialiased ones. The final corners get touched up in a later step by VSCornerImpl.
+ * into smooth, antialiased ones.
*
- * Curves are drawn in two steps: (1) Draw a conservative raster around the input points, passing
- * coverage=+1 to the Shader. (2) Draw an additional conservative raster around the curve's shared
- * edge, using coverage=-1 at bloat vertices that fall outside the input points. This erases what
- * the hull just wrote and ramps coverage to zero.
+ * Curve rough outlines are just the conservative raster of a convex quadrilateral that encloses the
+ * curve. The Shader takes care of everything else for now.
+ *
+ * The final corners get touched up in a later step by VSCornerImpl.
*/
class VSHullAndEdgeImpl : public GrCCCoverageProcessor::VSImpl {
public:
@@ -294,9 +284,10 @@ public:
// Here we generate conservative raster geometry for the input polygon. It is the convex
// hull of N pixel-size boxes, one centered on each the input points. Each corner has three
// vertices, where one or two may cause degenerate triangles. The vertex data tells us how
- // to offset each vertex. Edges are also handled here using the same concept. For more
- // details on conservative raster, see:
+ // to offset each vertex. For more details on conservative raster, see:
// https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter42.html
+ //
+ // Triangle edges are also handled here using the same concept (see kHull3AndEdgeVertices).
v->codeAppendf("float2 corner = %s[clockwise_indices & 3];", hullPts);
v->codeAppendf("float2 left = %s[clockwise_indices >> %i];",
hullPts, kVertexData_LeftNeighborIdShift);
@@ -333,32 +324,29 @@ public:
// fallthru.
v->codeAppend ("}");
- v->codeAppend ("float2 vertex = corner + bloatdir * bloat;");
- gpArgs->fPositionVar.set(kFloat2_GrSLType, "vertex");
-
- // The hull has a coverage of +1 all around.
- v->codeAppend ("half coverage = +1;");
-
+ // For triangles, we also emit coverage in order to handle edges and corners.
+ const char* coverage = nullptr;
if (3 == fNumSides) {
- v->codeAppendf("if (0 != (%s & %i)) {", // Are we an edge?
- proc.getAttrib(kAttribIdx_VertexData).fName, kVertexData_IsEdgeBit);
+ v->codeAppend ("half coverage;");
Shader::CalcEdgeCoverageAtBloatVertex(v, "left", "corner", "bloatdir", "coverage");
+ v->codeAppendf("if (0 != (%s & %i)) {", // Are we the opposite endpoint of an edge?
+ proc.getAttrib(kAttribIdx_VertexData).fName,
+ kVertexData_InvertCoverageBit);
+ v->codeAppend ( "coverage = -1 - coverage;");
v->codeAppend ("}");
- } else {
- SkASSERT(4 == fNumSides);
- v->codeAppendf("if (0 != (%s & %i)) {", // Are we an edge?
- proc.getAttrib(kAttribIdx_VertexData).fName, kVertexData_IsEdgeBit);
- v->codeAppend ( "coverage = -1;");
+
+ v->codeAppendf("if (0 != (%s & %i)) {", // Are we a hull vertex?
+ proc.getAttrib(kAttribIdx_VertexData).fName, kVertexData_IsHullBit);
+ v->codeAppend ( "coverage = +1;"); // Hull coverage is +1 all around.
v->codeAppend ("}");
+
+ coverage = "coverage";
}
- v->codeAppendf("if (0 != (%s & %i)) {", // Invert coverage?
- proc.getAttrib(kAttribIdx_VertexData).fName,
- kVertexData_InvertNegativeCoverageBit);
- v->codeAppend ( "coverage = -1 - coverage;");
- v->codeAppend ("}");
+ v->codeAppend ("float2 vertex = corner + bloatdir * bloat;");
+ gpArgs->fPositionVar.set(kFloat2_GrSLType, "vertex");
- return "coverage";
+ return coverage;
}
private:
@@ -437,7 +425,31 @@ void GrCCCoverageProcessor::initVS(GrResourceProvider* rp) {
break;
}
- case RenderPass::kTriangleCorners: {
+ case RenderPass::kQuadratics:
+ case RenderPass::kCubics: {
+ GR_DEFINE_STATIC_UNIQUE_KEY(gHull4VertexBufferKey);
+ fVertexBuffer = rp->findOrMakeStaticBuffer(kVertex_GrBufferType, sizeof(kHull4Vertices),
+ kHull4Vertices, gHull4VertexBufferKey);
+ GR_DEFINE_STATIC_UNIQUE_KEY(gHull4IndexBufferKey);
+ if (caps.usePrimitiveRestart()) {
+ fIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType,
+ sizeof(kHull4IndicesAsStrips),
+ kHull4IndicesAsStrips,
+ gHull4IndexBufferKey);
+ fNumIndicesPerInstance = SK_ARRAY_COUNT(kHull4IndicesAsStrips);
+ } else {
+ fIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType,
+ sizeof(kHull4IndicesAsTris),
+ kHull4IndicesAsTris,
+ gHull4IndexBufferKey);
+ fNumIndicesPerInstance = SK_ARRAY_COUNT(kHull4IndicesAsTris);
+ }
+ break;
+ }
+
+ case RenderPass::kTriangleCorners:
+ case RenderPass::kQuadraticCorners:
+ case RenderPass::kCubicCorners: {
GR_DEFINE_STATIC_UNIQUE_KEY(gCornerIndexBufferKey);
if (caps.usePrimitiveRestart()) {
fIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType,
@@ -452,35 +464,14 @@ void GrCCCoverageProcessor::initVS(GrResourceProvider* rp) {
gCornerIndexBufferKey);
fNumIndicesPerInstance = SK_ARRAY_COUNT(kCornerIndicesAsTris);
}
- break;
- }
-
- case RenderPass::kQuadratics:
- case RenderPass::kCubics: {
- GR_DEFINE_STATIC_UNIQUE_KEY(gHull4AndEdgeVertexBufferKey);
- fVertexBuffer = rp->findOrMakeStaticBuffer(kVertex_GrBufferType,
- sizeof(kHull4AndEdgeVertices),
- kHull4AndEdgeVertices,
- gHull4AndEdgeVertexBufferKey);
- GR_DEFINE_STATIC_UNIQUE_KEY(gHull4AndEdgeIndexBufferKey);
- if (caps.usePrimitiveRestart()) {
- fIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType,
- sizeof(kHull4AndEdgeIndicesAsStrips),
- kHull4AndEdgeIndicesAsStrips,
- gHull4AndEdgeIndexBufferKey);
- fNumIndicesPerInstance = SK_ARRAY_COUNT(kHull4AndEdgeIndicesAsStrips);
- } else {
- fIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType,
- sizeof(kHull4AndEdgeIndicesAsTris),
- kHull4AndEdgeIndicesAsTris,
- gHull4AndEdgeIndexBufferKey);
- fNumIndicesPerInstance = SK_ARRAY_COUNT(kHull4AndEdgeIndicesAsTris);
+ if (RenderPass::kTriangleCorners != fRenderPass) {
+ fNumIndicesPerInstance = fNumIndicesPerInstance * 2/3;
}
break;
}
}
- if (RenderPass::kCubics == fRenderPass || WindMethod::kInstanceData == fWindMethod) {
+ if (RenderPassIsCubic(fRenderPass) || WindMethod::kInstanceData == fWindMethod) {
SkASSERT(WindMethod::kCrossProduct == fWindMethod || 3 == this->numInputPoints());
SkASSERT(kAttribIdx_X == this->numAttribs());
@@ -534,11 +525,13 @@ GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createVSImpl(std::unique_ptr<Sh
switch (fRenderPass) {
case RenderPass::kTriangles:
return new VSHullAndEdgeImpl(std::move(shadr), 3);
- case RenderPass::kTriangleCorners:
- return new VSCornerImpl(std::move(shadr));
case RenderPass::kQuadratics:
case RenderPass::kCubics:
return new VSHullAndEdgeImpl(std::move(shadr), 4);
+ case RenderPass::kTriangleCorners:
+ case RenderPass::kQuadraticCorners:
+ case RenderPass::kCubicCorners:
+ return new VSCornerImpl(std::move(shadr));
}
SK_ABORT("Invalid RenderPass");
return nullptr;
diff --git a/src/gpu/ccpr/GrCCCubicShader.cpp b/src/gpu/ccpr/GrCCCubicShader.cpp
index 76d1646b65..5ae51c7d9b 100644
--- a/src/gpu/ccpr/GrCCCubicShader.cpp
+++ b/src/gpu/ccpr/GrCCCubicShader.cpp
@@ -13,8 +13,8 @@
using Shader = GrCCCoverageProcessor::Shader;
void GrCCCubicShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts,
- const char* /*repetitionID*/, const char* /*wind*/,
- GeometryVars*) const {
+ const char* repetitionID, const char* wind,
+ GeometryVars* vars) const {
// Find the cubic's power basis coefficients.
s->codeAppendf("float2x4 C = float4x4(-1, 3, -3, 1, "
" 3, -6, 3, 0, "
@@ -58,44 +58,118 @@ void GrCCCubicShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts,
// Evaluate the cubic at T=.5 for a mid-ish point.
s->codeAppendf("float2 midpoint = %s * float4(.125, .375, .375, .125);", pts);
- // Orient the KLM matrix so L & M are both positive on the side of the curve we wish to fill.
+ // Orient the KLM matrix so L & M have matching signs on the side of the curve we wish to fill.
+ // We give L & M both the same sign as wind, in order to pass this value to the fragment shader.
+ // (Cubics are pre-chopped such that L & M do not change sign within any individual segment).
s->codeAppendf("float2 orientation = sign(float3(midpoint, 1) * float2x3(%s[1], %s[2]));",
fKLMMatrix.c_str(), fKLMMatrix.c_str());
s->codeAppendf("%s *= float3x3(orientation[0] * orientation[1], 0, 0, "
- "0, orientation[0], 0, "
- "0, 0, orientation[1]);", fKLMMatrix.c_str());
+ "0, orientation[0] * %s, 0, "
+ "0, 0, orientation[1] * %s);", fKLMMatrix.c_str(), wind, wind);
+
+ // Determine the amount of additional coverage to subtract out for the flat edge (P3 -> P0).
+ s->declareGlobal(fEdgeDistanceEquation);
+ s->codeAppendf("short edgeidx0 = %s > 0 ? 3 : 0;", wind);
+ s->codeAppendf("float2 edgept0 = %s[edgeidx0];", pts);
+ s->codeAppendf("float2 edgept1 = %s[3 - edgeidx0];", pts);
+ Shader::EmitEdgeDistanceEquation(s, "edgept0", "edgept1", fEdgeDistanceEquation.c_str());
+
+ this->onEmitSetupCode(s, pts, repetitionID, vars);
}
void GrCCCubicShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
GrGLSLVarying::Scope scope, SkString* code,
const char* position, const char* inputCoverage,
- const char* wind) {
+ const char* /*wind*/) {
+ SkASSERT(!inputCoverage);
+
+ fKLMD.reset(kFloat4_GrSLType, scope);
+ varyingHandler->addVarying("klmd", &fKLMD);
code->appendf("float3 klm = float3(%s, 1) * %s;", position, fKLMMatrix.c_str());
+ code->appendf("float d = dot(float3(%s, 1), %s);", position, fEdgeDistanceEquation.c_str());
+ code->appendf("%s = float4(klm, d);", OutName(fKLMD));
+
+ this->onEmitVaryings(varyingHandler, scope, code);
+}
- fKLMW.reset(kFloat4_GrSLType, scope);
- varyingHandler->addVarying("klmw", &fKLMW);
- code->appendf("%s.xyz = klm;", OutName(fKLMW));
- code->appendf("%s.w = %s * %s;", OutName(fKLMW), inputCoverage, wind);
+void GrCCCubicShader::onEmitFragmentCode(GrGLSLFPFragmentBuilder* f,
+ const char* outputCoverage) const {
+ f->codeAppendf("float k = %s.x, l = %s.y, m = %s.z, d = %s.w;",
+ fKLMD.fsIn(), fKLMD.fsIn(), fKLMD.fsIn(), fKLMD.fsIn());
+
+ this->emitCoverage(f, outputCoverage);
+ // Wind is the sign of both L and/or M. Take the sign of whichever has the larger magnitude.
+ // (In reality, either would be fine because we chop cubics with more than a half pixel of
+ // padding around the L & M lines, so neither should approach zero.)
+ f->codeAppend ("half wind = sign(l + m);");
+ f->codeAppendf("%s *= wind;", outputCoverage);
+}
+
+void GrCCCubicHullShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
+ GrGLSLVarying::Scope scope, SkString* code) {
fGradMatrix.reset(kFloat2x2_GrSLType, scope);
varyingHandler->addVarying("grad_matrix", &fGradMatrix);
+ // "klm" was just defined by the base class.
code->appendf("%s[0] = 3 * klm[0] * %s[0].xy;", OutName(fGradMatrix), fKLMMatrix.c_str());
code->appendf("%s[1] = -klm[1] * %s[2].xy - klm[2] * %s[1].xy;",
OutName(fGradMatrix), fKLMMatrix.c_str(), fKLMMatrix.c_str());
}
-void GrCCCubicShader::onEmitFragmentCode(const GrCCCoverageProcessor& proc,
- GrGLSLFPFragmentBuilder* f,
- const char* outputCoverage) const {
- f->codeAppendf("float k = %s.x, l = %s.y, m = %s.z;",
- fKLMW.fsIn(), fKLMW.fsIn(), fKLMW.fsIn());
+void GrCCCubicHullShader::emitCoverage(GrGLSLFPFragmentBuilder* f,
+ const char* outputCoverage) const {
+ // k,l,m,d are defined by the base class.
f->codeAppend ("float f = k*k*k - l*m;");
f->codeAppendf("float2 grad_f = %s * float2(k, 1);", fGradMatrix.fsIn());
- f->codeAppend ("float d = f * inversesqrt(dot(grad_f, grad_f));");
-#ifdef SK_DEBUG
- if (proc.debugVisualizationsEnabled()) {
- f->codeAppendf("d /= %f;", proc.debugBloat());
- }
-#endif
- f->codeAppendf("%s = clamp(0.5 - d, 0, 1) * %s.w;", outputCoverage, fKLMW.fsIn());
+ f->codeAppendf("%s = clamp(0.5 - f * inversesqrt(dot(grad_f, grad_f)), 0, 1);", outputCoverage);
+ f->codeAppendf("%s += min(d, 0);", outputCoverage); // Flat edge opposite the curve.
+}
+
+void GrCCCubicCornerShader::onEmitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts,
+ const char* repetitionID, GeometryVars* vars) const {
+ s->codeAppendf("float2 corner = %s[%s * 3];", pts, repetitionID);
+ vars->fCornerVars.fPoint = "corner";
+}
+
+void GrCCCubicCornerShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
+ GrGLSLVarying::Scope scope, SkString* code) {
+ using Interpolation = GrGLSLVaryingHandler::Interpolation;
+
+ fdKLMDdx.reset(kFloat4_GrSLType, scope);
+ varyingHandler->addVarying("dklmddx", &fdKLMDdx, Interpolation::kCanBeFlat);
+ code->appendf("%s = float4(%s[0].x, %s[1].x, %s[2].x, %s.x);",
+ OutName(fdKLMDdx), fKLMMatrix.c_str(), fKLMMatrix.c_str(),
+ fKLMMatrix.c_str(), fEdgeDistanceEquation.c_str());
+
+ fdKLMDdy.reset(kFloat4_GrSLType, scope);
+ varyingHandler->addVarying("dklmddy", &fdKLMDdy, Interpolation::kCanBeFlat);
+ code->appendf("%s = float4(%s[0].y, %s[1].y, %s[2].y, %s.y);",
+ OutName(fdKLMDdy), fKLMMatrix.c_str(), fKLMMatrix.c_str(),
+ fKLMMatrix.c_str(), fEdgeDistanceEquation.c_str());
+}
+
+void GrCCCubicCornerShader::emitCoverage(GrGLSLFPFragmentBuilder* f,
+ const char* outputCoverage) const {
+ f->codeAppendf("float2x4 grad_klmd = float2x4(%s, %s);", fdKLMDdx.fsIn(), fdKLMDdy.fsIn());
+
+ // Erase what the previous hull shader wrote. We don't worry about the two corners falling on
+ // the same pixel because those cases should have been weeded out by this point.
+ // k,l,m,d are defined by the base class.
+ f->codeAppend ("float f = k*k*k - l*m;");
+ f->codeAppend ("float2 grad_f = float3(3*k*k, -m, -l) * float2x3(grad_klmd);");
+ f->codeAppendf("%s = -clamp(0.5 - f * inversesqrt(dot(grad_f, grad_f)), 0, 1);",
+ outputCoverage);
+ f->codeAppendf("%s -= d;", outputCoverage);
+
+ // Use software msaa to estimate actual coverage at the corner pixels.
+ const int sampleCount = Shader::DefineSoftSampleLocations(f, "samples");
+ f->codeAppendf("float4 klmd_center = float4(%s.xyz, %s.w + 0.5);",
+ fKLMD.fsIn(), fKLMD.fsIn());
+ f->codeAppendf("for (int i = 0; i < %i; ++i) {", sampleCount);
+ f->codeAppend ( "float4 klmd = grad_klmd * samples[i] + klmd_center;");
+ f->codeAppend ( "half f = klmd.y * klmd.z - klmd.x * klmd.x * klmd.x;");
+ f->codeAppendf( "%s += all(greaterThan(half4(f, klmd.y, klmd.z, klmd.w), "
+ "half4(0))) ? %f : 0;",
+ outputCoverage, 1.0 / sampleCount);
+ f->codeAppend ("}");
}
diff --git a/src/gpu/ccpr/GrCCCubicShader.h b/src/gpu/ccpr/GrCCCubicShader.h
index 70d3300461..063549264a 100644
--- a/src/gpu/ccpr/GrCCCubicShader.h
+++ b/src/gpu/ccpr/GrCCCubicShader.h
@@ -24,17 +24,37 @@
class GrCCCubicShader : public GrCCCoverageProcessor::Shader {
protected:
void emitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
- const char* wind, GeometryVars*) const override;
+ const char* wind, GeometryVars*) const final;
+ virtual void onEmitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
+ GeometryVars*) const {}
void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code,
- const char* position, const char* inputCoverage, const char* wind) override;
+ const char* position, const char* inputCoverage, const char* wind) final;
+ virtual void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) = 0;
- void onEmitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*,
- const char* outputCoverage) const override;
+ void onEmitFragmentCode(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const final;
+ virtual void emitCoverage(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const = 0;
GrShaderVar fKLMMatrix{"klm_matrix", kFloat3x3_GrSLType};
- GrGLSLVarying fKLMW;
+ GrShaderVar fEdgeDistanceEquation{"edge_distance_equation", kFloat3_GrSLType};
+ GrGLSLVarying fKLMD;
+};
+
+class GrCCCubicHullShader : public GrCCCubicShader {
+ void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) override;
+ void emitCoverage(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const override;
+
GrGLSLVarying fGradMatrix;
};
+class GrCCCubicCornerShader : public GrCCCubicShader {
+ void onEmitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
+ GeometryVars*) const override;
+ void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) override;
+ void emitCoverage(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const override;
+
+ GrGLSLVarying fdKLMDdx;
+ GrGLSLVarying fdKLMDdy;
+};
+
#endif
diff --git a/src/gpu/ccpr/GrCCPathParser.cpp b/src/gpu/ccpr/GrCCPathParser.cpp
index e625c43743..43f5e6be6a 100644
--- a/src/gpu/ccpr/GrCCPathParser.cpp
+++ b/src/gpu/ccpr/GrCCPathParser.cpp
@@ -530,11 +530,15 @@ void GrCCPathParser::drawCoverageCount(GrOpFlushState* flushState, CoverageCount
if (batchTotalCounts.fQuadratics) {
this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kQuadratics,
WindMethod::kCrossProduct, &PrimitiveTallies::fQuadratics, drawBounds);
+ this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kQuadraticCorners,
+ WindMethod::kCrossProduct, &PrimitiveTallies::fQuadratics, drawBounds);
}
if (batchTotalCounts.fCubics) {
this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kCubics,
WindMethod::kCrossProduct, &PrimitiveTallies::fCubics, drawBounds);
+ this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kCubicCorners,
+ WindMethod::kCrossProduct, &PrimitiveTallies::fCubics, drawBounds);
}
}
diff --git a/src/gpu/ccpr/GrCCQuadraticShader.cpp b/src/gpu/ccpr/GrCCQuadraticShader.cpp
index baa10fd34e..090e29f4c3 100644
--- a/src/gpu/ccpr/GrCCQuadraticShader.cpp
+++ b/src/gpu/ccpr/GrCCQuadraticShader.cpp
@@ -14,7 +14,7 @@
using Shader = GrCCCoverageProcessor::Shader;
void GrCCQuadraticShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts,
- const char* /*repetitionID*/, const char* /*wind*/,
+ const char* repetitionID, const char* wind,
GeometryVars* vars) const {
s->declareGlobal(fCanonicalMatrix);
s->codeAppendf("%s = float3x3(0.0, 0, 1, "
@@ -25,6 +25,41 @@ void GrCCQuadraticShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* p
"%s[2], 1));",
fCanonicalMatrix.c_str(), pts, pts, pts);
+ s->declareGlobal(fEdgeDistanceEquation);
+ s->codeAppendf("float2 edgept0 = %s[%s > 0 ? 2 : 0];", pts, wind);
+ s->codeAppendf("float2 edgept1 = %s[%s > 0 ? 0 : 2];", pts, wind);
+ Shader::EmitEdgeDistanceEquation(s, "edgept0", "edgept1", fEdgeDistanceEquation.c_str());
+
+ this->onEmitSetupCode(s, pts, repetitionID, vars);
+}
+
+void GrCCQuadraticShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
+ GrGLSLVarying::Scope scope, SkString* code,
+ const char* position, const char* inputCoverage,
+ const char* wind) {
+ SkASSERT(!inputCoverage);
+
+ fXYDW.reset(kFloat4_GrSLType, scope);
+ varyingHandler->addVarying("xydw", &fXYDW);
+ code->appendf("%s.xy = (%s * float3(%s, 1)).xy;",
+ OutName(fXYDW), fCanonicalMatrix.c_str(), position);
+ code->appendf("%s.z = dot(%s.xy, %s) + %s.z;",
+ OutName(fXYDW), fEdgeDistanceEquation.c_str(), position,
+ fEdgeDistanceEquation.c_str());
+ code->appendf("%s.w = %s;", OutName(fXYDW), wind);
+
+ this->onEmitVaryings(varyingHandler, scope, code);
+}
+
+void GrCCQuadraticShader::onEmitFragmentCode(GrGLSLFPFragmentBuilder* f,
+ const char* outputCoverage) const {
+ this->emitCoverage(f, outputCoverage);
+ f->codeAppendf("%s *= %s.w;", outputCoverage, fXYDW.fsIn()); // Sign by wind.
+}
+
+void GrCCQuadraticHullShader::onEmitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts,
+ const char* /*repetitionID*/,
+ GeometryVars* vars) const {
// Find the T value whose tangent is halfway between the tangents at the endpionts.
s->codeAppendf("float2 tan0 = %s[1] - %s[0];", pts, pts);
s->codeAppendf("float2 tan1 = %s[2] - %s[1];", pts, pts);
@@ -41,31 +76,66 @@ void GrCCQuadraticShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* p
vars->fHullVars.fAlternatePoints = "quadratic_hull";
}
-void GrCCQuadraticShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
- GrGLSLVarying::Scope scope, SkString* code,
- const char* position, const char* inputCoverage,
- const char* wind) {
- fCoords.reset(kFloat4_GrSLType, scope);
- varyingHandler->addVarying("coords", &fCoords);
- code->appendf("%s.xy = (%s * float3(%s, 1)).xy;",
- OutName(fCoords), fCanonicalMatrix.c_str(), position);
- code->appendf("%s.zw = float2(2 * %s.x, -1) * float2x2(%s);",
- OutName(fCoords), OutName(fCoords), fCanonicalMatrix.c_str());
+void GrCCQuadraticHullShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
+ GrGLSLVarying::Scope scope, SkString* code) {
+ fGrad.reset(kFloat2_GrSLType, scope);
+ varyingHandler->addVarying("grad", &fGrad);
+ code->appendf("%s = float2(2 * %s.x, -1) * float2x2(%s);",
+ OutName(fGrad), OutName(fXYDW), fCanonicalMatrix.c_str());
+}
+
+void GrCCQuadraticHullShader::emitCoverage(GrGLSLFPFragmentBuilder* f,
+ const char* outputCoverage) const {
+ f->codeAppendf("float d = (%s.x * %s.x - %s.y) * inversesqrt(dot(%s, %s));",
+ fXYDW.fsIn(), fXYDW.fsIn(), fXYDW.fsIn(), fGrad.fsIn(), fGrad.fsIn());
+ f->codeAppendf("%s = clamp(0.5 - d, 0, 1);", outputCoverage);
+ f->codeAppendf("%s += min(%s.z, 0);", outputCoverage, fXYDW.fsIn()); // Flat closing edge.
+}
- fCoverageTimesWind.reset(kHalf_GrSLType, scope);
- varyingHandler->addVarying("coverage_times_wind", &fCoverageTimesWind);
- code->appendf("%s = %s * %s;", OutName(fCoverageTimesWind), inputCoverage, wind);
+void GrCCQuadraticCornerShader::onEmitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts,
+ const char* repetitionID,
+ GeometryVars* vars) const {
+ s->codeAppendf("float2 corner = %s[%s * 2];", pts, repetitionID);
+ vars->fCornerVars.fPoint = "corner";
}
-void GrCCQuadraticShader::onEmitFragmentCode(const GrCCCoverageProcessor& proc,
- GrGLSLFPFragmentBuilder* f,
+void GrCCQuadraticCornerShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
+ GrGLSLVarying::Scope scope, SkString* code) {
+ using Interpolation = GrGLSLVaryingHandler::Interpolation;
+
+ fdXYDdx.reset(kFloat3_GrSLType, scope);
+ varyingHandler->addVarying("dXYDdx", &fdXYDdx, Interpolation::kCanBeFlat);
+ code->appendf("%s = float3(%s[0].x, %s[0].y, %s.x);",
+ OutName(fdXYDdx), fCanonicalMatrix.c_str(), fCanonicalMatrix.c_str(),
+ fEdgeDistanceEquation.c_str());
+
+ fdXYDdy.reset(kFloat3_GrSLType, scope);
+ varyingHandler->addVarying("dXYDdy", &fdXYDdy, Interpolation::kCanBeFlat);
+ code->appendf("%s = float3(%s[1].x, %s[1].y, %s.y);",
+ OutName(fdXYDdy), fCanonicalMatrix.c_str(), fCanonicalMatrix.c_str(),
+ fEdgeDistanceEquation.c_str());
+}
+
+void GrCCQuadraticCornerShader::emitCoverage(GrGLSLFPFragmentBuilder* f,
const char* outputCoverage) const {
- f->codeAppendf("float d = (%s.x * %s.x - %s.y) * inversesqrt(dot(%s.zw, %s.zw));",
- fCoords.fsIn(), fCoords.fsIn(), fCoords.fsIn(), fCoords.fsIn(), fCoords.fsIn());
-#ifdef SK_DEBUG
- if (proc.debugVisualizationsEnabled()) {
- f->codeAppendf("d /= %f;", proc.debugBloat());
- }
-#endif
- f->codeAppendf("%s = clamp(0.5 - d, 0, 1) * %s;", outputCoverage, fCoverageTimesWind.fsIn());
+ f->codeAppendf("float x = %s.x, y = %s.y, d = %s.z;",
+ fXYDW.fsIn(), fXYDW.fsIn(), fXYDW.fsIn());
+ f->codeAppendf("float2x3 grad_xyd = float2x3(%s, %s);", fdXYDdx.fsIn(), fdXYDdy.fsIn());
+
+ // Erase what the previous hull shader wrote. We don't worry about the two corners falling on
+ // the same pixel because those cases should have been weeded out by this point.
+ f->codeAppend ("float f = x*x - y;");
+ f->codeAppend ("float2 grad_f = float2(2*x, -1) * float2x2(grad_xyd);");
+ f->codeAppendf("%s = -(0.5 - f * inversesqrt(dot(grad_f, grad_f)));", outputCoverage);
+ f->codeAppendf("%s -= d;", outputCoverage);
+
+ // Use software msaa to approximate coverage at the corner pixels.
+ int sampleCount = Shader::DefineSoftSampleLocations(f, "samples");
+ f->codeAppendf("float3 xyd_center = float3(%s.xy, %s.z + 0.5);", fXYDW.fsIn(), fXYDW.fsIn());
+ f->codeAppendf("for (int i = 0; i < %i; ++i) {", sampleCount);
+ f->codeAppend ( "float3 xyd = grad_xyd * samples[i] + xyd_center;");
+ f->codeAppend ( "half f = xyd.y - xyd.x * xyd.x;"); // f > 0 -> inside curve.
+ f->codeAppendf( "%s += all(greaterThan(float2(f,xyd.z), float2(0))) ? %f : 0;",
+ outputCoverage, 1.0 / sampleCount);
+ f->codeAppendf("}");
}
diff --git a/src/gpu/ccpr/GrCCQuadraticShader.h b/src/gpu/ccpr/GrCCQuadraticShader.h
index d91f943471..0be03d33dd 100644
--- a/src/gpu/ccpr/GrCCQuadraticShader.h
+++ b/src/gpu/ccpr/GrCCQuadraticShader.h
@@ -23,17 +23,48 @@
class GrCCQuadraticShader : public GrCCCoverageProcessor::Shader {
protected:
void emitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
- const char* wind, GeometryVars*) const override;
+ const char* wind, GeometryVars*) const final;
+ virtual void onEmitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
+ GeometryVars*) const = 0;
void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code,
- const char* position, const char* inputCoverage, const char* wind) override;
+ const char* position, const char* inputCoverage, const char* wind) final;
+ virtual void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) {}
- void onEmitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*,
- const char* outputCoverage) const override;
+ void onEmitFragmentCode(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const final;
+ virtual void emitCoverage(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const = 0;
const GrShaderVar fCanonicalMatrix{"canonical_matrix", kFloat3x3_GrSLType};
- GrGLSLVarying fCoords;
- GrGLSLVarying fCoverageTimesWind;
+ const GrShaderVar fEdgeDistanceEquation{"edge_distance_equation", kFloat3_GrSLType};
+ GrGLSLVarying fXYDW;
+};
+
+/**
+ * This pass draws a conservative raster hull around the quadratic bezier curve, computes the
+ * curve's coverage using the gradient-based AA technique outlined in the Loop/Blinn paper, and
+ * uses simple distance-to-edge to subtract out coverage for the flat closing edge [P2 -> P0]. Since
+ * the provided curves are monotonic, this will get every pixel right except the two corners.
+ */
+class GrCCQuadraticHullShader : public GrCCQuadraticShader {
+ void onEmitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
+ GeometryVars*) const override;
+ void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) override;
+ void emitCoverage(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const override;
+
+ GrGLSLVarying fGrad;
+};
+
+/**
+ * This pass fixes the corners of a closed quadratic segment with soft MSAA.
+ */
+class GrCCQuadraticCornerShader : public GrCCQuadraticShader {
+ void onEmitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
+ GeometryVars*) const override;
+ void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) override;
+ void emitCoverage(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const override;
+
+ GrGLSLVarying fdXYDdx;
+ GrGLSLVarying fdXYDdy;
};
#endif
diff --git a/src/gpu/ccpr/GrCCTriangleShader.cpp b/src/gpu/ccpr/GrCCTriangleShader.cpp
index 8135313965..e086201b42 100644
--- a/src/gpu/ccpr/GrCCTriangleShader.cpp
+++ b/src/gpu/ccpr/GrCCTriangleShader.cpp
@@ -22,8 +22,7 @@ void GrCCTriangleShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
code->appendf("%s = %s * %s;", OutName(fCoverageTimesWind), inputCoverage, wind);
}
-void GrCCTriangleShader::onEmitFragmentCode(const GrCCCoverageProcessor&,
- GrGLSLFPFragmentBuilder* f,
+void GrCCTriangleShader::onEmitFragmentCode(GrGLSLFPFragmentBuilder* f,
const char* outputCoverage) const {
f->codeAppendf("%s = %s;", outputCoverage, fCoverageTimesWind.fsIn());
}
@@ -107,8 +106,7 @@ void GrCCTriangleCornerShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandl
code->appendf("%s = %s * .5;", OutName(fWindTimesHalf), wind);
}
-void GrCCTriangleCornerShader::onEmitFragmentCode(const GrCCCoverageProcessor&,
- GrGLSLFPFragmentBuilder* f,
+void GrCCTriangleCornerShader::onEmitFragmentCode(GrGLSLFPFragmentBuilder* f,
const char* outputCoverage) const {
// By the time we reach this shader, the pixel is in the following state:
//
diff --git a/src/gpu/ccpr/GrCCTriangleShader.h b/src/gpu/ccpr/GrCCTriangleShader.h
index 6dae8df497..5f33b077cd 100644
--- a/src/gpu/ccpr/GrCCTriangleShader.h
+++ b/src/gpu/ccpr/GrCCTriangleShader.h
@@ -19,8 +19,7 @@
class GrCCTriangleShader : public GrCCCoverageProcessor::Shader {
void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code,
const char* position, const char* inputCoverage, const char* wind) override;
- void onEmitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*,
- const char* outputCoverage) const override;
+ void onEmitFragmentCode(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const override;
GrGLSLVarying fCoverageTimesWind;
};
@@ -35,8 +34,7 @@ class GrCCTriangleCornerShader : public GrCCCoverageProcessor::Shader {
const char* wind, GeometryVars*) const override;
void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code,
const char* position, const char* inputCoverage, const char* wind) override;
- void onEmitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*,
- const char* outputCoverage) const override;
+ void onEmitFragmentCode(GrGLSLFPFragmentBuilder* f, const char* outputCoverage) const override;
GrShaderVar fAABoxMatrices{"aa_box_matrices", kFloat2x2_GrSLType, 2};
GrShaderVar fAABoxTranslates{"aa_box_translates", kFloat2_GrSLType, 2};